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In survey statistics, estimating and reducing population variation is crucial. These variations can occur 
in any sampling design, including stratified random sampling, where stratum weights may increase 
the variance of estimators. Calibration techniques, which use additional auxiliary information, can 
help mitigate this issue. This paper examines three calibration-based estimators—calibration variance, 
calibration ratio, and calibration exponential ratio estimators—within the framework of stratified 
random sampling. The study generates data from normal, gamma, and exponential distributions 
to test these estimators. Results demonstrate that the proposed calibration estimators offer more 
accurate estimates of population variance and outperform existing methods in estimating population 
variance under stratified random sampling, providing more accurate and reliable estimates.
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In survey sampling sometimes the sample is divided into subgroups of interest, which are homogenous in nature. 
These homogenous subgroups are called strata and this technique to formulate the homogenous samples is 
called stratified sampling technique. The variability in the subgroup is lower than the whole individuals, so that 
using this technique a statistician can get greater precision than simple random sampling. The main interest 
of the researchers is to get the estimators of population parameters, such as mean and variance in such a way 
that they are less costly, more efficient and flexible to apply in real life situations. Many authors have provided 
estimates of the population mean and variance using what is called auxiliary information (AI). Graunt1 was the 
first one who obtained the estimates for the total population of France using the birth rate as AI. The AI is useful 
at both the design and estimation stages, respectively. Most statisticians have used the AI at the estimation stage 
to improve the efficiency of estimators. Calibration technique is also used to improve the precision of estimators 
of the population parameters using some AI. Calibration is a method which is used to adjust the sampled unit’s 
weights with respect to known standards (totals) or conditions. The process of calibration method includes the 
evaluation of the sample by assigning the values to the response tool or to selected measures2. The calibration 
estimation has been adopted by several researchers. For example, Deville and Särndal3 provided new estimators 
using calibrated weights, which have the smallest distance from sampling design weights. Berge4 extended the use 
of calibration estimators in survey sampling. The calibration method has many advantages in survey sampling 
for instance calibration estimators are consistent and provide more efficient estimators for population total as 
compared to other estimators. The calibration method minimizes the distance between original and calibrated 
weights. Estevao and Sarndal5 developed the functional form of calibration estimation. The calibration estimators 
in survey sampling are proposed be Arnab and Singh6 and Kott7. Kim et al.8 stated that calibration is commonly 
used by including auxiliary data so that the estimation of the population parameters can be more precise. Kim and 
Park9 used different calibration constraints and distance measures to produce calibration estimators. Koyuncu and 
Kadilar10 developed estimators for the population mean using calibration techniques. Bhushan et al.11 examined 
variance estimation methods within an efficient class of estimators for simple random sampling. Lone et al.12 
introduced variance estimators that incorporate artificial intelligence techniques in simple random sampling. 
Jabeen et al.13 proposed several calibration-based estimators, including calibration mean, calibration ratio, and 
calibration exponential estimators, employing diverse calibration constraints and distance measures. The objective 
of the study is to propose calibration variance estimators following the works of Koyuncu and Kadilar10 and Jabeen 
et al.13. All previous works in the literature focused on the mean estimation in calibration methodology. To the 
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best of our knowledge, this is the first article that focuses on the variance estimation in calibration technique under 
stratified sampling method. The study proposes three calibration variance estimators namely, the simple calibration 
variance estimator, calibration variance ratio estimator, and calibration variance exponential ratio using chi-square 
distance measure and different calibration constraints. The R language is used to compare the proposed estimators 
with some existing estimators in literature.

The rest of the paper is organized into five sections. In “Some existing estimators” section provides an 
overview of several existing estimators. In “Some proposed calibration variance estimators” section presents 
the mathematical derivation of three calibration variance estimators. In “Simulation study” section details a 
simulation study designed to assess the efficiency of the proposed estimators across various distributions. In 
“Real life application” section applies these estimators to real-life data to verify their practical effectiveness. 
Finally, “Conclusion” section concludes the paper, summarizing the key findings and implications of the study.

Some existing estimators
This section reviews key estimators developed by survey sampling statisticians, detailing their functionality and 
formulations. We also introduce the notation that will be used in the following sections.

W ∗
h  is the calibrated weight for each stratum (where h = 1, 2, . . . , l).

s2y is the sample variance of the sample study variable.
S2
y  denotes the population variance of the study variable.

S2
x is the population variance of the auxiliary variable.

s2x is the sample variance of the auxiliary variable.
Ωh refers to the weights, which minimize the distance measure.
Qh measure of size for sampled units.
yhy represents the observed values for the study variable of the hth stratum.
xhx denotes the observed values for auxiliary variable of hth stratum.
Wh =

Nh
N  is the stratum weight.

R =
S2
y

S2
x
 is the ratio estimator.

ρxy is the correlation coefficient between x and y.
Sxy presents the covariance among x and y.

Variance ratio estimator
To overcome the problem of the estimation of variance of any population, Isaki14 first proposed usual variance 
ratio estimator, say, S2

R, which is given as

	
S2

R =
s2y
s2x

S2
x.

The mean square error (MSE) of S2
R reduces to

	 MSE(S2
R) =

[
S2
y + S2

x − 2RSxy

]
.

Exponential variance estimator
Building on Isaki’s14 work, Bahl and Tuteja15 developed the variance exponential estimator for situations where 
the study variable is not linearly related to the auxiliary information. The variance exponential estimator, say, 
ŜBT , and its MSE are defined by

	
ŜBT = s2yexp

[
S2
x − s2x

S2
x + s2x

]

and

	
MSE

(
S2
BT

)
= θS4

y

[
λ∗
40 +

λ∗
04

4
− goλ

∗
22

]
.

where

	
λ∗
40 = C4

y =
S4
y

Y
4 , λ∗

04 =
C4

x

4
=

S4
x

4X
4 , λ∗

22 = CyCx, go = ρxy =
Sxy

SxSy

and

	
θ =

1

n
− 1

N
.

Variance ratio estimator
Upadhyaya and singh16 proposed the variance exponential estimator, which is defined by
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S2
us = s2yexp

[
Sx − λ04

Sx + λ04

]
.

Its MSE takes the form

	 MSE
(
S2
us

)
= θS4

y

[
λ∗
40 + g2oλ

∗
04 − 2goλ

∗
22

]
,

Calibration estimators
In stratified random sampling, new calibration estimators for estimating the population mean using AI are 
proposed by Koyuncu and Kadilar17. The classic unbiased estimator of the population mean is given, under this 
stratified random sampling scheme, by

	
y1 =

l∑
h=1

W ∗
hyh,

where W ∗
h  are the calibration weights that reduce the chi-square distance measure to the smallest possible value. 

The chi-square distance measure is given by

	
L1 =

∑l
h(Ωh −Wh)

2

Qh −Wh
.

Calibration ratio and exponential estimators
Jabeen et al.13 proposed the calibration estimators by taking motivation from Kim et al.8. The calibration 
estimator is given by

	
y2 =

l∑
h

Why
∗
hy,

where y∗hy is assumed to be a variable with a usual variance estimator exponential and ratio estimators, i.e.

	

y∗hy = yhy,

y∗hy = yhy exp

[
xhx −Xhx

xhx +Xhx

]
,

y∗hy = yhy
Xhx

xhx
.

The calibration constraints, which define the relationship between the study variables and auxiliary variables, 
are defined by

	

l∑
h

Ωhs
2
hx =

l∑
h

Whs
2∗
hx,

L∑
h

Ωhxh =
L∑
h

Whx
∗
h

and

	

L∑
h

Ωh =

L∑
h

Wh.

Some proposed calibration variance estimators
In this section, we propose some new variance estimators to estimate the variation in the population using 
calibration technique.

Proposed calibration variance estimator
The following calibrated estimator is proposed to estimate the population variance, and it is defined by

	
t1 =

l∑
h

Ωhs
2∗
hy,

where

	 s∗hy = s2hy,
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with following constraints where h = 1, 2 . . . l stratum.

	

l∑
h

Ωhxh =
l∑
h

WhXh,� (1)

	

l∑
h

Ωhs
2
hx =

l∑
h

WhS
2
hx� (2)

and

	

l∑
h

Ωh =

l∑
h

Wh,� (3)

More details about the proof of the estimator t1 are given in “Appendix 1”.

Proposed calibration ratio estimator
We use the concept of Jabeen et al.13 and propose the initiated following calibration ratio estimator. The 
calibration ratio estimator is defined by

	
t2 =

l∑
h

ΩhS
2∗
hy,

where

	
S∗2
hy = S2

yh ·
S2
xh

S2
xh

,

with the constraints mentioned in Eqs. (1) to (3), h = 1, 2, . . . k stratum. The proof of proposed estimator t2 is 
given in “Appendix 2”.

Proposed calibration exponential estimator
Following Jabeen et al.13, we propose the following calibration exponential estimator, which is defined as

	
t3 =

l∑
h

ΩhS
2∗
hy,

where

	
S∗2
hy = s2hyexp

[
S2
hx − s2hx

S2
hx + s2hx

]
,

with constraints given above in Eqs.  (1), (2) and (3), where h = 1, 2, . . . k stratum. Proof of the proposed 
estimator t3 can be found in “Appendix 3”.

Simulation study
We produce distinctive simulated population where y∗ji and x∗ji values for various distributions, as given in 
Table 1. To obtain different levels of relationship among investigation and helping variable, we apply few 
transformations, which are given in Table 2.

Each population comprises of three strata and each stratum contains 5 units. We choose ni = 2, 3, 4 units 
from every stratum separately respectively, we get 

(
5
2

)(
5
3

)(
5
4

)
 = 2500 samples. The correlation coefficients 

between study variable and auxiliary variable for each stratum are taken as 0.5, 0.7 and 0.9 as per Tracy et al.17. 
The MSE is computed using following formula.

	

MSE (ŷi) =



 N

n




k=1 (ŷi − ȳ)2
N

n

 , i = 1, 2, 3 . . .

The results of the MSE are presented in Tables 3, 4, 5 and 6. The results of simulated data presented in Table 3, 
4, 5 and 6 are obtained for different distributions. In our analysis, we calculated the MSE for three proposed 
estimators across four different distributions with varying parameters, as detailed in Tables 1, 2, 3, 4, 5 and 6. 
The results, presented in Table 7, demonstrate that our proposed estimators consistently outperform the existing 
estimators by Isaki14 and Bahl and Tuteja15. Specifically, the MSE values for our estimators are consistently lower 
compared to those of the conventional estimators.
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These findings indicate that the proposed estimators provide more accurate and reliable results than their 
predecessors. Therefore, adopting our proposed estimators is likely to enhance performance and utility in 
practical applications.

ρ Estimator MSE

0.5
t1 15,717.72

t2 4021.978

t3 9922.135

0.7
t1 17,091.06

t2 2969.764

t3 9631.747

0.9
t1 13,366.41

t2 2703.995

t3 8005.757

Table 4.  The MSE of the proposed estimators from normal distribution.

 

α,β Estimator MSE

α = 2, β = 3

t1 95,965.23

t2 177,237.1

t3 79,867.68

α = 2.5, β = 3.75

t1 90,936.87

t2 177,145

t3 74,138.4

α = 3, β = 4.1

t1 78,387.8

t2 141,730.5

t3 44,512.85

Table 3.  The MSE of the proposed estimators from gamma distribution.

 

Strata Study variable Auxiliary variable

1 Stratum y1i = 50 + y∗1i x1i = 15 + 
√
(1− ρ2xy1)x

∗
1i + ρxy1

s1x
s1y

y∗1i

2 Stratum y2i = 150 + y∗2i x2i = 100 + 
√
(1− ρ2xy2)x

∗
2i + ρxy2

s2x
s2y

y∗2i

3 Stratum y3i = 100 + y∗3i x3i = 300 + 
√
(1− ρ2xy3)x

∗
3i + ρxy3

s3x
s3y

y∗3i

Table 2.  Properties of each stratum.

 

No. Parameters and distribution of SV Parameters and distribution of AV

1 f
(
y∗ji

)
= 1

βαΓ(α)y
∗α−1
ji exp

(
−y∗ji

β

)
f
(
x∗ji

)
= 1

βαΓ(α)x
∗α−1
ji exp

(−x∗ji
β

)

2 f
(
y∗ji

)
= 1

λexp
(
−y∗ji

λ

)
f
(
x∗ji

)
= 1

λexp
(−x∗ji

λ

)

3 f
(
y∗ji

)
= 1

y∗ji
√
2Π

exp
(

−(lny∗ji)
2

2

)
f
(
x∗ji

)
= 1

x∗ji
√
2Π

exp
(

−(lnx∗ji)
2

2

)

4 f
(
y∗ji

)
= 1√

2Π
exp

(
−y∗2ji
2

)
f
(
x∗ji

)
= 1√

2Π
exp

(
−x∗2ji
2

)

Table 1.  Parameters and distribution of study (SV) and auxiliary variable (AV).
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Real life application
To demonstrate the performance of our proposed estimators, we use a real-life dataset from Koyuncu and 
Kadilar18. The dataset includes two variables: the number of teachers and the number of classes in both primary 
and secondary schools across Turkey. The data were collected from six diverse regions: Marmara, Aegean, 
Mediterranean, Central Anatolia, Black Sea, and East and Southeast Anatolia. A total sample size of n = 180 
was selected, with the sample sizes for each stratum, nh, detailed in Table 8. The MSEs and their comparisons 
are presented in Table 9.

Table 9 displays the MSEs obtained from the proposed calibrated variance estimators—simple, ratio, and 
exponential—using the data provided in Table 8. The results align with those from the simulation studies. The 
comparison reveals that the proposed calibrated estimators are more efficient than existing estimators, as they 
exhibit the lowest MSEs. The application of the calibration technique enhances the overall performance of the 
estimators in estimating population variation.

Table 9 confirms that the results align with those obtained from the simulation studies. The comparison 
reveals that the proposed estimators using the calibration technique are more efficient than the existing ones, as 

MSE of t1 MSE of t2 MSE of t3 MSE of Isaki14 MSE of Bahl and Tuteja15

95,965.23 177,237.1 78,967.68 150,404.1 266,448

90,936.87 177,145 74,138.4 119,218 230,510.8

78,387.8 141,730.5 44,512.85 122,183.5 212,128.3

15,717.72 4021.978 9922.135 644,222 176,251.8

17,091.06 2969.764 9631.747 851,864.6 196,821.4

13,366.41 2703.995 8005.757 699,237.2 203,189.5

118,204.7 238,458.8 151,247.1 61,846,925 314,576.8

85,241.85 171,522.5 57,668.86 42,588,038 231,087.6

41,555.86 82,738.78 6635.789 21,837,626 132,359.2

2,155,477 3,011,671 2,237,658 4,686,898 6,131,997

2,195,253 1,291,763 2,120,258 2,401,915 6,684,994

4,166,660 2,458,213 1,920,386 6,806,558 6,790,442

Table 7.  Findings of the comparison of MSE across various estimators.

 

ρ Estimator MSE

0.5
t1 2,155,477

t2 3,011,671

t3 2,237,658

0.7
t1 21,955,477

t2 1,291,763

t3 2,120,258

0.9
t1 4,166,660

t2 2,458,213

t3 1,920,386

Table 6.  The MSE of the proposed estimators from log normal distribution.

 

λ Estimator MSE

2
t1 118,204.7

t2 238,458.8

t3 151,247.1

2.5
t1 85,241.85

t2 171,522.5

t3 57,668.86

3.5
t1 41,555.86

t2 82,738.78

t3 6635.789

Table 5.  The MSE of the proposed estimators from exponential distribution.
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they exhibit the lowest standard errors (SEs). This indicates that the calibration technique enhances the overall 
performance of the estimators in estimating population variation.

Conclusion
In this research, we introduced three new estimators inspired by Jabeen et al.13 to estimate population variation. 
We employed three calibration constraints and used the chi-square distance measure to minimize the discrepancy 
between the original and calibrated weights of strata. The three estimators developed are: the calibration variance 
estimator, the calibration ratio estimator, and the calibration exponential estimator. To assess the performance 
of these estimators, we analyzed the mean squared error (MSE) of both the proposed and existing estimators 
through simulation studies and real-life data. Our findings indicate that the proposed calibrated estimators 
outperform the existing ones, such as those by Isaki14 and Bahl and Tuteja15, by achieving a lower MSE.

Data availability
The data used to support the findings of this study are included in the article.

Appendix 1
Proof for the calibrated variance estimator

	
t1 =

l∑
h

Ωhs2∗hy

The calibration constraints

SE of t1 SE of t2 SE of t3 SE of usual variance estimator SE of Isaki14 SE of Bahl and Tuteja15

1,381,510,618 2,416,506.084 1,403,861.639 8,063,656,399 107,431,592,564 1,381,510,618

Table 9.  Comparison of the SEs of different estimators.

 

N1 = 127 N2 = 117 N3 = 103

N4 = 170 N5 = 205 N6 = 201

n1 = 31 n2 = 21 n3 = 29

n4 = 38 n5 = 22 n6 = 39

Sy1 = 883.835 Sy2 = 644.922 Sy3 = 1033.467

Sy4 = 810.585 Sy5  =  403.654 Sy6 = 711.723

Y1 = 703.74 Y2 = 413 Y3 = 573.17

Y4 = 424.66 Y5 = 267.03 Y6 = 393.84

Cy1 = 1.256 Cy2 = 1.562 Cy3 = 1.803

Cy4 = 1.909 Cy5 = 1.512 Cy6 = 1.807

Sx1 = 30,486.751 Sx2 = 15,180.769 Sx3 = 27,549.697

Sx4 = 18,218.931 Sx5 = 8497.776 Sx6 = 23,094.141

X1 = 20804.59 X2 = 9211.79 X3 = 14309.30

X4 = 9478.85 X5 = 5569.95 X6 = 12997.59

CX1 = 1.465 CX2 = 1.648 CX3 = 1.925

CX4 = 1.922 CX5 = 1.526 CX6 = 1.777

Sxy1 = 25,237,153.52 Sxy2 = 9,747,942.85 Sxy3 = 28,294,397.04

Sxy4 = 14,523,885.53 Sxy5 = 3,393,591.75 Sxy6 = 15,864,573.97

ρ1 = 0.936 ρ2 = 0.996 ρ3 = 0.994

ρ4 = 0.983 ρ5 = 0.989 ρ6 = 0.965

w1 = 0.138 w2 = 0.127 w3 = 0.112

w4 = 0.184 w5 = 0.222 w6 = 0.218

Table 8.  Summary statistics of six strata.
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l∑
h

Ωhxh =

l∑
h

WhXh

l∑
h

Ωhs2hx =

l∑
h

WhS2
hx

l∑
h

Ωh =

l∑
h

Wh

The following langrage’s function is given according to the distance measure and calibration constraints

	
∆ =

∑l
h (Wh − Ωh)

2

QhWh
− 2λ1

(
l∑
h

Ωhxh −
l∑
h

WhXh

)
− 2λ2

(
l∑
h

Ωhs2hx −
l∑
h

WhS2
hx

)
− 2λ3

(
l∑
h

Ωh −
l∑
h

Wh

)

Differentiate w.r.t. Ωh

	

∂∆

∂Ωh
=

2 (Ωh − Wh)

QhWh
− 2λ1 (xh)− 2λ2s2hx − 2λ3

∂∆

∂Ωh
=

2 (Ωh − Wh)− 2λ1 (xhQhWh)− 2λ2
(
s2hxQhWh

)
− 2λ3 (QhWh)

QhWh
∂∆

∂Ωh
= 0

(Ωh − Wh)− λ1 (xhQhWh)− λ2s2hxQhWh − λ3 (QhWh) = 0

Ωh = Wh + λ1xhQhWh + λ2
(
s2hxQhWh

)
+ λ3 (QhWh)

Substituting Ωh in constraints

	

λ1

(
l∑
h

x2hQhWh

)
+ λ2

(
l∑
h

xhs2hxQhWh

)
+ λ3

(
l∑
h

xhQhWh

)
=

l∑
h

WhXh −
l∑
h

Whxh

λ1

(
l∑
h

s2hxxhQhWh

)
+ λ2

(
l∑
h

s4hxQhWh

)
+ λ3

(
l∑
h

s2hxQhWh

)
=

l∑
h

WhS2
hx −

l∑
h

Whs2hx

λ1

(
l∑
h

xhQhWh

)
+ λ2

(
l∑
h

s2hxQhWh

)
+ λ3 (QhWh) = 0

	




l
h

X2
hQhWh

l
h

s2hxXhQhWh

l
h

XhQhWh

l
h

Xhs2hxQhWh

l
h

s4hxQhWh

l
h

s2hxQhWh

l
h

XhQhWh

l
h

s2hxQhWh QhWh






λ1
λ2
λ3


 =




l
h

WhXh −
l
h

WhXh

l
h

WhS2
hx −

l
h

Whs2hx

0




	

D = 3
[∑

xhQhWh ·
∑

s2hxQhWh ·
∑

QhWh

]
− 3

[∑
x2hQhWh

(∑
s2hxQhWh

)2
]

− 3

[(∑
s2hxxhQhWh

)2∑
QhWh

]
+ 6

[∑
s2hxQhWh

∑
xQhWh

∑
s2hxxhQhWh

]

− 3

[∑
x2hQhWh

(∑
s4hxQhWh

)2
]

	

D =
[∑

xhQhWh ·
∑

s2hxQhWh ·
∑

QhWh

]
−
[∑

x2hQhWh

(∑
s2hxQhWh

)2
]

−
[(∑

s2hxxhQhWh

)2∑
QhWh

]
+ 2

[∑
s2hxQhWh

∑
xQhWh

∑
s2hxxhQhWh

]

−
[∑

x2hQhWh

(∑
s4hxQhWh

)2
]
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0



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

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−
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l
h

s2hxQhWh

2

−


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h

WhS2
hx

+

l
h

s2hxWh


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s2hxXhQhWh
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(QhWh) +


l
h
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l
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h
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


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λ1
λ2
λ3


 =



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h

WhXh −
l
h
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l
h

WhS2
hx −

l
h

s2hxWh

0




	

B = −

[
l∑
h

WhXh −
l∑
h

XhWh

][(
l∑
h

Xhs2hxQhWh

)
(QhWh)−

(
l∑
h

s2hxQhWh

)(
l∑
h

XhQhWh

)]

+

[
l∑
h

WhS2
hx −

l∑
h

s2hxWh

][(
l∑
h

X2
hQhWh

)
(QhWh)−

(
l∑
h

XhQhWh

)(
l∑
h

XhQhWh
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


l
h

X2
hQhWh

l
h

s2hxXhQhWh

l
h

WhXh −
l
h

XhWh

l
h

Xhs2hxQhWh

l
h

s4hxQhWh

l
h

WhS2
hx −

l
h

s2hxWh

l
h

XhQhWh

l
h

s2hxQhWh 0






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λ2
λ3


 =




l
h

WhXh −
l
h

XhWh

l
h

WhS2
hx −

l
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s2hxWh

0




	

C =

[
l∑
h

WhXh −
l∑
h

XhWh

][(
l∑
h

Xhs2hxQhWh

)(
l∑
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s2hxQhWh

)
−

(
l∑
h

s4hxQhWh

)(
l∑
h

XhQhWh
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−

[
l∑
h

WhS2
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l∑
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][(
l∑
h
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)(
l∑
h

s2hxQhWh

)
−

(
l∑
h

s2hxXhQhWh

)(
l∑
h

XhQhWh

)]

	
λ1 =

A
D
, λ2 =

B
D
, λ3 =

C
D

Now put the λ1, λ2, λ3 values in Ωh

	

Ωh = Wh + QhWh





l
h

WhXh −
l
h

XhWh





l
h

s2hxQhWh

2

−


l
h

s2hxQhWh

2



−


l
h
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l
h

s2hxWh


l
h

s2hxXhQhWh


(QhWh) +


l
h

XhQhWh


l
h

s2hxQhWh


l
h

Xh


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
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
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h
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l
h
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
l
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

+


l
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l
h

XhWh


l
h

Xhs2hxQhWh


l
h

s2hxQhWh


−


l
h
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
l
h

XhQhWh



−


l
h

WhS2
hx −

l
h
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
l
h

X2
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
l
h
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
−


l
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l
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By putting the value of Ωh, we get
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The calibrated variance estimator

	

t1 =
l
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
Wh + QhWh


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l
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l
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XhWh




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−


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2



−


l
h
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l
h

s2hxWh


l
h

s2hxXhQhWh


(QhWh) +


l
h

XhQhWh


l
h

s2hxQhWh


l
h

Xh



+−


l
h

WhXh −
l
h

XhWh


l
h

Xhs2hxQhWh


(QhWh)−


l
h

s2hxQhWh


l
h

XhQhWh



+


l
h

WhS2
hx −

l
h

s2hxWh


l
h

X2
hQhWh


(QhWh)−


l
h

XhQhWh


l
h

XhQhWh


l
h

s2hx



+


l
h

WhXh −
l
h

XhWh


l
h

Xhs2hxQhWh


l
h

s2hxQhWh


−


l
h

s4hxQhWh


l
h

XhQhWh



−


l
h

WhS2
hx −

l
h

s2hxWh


l
h

X2
hQhWh


l
h

s2hxQhWh


−


l
h

s2hxXhQhWh


l
h

XhQhWh


s2∗hy

where s∗hy = s2hy.

Appendix 2
Proof for the calibrated variance ratio estimator

	
t2 =

l∑
h

ΩhS2∗
hy

The calibration constraints

	

l∑
h

Ωhxh =

l∑
h

WhXh

l∑
h

Ωhs2hx =

l∑
h

WhS2
hx

l∑
h

Ωh =

l∑
h

Wh

The following langrage’s function is given according to the distance measure and calibration constraints

	
∆ =

l∑
h
(Wh − Ωh)

2

QhWh
− 2λ1

(
l∑
h

ΩhXh −
l∑
h

WhXh

)
− 2λ2

(
l∑
h

Ωhs2hx −
l∑
h

WhS2
hx

)
− 2λ3

(
l∑
h

Ωh −
l∑
h

Wh

)

Differentiate w.r.t. Ωh

	

∂∆

∂Ωh
=

2 (Ωh − Wh)

QhWh
− 2λ1 (xh)− 2λ2s2hx − 2λ3

∂∆

∂Ωh
=

2 (Ωh − Wh)− 2λ1 (xhQhWh)− 2λ2
(
s2hxQhWh

)
− 2λ3 (QhWh)

QhWh
∂∆

∂Ωh
= 0

(Ωh − Wh)− λ1 (xhQhWh)− λ2s2hxQhWh − λ3 (QhWh) = 0

Ωh = Wh + λ1xhQhWh + λ2
(
s2hxQhWh

)
+ λ3 (QhWh)

Substituting Ωh in constraints
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l∑
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X2
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)
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l∑
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+ λ3
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l∑
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XhQhWh

)
=

l∑
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WhXh −
l∑
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WhXh
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l∑
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s2hxXhQhWh
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l∑
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0
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D = 3
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XhQhWh.
∑
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2
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QhWh.

∑
QhWh

]
− 3

[∑
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hQhWh

(∑
s2hxQhWh
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[(∑
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QhWh

]
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[∑
s2hxQhWh

∑
xQhWh

∑
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[∑
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hQhWh

(∑
s4hxQhWh
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[∑
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∑
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∑
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]
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∑
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s2hxQhWh

0
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s2hxQhWh QhWh


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
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
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
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+
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h

s2hxWh
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s2hxXhQhWh


(QhWh) +


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XhQhWh


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l
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B = −
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+
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


l
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l
h
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
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−
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l∑
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hQhWh

)(
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h
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−

(
l∑
h

s2hxXhQhWh

)(
l∑
h

XhQhWh
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λ1 =

A
D
, λ2 =

B
D
, λ3 =

C
D

Now put the λ1, λ2, λ3 values in Ωh

	

Ωh = Wh + QhWh





l
h

WhXh −
l
h

XhWh





l
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
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2

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+
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h

s2hxWh


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h
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
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
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h

XhQhWh


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By putting the value of Ωh, we get
The calibrated ratio variance estimator
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


−


l
h

WhS2
hx +

l
h

s2hxWh


l
h

s2hxXhQhWh


(QhWh) +


l
h

XhQhWh


l
h

s2hxQhWh


l
h

Xh



+−


l
h

WhXh −
l
h

XhWh


l
h

Xhs2hxQhWh


(QhWh)−


l
h

s2hxQhWh


l
h

XhQhWh



+


l
h

WhS2
hx −

l
h

s2hxWh


l
h

X2
hQhWh


(QhWh)−


l
h

XhQhWh


l
h

XhQhWh


l
h

s2hx



+


l
h

WhXh −
l
h

XhWh


l
h

Xhs2hxQhWh


l
h

s2hxQhWh


−


l
h

s4hxQhWh


l
h

XhQhWh



−


l
h

WhS2
hx −

l
h

s2hxWh


l
h

X2
hQhWh


l
h

s2hxQhWh


−


l
h

s2hxXhQhWh


l
h

XhQhWh


S2∗

hy

where S2∗
hy = S2

yh ·
S2xh
S2xh

.

Appendix 3
Proof for the calibrated variance exponential estimator

	
t3 =

l∑
h

ΩhS2∗
hy
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The calibration constraints

	

l∑
h

Ωhxh =

l∑
h

WhXh

l∑
h

Ωhs2hx =

l∑
h

WhS2
hx

l∑
h

Ωh =

l∑
h

Wh

The following langrage’s function is given according to the distance measure and calibration constraints

	
∆ =

l∑
h
(Wh − Ωh)

2

QhWh
− 2λ1

(
l∑
h

ΩhXh −
l∑
h

WhXh

)
− 2λ2

(
l∑
h

Ωhs2hx −
l∑
h

WhS2
hx

)
− 2λ3

(
l∑
h

Ωh −
l∑
h

Wh

)

Differentiate w.r.t. Ωh

	

∂∆

∂Ωh
=

2 (Ωh − Wh)

QhWh
− 2λ1 (xh)− 2λ2s2hx − 2λ3

∂∆

∂Ωh
=

2 (Ωh − Wh)− 2λ1 (xhQhWh)− 2λ2
(
s2hxQhWh

)
− 2λ3 (QhWh)

QhWh
∂∆

∂Ωh
= 0

(Ωh − Wh)− λ1 (xhQhWh)− λ2s2hxQhWh − λ3 (QhWh) = 0

Ωh = Wh + λ1xhQhWh + λ2
(
s2hxQhWh

)
+ λ3 (QhWh)

Substituting Ωh in constraints

	

λ1

(
l∑
h

X2
hQhWh

)
+ λ2

(
l∑
h

Xhs2hxQhWh

)
+ λ3

(
l∑
h

XhQhWh

)
=

l∑
h

WhXh −
l∑
h

WhXh

λ1

(
l∑
h

s2hxXhQhWh

)
+ λ2

(
l∑
h

s4hxQhWh

)
+ λ3

(
l∑
h

s2hxQhWh

)
=

l∑
h

WhS2
hx −

l∑
h

Whs2hx

λ1

(
l∑
h

XhQhWh

)
+ λ2

(
l∑
h

s2hxQhWh

)
+ λ3 (QhWh) = 0

	




l
h

X2
hQhWh

l
h

s2hxXhQhWh

l
h

XhQhWh

l
h

Xhs2hxQhWh

l
h

s4hxQhWh

l
h

s2hxQhWh

l
h

XhQhWh

l
h

s2hxQhWh QhWh






λ1
λ2
λ3


 =




l
h

WhXh −
l
h

WhXh

l
h

WhS2
hx −

l
h

Whs2hx

0




	

D = 3
[∑

XhQhWh.
∑

s
2

hx
QhWh.

∑
QhWh

]
− 3

[∑
X2

hQhWh

(∑
s2hxQhWh

)2
]

− 3

[(∑
s2hxXhQhWh

)2∑
QhWh

]
+ 6

[∑
s2hxQhWh

∑
xQhWh

∑
s2hxXhQhWh

]

− 3

[∑
X2

hQhWh

(∑
s4hxQhWh

)2
]

	

D =
[∑

XhQhWh ·
∑

s
2

hx
QhWh ·

∑
QhWh

]
−
[∑

X2
hQhWh

(∑
s2hxQhWh

)2
]

−
[(∑

s2hxXhQhWh

)2∑
QhWh

]
+ 2

[∑
s2hxQhWh

∑
xQhWh

∑
s2hxXhQhWh

]

−
[∑

X2
hQhWh

(∑
s4hxQhWh

)2
]
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


l
h

WhXh −
l
h

XhWh

l
h

s2hxXhQhWh

l
h

XhQhWh

l
h

WhS2
hx −

l
h

s2hxWh

l
h

s4hxQhWh

l
h

s2hxQhWh

0
l
h

s2hxQhWh QhWh






λ1
λ2
λ3


 =




l
h

WhXh −
l
h

WhXh

l
h

WhS2
hx −

l
h

s2hxWh

0




	

A =


l
h

WhXh −
l
h

XhWh





l
h

s2hxQhWh

2

−


l
h

s2hxQhWh

2



−


l
h

WhS2
hx +

l
h

s2hxWh


l
h

s2hxXhQhWh


(QhWh)

+


l
h

XhQhWh


l
h

s2hxQhWh



	




l
h

X2
hQhWh

l
h

WhXh −
l
h

XhWh

l
h

XhQhWh

l
h

Xhs2hxQhWh

l
h

WhS2
hx −

l
h

s2hxWh

l
h

s2hxQhWh

l
h

XhQhWh 0 QhWh






λ1
λ2
λ3


 =




l
h

WhXh −
l
h

WhXh

l
h

WhS2
hx −

l
h

s2hxWh

0




	

B = −

[
l∑
h

WhXh −
l∑
h

XhWh

][(
l∑
h

Xhs2hxQhWh

)
(QhWh)−

(
l∑
h

s2hxQhWh

)(
l∑
h

XhQhWh

)]

+

[
l∑
h

WhS2
hx −

l∑
h

s2hxWh

][(
l∑
h

X2
hQhWh

)
(QhWh)−

(
l∑
h

XhQhWh

)(
l∑
h

XhQhWh

)]

	




l
h

X2
hQhWh

l
h

s2hxXhQhWh

l
h

WhXh −
l
h

XhWh

l
h

Xhs2hxQhWh

l
h

s4hxQhWh

l
h

WhS2
hx −

l
h

s2hxWh

l
h

XhQhWh

l
h

s2hxQhWh 0






λ1
λ2
λ3


 =




l
h

WhXh −
l
h

XhWh

l
h

WhS2
hx −

l
h

s2hxWh

0




	

C =

[
l∑
h

WhXh −
l∑
h

XhWh

][(
l∑
h

Xhs2hxQhWh

)(
l∑
h

s2hxQhWh

)
−

(
l∑
h

s4hxQhWh

)(
l∑
h

XhQhWh

)]

−

[
l∑
h

WhS2
hx −

l∑
h

s2hxWh

][(
l∑
h

X2
hQhWh

)(
l∑
h

s2hxQhWh

)
−

(
l∑
h

s2hxXhQhWh

)(
l∑
h

XhQhWh

)]

	
λ1 =

A
D
, λ2 =

B
D
, λ3 =

C
D

Now put the λ1, λ2, λ3 values in Ωh

	

Ωh = Wh + QhWh





l
h

WhXh −
l
h

XhWh





l
h

s2hxQhWh

2

−


l
h

s2hxQhWh

2

−


l
h

WhS2
hx

+

l
h

s2hxWh


l
h

s2hxXhQhWh


(QhWh) +


l
h

XhQhWh


l
h

s2hxQhWh


l
h

Xh



+−


l
h

WhXh −
l
h

XhWh


l
h

Xhs2hxQhWh


(QhWh)−


l
h

s2hxQhWh


l
h

XhQhWh



+


l
h

WhS2
hx −

l
h

s2hxWh


l
h

X2
hQhWh


(QhWh)−


l
h

XhQhWh


l
h

XhQhWh


l
h

s2hx



+


l
h

WhXh −
l
h

XhWh


l
h

Xhs2hxQhWh


l
h

s2hxQhWh


−


l
h

s4hxQhWh


l
h

XhQhWh



−


l
h

WhS2
hx −

l
h

s2hxWh


l
h

X2
hQhWh


l
h

s2hxQhWh


−


l
h

s2hxXhQhWh


l
h

XhQhWh


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By putting the value of Ωh, we get the calibrated exponential variance estimator is given by

	

t3 =
l
h



Wh + QhWh





l
h

WhXh −
l
h

XhWh





l
h

s2hxQhWh

2

−


l
h

s2hxQhWh

2



−


l
h

WhS2
hx +

l
h

s2hxWh


l
h

s2hxXhQhWh


(QhWh) +


l
h

XhQhWh


l
h

s2hxQhWh


l
h

Xh



+−


l
h

WhXh −
l
h

XhWh


l
h

Xhs2hxQhWh


(QhWh)−


l
h

s2hxQhWh


l
h

XhQhWh



+


l
h

WhS2
hx −

l
h

s2hxWh


l
h

X2
hQhWh


(QhWh)−


l
h

XhQhWh


l
h

XhQhWh


l
h

s2hx



+


l
h

WhXh −
l
h

XhWh


l
h

Xhs2hxQhWh


l
h

s2hxQhWh


−


l
h

s4hxQhWh


l
h

XhQhWh



−


l
h

WhS2
hx −

l
h

s2hxWh


l
h

X2
hQhWh


l
h

s2hxQhWh


−


l
h

s2hxXhQhWh


l
h

XhQhWh


S2∗

hy

where S2∗
hy = s2hyexp

[
S2hx−s2hx
S2hx+s2hx

]
.

Received: 10 December 2023; Accepted: 26 September 2024

References
	 1.	 Graunt, J. The Economic Writings of Sir William Petty 1899 Vol. 2, 314–431 (Cambridge University Press, 1662).
	 2.	 Eren, H. Calibration process. In Handbook of Measuring System Design Vol. 3 (eds Sydenham, P. H. & Thorn, R.) 271–277 (Wiley, 

2005).
	 3.	 Deville, J. C. & Särndal, C. E. Calibration estimators in survey sampling. J. Am. Stat. Assoc. 87(418), 376–382 (1992).
	 4.	 Berge, A. Extension of calibration estimators in survey sampling. J. Am. Stat. Assoc. 94, 635–644 (1999).
	 5.	 Estevao, V. M. & Särndal, C. E. A functional form approach to calibration. J. Off. Stat. 16(4), 379 (2000).
	 6.	 Arnab, R. & Singh, S. A note on variance estimation for the generalized regression predictor. Aust. N. Z. J. Stat. 47(2), 231–234 

(2005).
	 7.	 Kott, P. S. Using calibration weighting to adjust for nonresponse and coverage errors. Surv. Methodol. 32(2), 133–136 (2006).
	 8.	 Kim, J. M., Sungur, E. A. & Heo, T. Y. Calibration approach estimators in stratified sampling. Stat. Probab. Lett. 77(1), 99–103 

(2007).
	 9.	 Kim, J. K. & Park, M. Calibration estimation in survey sampling. Int. Stat. Rev. 78(1), 21–29 (2010).
	10.	 Koyuncu, N. & Kadilar, C. Calibration estimators using different measures in stratified random sampling. Int. J. Mod. Eng. Res. 

3(1), 415–419 (2013).
	11.	 Bhushan, S., Kumar, A., Alsubie, A. & Lone, S. A. Variance estimation under an efficient class of estimators in simple random 

sampling. Ain Shams Eng. J. 14, 102012 (2022).
	12.	 Lone, S. A., Subzar, M. & Sharma, A. Enhanced estimators of population variance with the use of supplementary information in 

survey sampling. Math. Probl. Eng. 2021, 1–8 (2021).
	13.	 Jabeen, R., Aslam, M. & Zaka, A. Effects of different calibration constraints on calibration estimators under the randomized 

response technique. J. Stat. Comput. Simul. 92(10), 1995–2017 (2022).
	14.	 Isaki, C. T. Variance estimation using auxiliary information. J. Am. Stat. Assoc. 78, 117–123 (1983).
	15.	 Bahl, S. & Tuteja, R. K. Ratio and product type exponential estimators. J. Inf. Optim. Sci. 12(1), 159–164 (1991).
	16.	 Upadhyaya, L. N. & Singh, H. P. An estimator for population variance that utilizes the kurtosis of an auxiliary variable in sample 

surveys. Vikram Math. J. 19, 14–17 (1999).
	17.	 Tracy, D. S., Singh, S. & Arnab, R. Note on calibration in stratified and double sampling. Surv. Methodol. 29(1), 99–104 (2003).
	18.	 Koyuncu, N. & Kadilar, C. Ratio and product estimators in stratified random sampling. J. Stat. Plan. Inference 139(8), 2552–2558 

(2009).

Acknowledgements
The authors extend their appreciation to King Saud University for funding this work through Researchers Sup-
porting Project number (RSPD2024R969), King Saud University, Riyadh, Saudi Arabia.

Author contributions
All authors reviewed the manuscript.

Funding
This research was conducted under a project titled “Researchers Supporting Project”, funded by King Saud Uni-
versity, Riyadh, Saudi Arabia under grant number (RSPD2024R969).

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.Z.A.

Scientific Reports |        (2024) 14:24385 15| https://doi.org/10.1038/s41598-024-74424-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and 
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by-nc-nd/4.0/.

© The Author(s) 2024 

Scientific Reports |        (2024) 14:24385 16| https://doi.org/10.1038/s41598-024-74424-2

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿A new modified estimator of population variance in calibrated survey sampling
	﻿﻿Some existing estimators
	﻿Variance ratio estimator
	﻿Exponential variance estimator



