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Abstract: Peptides are bioactive molecules whose functional versatility in living organisms has led
to successful applications in diverse fields. In recent years, the amount of data describing peptide
sequences and function collected in open repositories has substantially increased, allowing the
application of more complex computational models to study the relations between the peptide
composition and function. This work introduces AMP-Detector, a sequence-based classification
model for the detection of peptides’ functional biological activity, focusing on accelerating the
discovery and de novo design of potential antimicrobial peptides (AMPs). AMP-Detector introduces
a novel sequence-based pipeline to train binary classification models, integrating protein language
models and machine learning algorithms. This pipeline produced 21 models targeting antimicrobial,
antiviral, and antibacterial activity, achieving average precision exceeding 83%. Benchmark analyses
revealed that our models outperformed existing methods for AMPs and delivered comparable results
for other biological activity types. Utilizing the Peptide Atlas, we applied AMP-Detector to discover
over 190,000 potential AMPs and demonstrated that it is an integrative approach with generative
learning to aid in de novo design, resulting in over 500 novel AMPs. The combination of our
methodology, robust models, and a generative design strategy offers a significant advancement in
peptide-based drug discovery and represents a pivotal tool for therapeutic applications.

Keywords: antimicrobial peptides; machine learning; protein language models; generative learning;
peptide discovery; peptide design

1. Introduction

Peptides are versatile, bioactive, short amino acid chains, with lengths of 5–15 amino
acids and rarely exceeding 30 amino acids [1,2]. The diverse roles that they play in living
organisms, e.g., acting as structural components, enzymatic inhibitors, hormones, host
defense molecules, neurotransmitters, and cell surface receptors, have attracted great
research interest due to their potential applicability in the biochemical and pharmaceutical
industries [3–6]. Of particular interest, some peptides may possess antimicrobial properties,
including antibacterial, antiviral, antifungal, and antiparasitic effects [7].

The increasing number of peptides documented in the literature has provoked signifi-
cant interest in applying computational biology techniques to analyze peptide sequences,
predict biological activity, calculate physicochemical properties, and assist in peptide
design [8,9]. Predictive models, including machine learning and deep learning architec-
tures, have been developed for tasks such as antimicrobial and antiviral peptide classifica-
tion [10–15]. Generative models have also been employed to aid therapeutic peptide design
by generating novel peptide sequences. Techniques such as variational autoencoders (VAE)
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and generative adversarial networks (GAN) have shown promise in creating new antimi-
crobial peptides [12,16–22]. Recent advances in diffusion models have further enhanced
the generative approaches for antimicrobial peptide design [23–25].

This work implements AMP-Detector, a sequence-based functional classification
model, to assist the discovery of potential antimicrobial peptides. This work implements
21 binary classification models to predict the functional biological activity of peptide se-
quences, including antimicrobial, antibacterial, and antiviral functions. The proposed
pipeline for the training of these predictive models integrates numerical representation
strategies, machine learning algorithm exploration, statistical approaches to select optimal
combinations, Bayesian methods for hyperparameter tuning, and the criteria-based selec-
tion of the best models [26]. On average, the models achieved precision of over 83% and a
Matthews correlation coefficient of 0.7 across the explored tasks. New peptides for all types
of functional biological activity evaluated in this work were discovered using the trained
models and the Peptide Atlas database [27]. Additionally, over 100,000 peptides were
generated using variational autoencoder (VAE) approaches, and their functional biological
activity was evaluated with the trained binary classification models, leading to the in
silico discovery of more than 600,000 potential antimicrobial peptides, 200,000 antibacterial
peptides, and 500,000 antiviral peptides. AMP-Detector incorporates an inference tool to
facilitate the evaluation and exploration of unknown peptide sequences with potential an-
timicrobial peptides. Integrating trained classification models with generative approaches
demonstrates the efficacy of the implemented methods in annotating and designing novel
potential antimicrobial peptides, showing clear advantages over traditional computational
biology approaches.

2. Results and Discussion
2.1. Main Features of the Studied Datasets

We collected more than 100,000 peptide sequences with reported functional biolog-
ical activity from Peptipedia [28] and applied a filter to remove all peptide sequences
containing non-canonical residues, resulting in the selection of 86,477 peptides for the
development of predictive models following the pipeline described in Figure 1. Tasks such
as antimicrobial, antibacterial, antiviral, antiparasitic, antifungal, and antimammalian cell
processes had more than 5000 positive examples. In contrast, after redundancy evaluation,
the antimalarial and quorum-sensing tasks had less than 200 positive examples. The low
number of examples in these tasks could negatively affect the performance of the trained
models, as these datasets are typically categorized as Low-N datasets. Consequently, more
sophisticated machine learning strategies, such as transfer learning or contrastive learning
methods, are necessary to achieve optimal performance [29].

For each task, besides encoding using the seven pre-trained models detailed in the
table below, we included the one-hot encoding approach, eight physicochemical-based en-
coding methods, and eight Fast Fourier Transform (FFT)–physicochemical representations.
Altogether, we considered 24 encoding techniques for each task. Methods like ProTrans AL-
BERT and one-hot encoding generate vectors with the highest dimensionality. In contrast,
methods based on physicochemical properties and FFT aim to represent and characterize a
function using a lower dimensionality space (See Section S4 of the Supplementary Materials
for more details).
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Figure 1. Proposed methodology to generate and evaluate predictive models. (A) Numerical
representation of sequence datasets. Here, we explore different encoding strategies, including classic
methods such as one-hot encoders, physicochemical property-based encoders, and embedding based
on pre-trained models. All different methods are applied individually. Once the input dataset is
encoded, it is randomly split in a 90:10 ratio, using the first part to develop models and the second
as a benchmark dataset. (B) Using the model development dataset and all of its possible numerical
representations, we explore different 80:20 partitions to use for model training and validation. We
explore and evaluate different models and hyperparameters using classic performance metrics. As
this stage is repeated an arbitrary number of times, we obtain distributions of performance for each
model. (C) Based on the distribution of performance, the best-performing combinations of algorithms
and numerical representations are selected based on statistical criteria. These models undergo a
hyperparameter optimization procedure based on Bayesian criteria. (D) Finally, we evaluate the
performance of the models generated (and other tools/methods used to compare them) using the
benchmark dataset and export the best strategy for future use.

2.2. Binary Classification Tasks

The proposed pipeline, summarized in Figure 1, was utilized to train binary classifi-
cation models for each of the 21 types of biological activity examined in this study. Over
15,000 models were successfully trained by exploring various numerical representation
strategies, supervised learning algorithms, and hyperparameter configurations. Each com-
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bination was evaluated using classic metrics such as precision and recall. Subsequently,
statistical criteria were applied to identify the optimal numerical representation strategy
and supervised learning algorithms, followed by a detailed hyperparameter tuning process.
The performance was then assessed using an independent test dataset, allowing for the
selection of models with the highest performance and the lowest overfitting rate. This
section summarizes the statistical analysis conducted during the exploration stage, the
chosen combinations for the hyperparameter tuning process, and the tuned models gen-
erated for each biological task. Additionally, a benchmark analysis of the most common
biological activity types evaluated in this study is included to demonstrate the efficacy of
the proposed methodology.

2.2.1. Performance Statistics

Our model training and validation pipeline outputs several performance metrics
used for model selection. The training performance reports the mean over several k-
cross-validations in 80% of the dataset, while the validation performance is a single value
obtained when applying the generated model on the 20% remaining. As the 80:20 partition
is repeated 30 times and the results are aggregated over different categories, we obtain
distributions instead of single performance values.

Models trained on datasets encoded using embedding representations perform better
than models trained on datasets encoded using one-hot encoders, physicochemical-based
encoders, and FFT-based encoder strategies. The embedding representation achieves mean
precision of 77% during training and testing. In contrast, while physicochemical-based
and one-hot-based encoders present similar average precision (75%), they exhibit more
outliers and erratic behavior in distribution. FFT-based encoders show the lowest mean
precision (67%) but do include positive outliers (see Figure 2A). Regarding algorithms,
ensemble-based methods like Random Forest and ExtraTrees achieve the highest mean
precision at 77%. In contrast, methods like decision trees and nearest neighbors obtain
lower performance, with precision values below 70% (see Figure 2B).

Given that the performance distribution for models using embedding-based repre-
sentations achieved, on average, the highest performance, we extended the evaluation
to include supervised learning algorithms and embedding representations. Generally,
models based on ProTrans T5 Uniref, ProTrans T5 xlu50, and Esm1B achieve the highest
performance across all evaluated metrics. However, except for ProTrans t5 BERT, there are
no significant differences in the average performance of each pre-trained model used in
this work (see Figure 2C). Additionally, the performance distribution by algorithm shows
that ensemble-based models remain the best-performing supervised learning algorithms
compared to decision tree or K-nearest neighbors approaches (KNN) (see Figure 2D).

When evaluating the performance by activity, on average, the trained models for
anti-Gram(+), antimammalian cell, anuran defence, anti-inflammatory, and cell–cell com-
munication tasks show the highest average precision, with values above 78%. These tasks
also exhibit the highest sensitivity (greater than 0.77) and MCC performance (greater
than 0.55). In contrast, antiangiogenic, blood–brain barrier penetration, and antioxidative
peptide identification exhibit the lowest average precision, with values below 67% (see
Figure 2E).
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Figure 2. Performance distributions in the model exploration stage. Our model training and
validation pipeline outputs several performance metrics, which are used for model selection. The
training performance reports the mean over several k-cross-validations in 80% of the dataset, while
the validation performance is a single value obtained when applying the generated model on the
20% remaining. As the 80:20 partition is repeated several times and the results are aggregated
over different categories, we obtain distributions instead of single performance values. In blue, the
distribution of the mean performance in training is narrower than the distribution in validation
(orange) as a consequence of the central limit theorem. We present these performance measures
for different numerical representation strategies (A), supervised learning algorithms on the whole
dataset (B) and supervised learning algorithms filtering for only embedding-based encoders (C),
for embedding representation through pre-trained models (D), and for the different classification
tasks (E).

2.2.2. Optimizing the Hyperparameters of Selected Models

Upon completing the exploration stage and selecting the best-performing models, we
obtained 87 combinations of supervised learning algorithms and numerical representation
strategies, which were chosen for the hyperparameter optimization process. The most
commonly selected combinations were ProTrans xlu50 with ExtraTrees (8.7% of selected
combinations), ProTrans T5 Uniref with ExtraTrees (8.7%), and Esm1B with ExtraTrees
(7.8%). Less frequently selected combinations, such as ProTrans T5BDF with Random
Forest or Histogram-Based Gradient Boosting, represented only 0.87% of the selections.
Combinations like ProTrans ALBERT with Hist Gradient Boosting or XGBoost and ProTrans
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BERT with all supervised learning algorithms except ExtraTrees did not achieve the cutoff
performance and thus were not observed among the selected sample.

We followed a Bayesian approach to determine the optimal set of hyperparameters for
the 87 selected combinations of models, evaluating 50 trials per combination, with a specific
random state (random state = 42) applied to all evaluations. The performance estimation
followed the same procedure as in the exploration stage. An independent dataset was also
used to assess the models’ performance with tuned hyperparameters and to compare all
evaluated methods. Tasks like antifungal, antiviral, and anti-inflammatory had more than
seven possible combinations explored, while models for cell-penetrating, antimammalian
cell, and blood–brain barrier penetration properties considered only one combination (see
Section S5 of the Supplementary Materials for more details).

Using the evaluation criteria proposed in this study, the best classification models
were selected with the highest performance, the lowest overfitting during training, and the
smallest differences between the validation and testing performance. Table 1 summarizes
the performance of the selected models for each task, covering the training, validation, and
testing stages. Classification models for anuran defense, quorum sensing, antibacterial
activity, cell–cell communication, and antimammalian cell activity achieved precision val-
ues exceeding 90% across the training, validation, and testing stages. Only the models for
antiviral and antimalarial tasks achieved performance below 80% in the testing stage. The
remaining activity types maintained precision values over 80%. Hyperparameter tuning
improved the testing performance in 13 out of 21 cases. In five cases, the performance re-
mained consistent with the validation and training phases, and, in three cases—antimalarial,
antiviral, and antidiabetic—the performance slightly decreased. Despite these reductions,
the lowest precision value was 78%, demonstrating the proposed methodology’s robust
capabilities to generalize the training of functional classification models.

Table 1. Precision for selected models for each evaluated task, considering all stages of the training
process and available on AMP-Detector.

Task Algorithm Encoder Training
Performance

Validation
Performance

Testing
Performance

Antiangiogenic HistGradientBoosting ProTrans t5 BDF (0.75, 0.78) (0.74, 0.76) 0.82
Antidiabetic RandomForest ProTrans t5 Uniref (0.81, 0.83) (0.81, 0.82) 0.81
Anti-Gram (−) XGBClassifier Esm1B (0.89, 0.89) (0.88, 0.89) 0.88
Anti-Gram (+) ExtraTrees Esm1B (0.88, 0.88) (0.88, 0.88) 0.88
Anti-inflammatory Random Forest ProTrans t5 xlu50 (0.87, 0.88) (0.87, 0.87) 0.89
Antimalarial ExtraTrees ProTrans t5 BERT (0.82, 0.85) (0.83, 0.84) 0.78
Antimammalian cell ExtraTrees ProTrans t5 Uniref (0.90, 0.90) (0.90, 0.90) 0.90
Anti-methicillin-resistant
S. aureus ExtraTrees Esm1B (0.87, 0.88) (0.87, 0.87) 0.90

Antioxidative RandomForest ProTrans t5 xlu50 (0.75, 0.77) (0.75, 0.76) 0.82
Antibacterial RandomForest ProTrans t5 xlu50 (0.89, 0.90) (0.89, 0.89) 0.92
Antifungal RandomForest ProTrans t5 xlu50 (0.83, 0.83) (0.82, 0.82) 0.84
Antimicrobial RandomForest ProTrans t5 Uniref (0.88, 0.88) (0.87, 0.88) 0.88
Antiparasitic RandomForest Esm1b (0.83, 0.84) (0.83, 0.83) 0.85
Antiviral RandomForest ProTrans t5 Uniref (0.81, 0.81) (0.80, 0.81) 0.79
Anuran defense Hist Gradient Boosting ProTrans t5 xlu50 (0.90, 0.91) (0.90, 0.90) 0.93
Blood–brain
barrier penetrating ExtraTrees ProTrans t5 Uniref (0.77, 0.80) (0.78, 0.79) 0.85

Cell–cell
communication Hist Gradient Boosting ProTrans t5 xlu50 (0.90, 0.91) (0.90, 0.90) 0.91

Cell-penetrating ExtraTrees ProTrans t5 ALBERT (0.87, 0.88) (0.87, 0.87) 0.86
Neuropeptide ExtraTrees ProTrans t5 xlu50 (0.86, 0.86) (0.86, 0.86) 0.87
Quorum
sensing ExtraTrees ProTrans t5 ALBERT (0.83, 0.86) (0.87, 0.88) 0.87

Drug delivery
vehicle ExtraTrees Esm1B (0.85, 0.85) (0.84, 0.85) 0.92
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Analyzing the recall or sensitivity performance of the models, those with the highest
precision also reported the highest recall values, achieving sensitivity scores above 0.9.
In contrast, the blood–brain-barrier-penetrating, antiviral, and antimalarial classification
models had the lowest recall values, with a sensitivity score of 0.78 (see Section S6 of the
Supplementary Materials for more details).

The 21 highest-performing models were employed to develop AMP-Detector, a Python
library designed to enhance the usability of trained models by facilitating the inference of
biological activity for peptide sequences. AMP-Detector integrates both the trained and
pre-trained models for embedding representation, streamlining the execution of all steps in
the pipeline.

An exploration of four deep learning architectures was conducted to compare the
performance of the proposed models with predictive models trained using neural network
approaches. The explored architectures included a Convolutional Neural Network (CNN),
Bi-Long Short-Term Memory (Bi-LSTM), the Bi-Gated Recurrent Unit (GRU), and a combi-
nation of the CNN and LSTM architectures (see Section S8 of the Supplementary Materials
for more details). All tasks were evaluated using the selected embedding representation
and the same datasets for training, validation, and testing.

We calculated the model performance for each of the architectures considered during
both the validation and testing stages. Deep learning architectures generally showed
higher performance than the proposed pipeline during validation. However, during testing
with the independent dataset, the deep learning models exhibited lower performance in
most cases compared to the implemented models using AMP-Detector. This discrepancy
between the validation and testing performance suggests an overfitting problem with the
deep learning models.

In specific cases, such as antimicrobial, cell–cell communication, cell-penetrating, and
antiviral tasks, CNN-based methods demonstrated higher performance than the approaches
proposed in this work. However, these differences were not systematic or substantial.

Despite deep learning’s promising results, the further exploration of different ar-
chitectures, hyperparameters, configuration strategies, and embedding representation
evaluations is necessary to fully realize its potential. This is particularly important in
separating antiviral peptides or peptides with communication and transmission properties.
Moreover, applying transfer learning and fine-tuning approaches appears to be a promising
alternative in addressing the challenges associated with low-N datasets. Future work
should focus on these methods to enhance the model performance and generalization for
properties like drug delivery, quorum sensing, and anti-aging peptide identification.

2.2.3. Benchmark Analysis

This work explores various tools, methods, and strategies previously reported in the
literature to facilitate a comparison of their performance with the trained models using the
implemented pipeline and available on AMP-Detector.

First, we performed a literature survey to identify state-of-the-art sequence-based
approaches for the prediction of the functional biological activity of peptide sequences. The
search included methods with web servers, available models, or strategies for the training
of classification models based on requirements outlined in public repositories and the
available datasets. Subsequently, all collected tools were evaluated and tested, excluding
those that were inaccessible (non-functional servers), lacked the necessary datasets, did not
have auxiliary tools for numerical representation, or could not be replicated locally.

Using the collected tools, a benchmark analysis was performed on the benchmark
dataset (the 10% of the input data that was excluded from the model development stage),
assessing more than 15 tools previously reported in the literature. This analysis focused
on commonly reported biological activity types, such as antimicrobial, antibacterial, and
antiviral classifications. The sensitivity and specificity (see Section S1 of the Supplementary
Materials) were calculated to evaluate and compare the performance of the explored tools
and the trained models.
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The results are summarized in Table 2. The trained model using the proposed pipeline
in this work achieved the highest sensitivity and specificity for the antimicrobial task. The
DBAASP klebsiella method achieved the highest sensitivity but had random specificity for
antibacterial classification. DBAASP approaches depend on the types of organisms used
to evaluate or detect antibacterial peptides, with methods like DBAASP staphylococcus
showing sensitivity lower than 0.9, decreasing by more than 0.05 points. Tools like TPpred-
LE [30] exhibited the highest sensitivity for antifungal, antiparasitic, and antiviral agents
but generally had low specificity.

Table 2. Benchmarking of our models with state-of-the-art methods reported in the literature (In bold,
the highest performance for each evaluated metric and for each method in all evaluated tasks).

Task Method Reference Sensitivity Specificity F1

Antimicrobial

AMP-Detector — 0.91 0.85 0.88
AMP-discover [31] 0.66 0.78 0.74
amplify [32] 0.8 0.7 0.72
TPpred-LE [30] 0.62 0.71 0.71
AMPScanner [33] 0.59 0.55 0.55

Antifungal

AMP-Detector — 0.85 0.79 0.84
AMPfun [34] 0.6 0.56 0.67
IAMP-RAAC [35] 0.59 0.54 0.67
AMP-discover [31] 0.53 0.38 0.61
DeepAFP [36] 0.55 0.44 0.52
TPpred-LE [30] 0.75 0.46 0.14

Antibacterial

AMP-Detector — 0.95 0.81 0.96
AMP-discover [31] 0.92 0.39 0.89
AntiBP3 Gram variable [37] 0.98 0.39 0.86
AntiBP3 Gram (−) [37] 0.94 0.3 0.82
AntiBP3 Gram + [37] 0.94 0.3 0.82
DBAASP E. coli [38] 0.98 0.21 0.59
DBAASP S. aureus [38] 0.98 0.19 0.49
AMPActiPred [38] 0.84 0.13 0.49
DBAASP Klebsiella [38] 0.99 0.18 0.45
TPpred-LE [30] 0.97 0.17 0.41
DBAASP Pseudomonas [38] 0.97 0.17 0.4

Antiparasitic

AMP-Detector — 0.89 0.8 0.84
AMP-discover [31] 0.56 0.56 0.66
AMPfun [34] 0.67 0.48 0.2
IAMP-RAAC [35] 0.49 0.46 0.16
multipep_max [39] 0.71 0.47 0.07
TPpred-LE [30] 1.0 0.47 0.01

Antiviral

AMP-Detector — 0.76 0.77 0.78
IAMP-RAAC [35] 0.72 0.65 0.68
TPpred-LE [30] 0.89 0.65 0.67
AMPfun [34] 0.75 0.63 0.66
AMP-discover [31] 0.56 0.57 0.66
DeepAVP [40] 0.52 0.46 0.57
AVP-IFT [12] 0.52 0.47 0.46

In summary, the models available in AMP-Detector achieved the highest specificity
across all evaluated tasks, particularly excelling in antimicrobial identification. They also
showed competitive performance in other tasks. The high specificity of the trained models
facilitates their use in therapeutic peptide discovery, allowing for the effective elimination
of peptides without desirable activity and increasing the likelihood of detecting peptides
with the desired activity.



Int. J. Mol. Sci. 2024, 25, 8851 9 of 19

2.3. Case Study: Antimicrobial Peptide Discovery and De Novo Peptide Generation

Here, we used AMP-Detector to discover and generate potential antimicrobial pep-
tides. First, we extracted and applied our models on over 3.6 million peptides with
unknown activity from the Peptide Atlas database [27]. We identified over 300,000 pep-
tides with potential antimicrobial activity and 400,000 others with potential antibacterial
and antifungal activity (see Table 3). We found that more than 30% of the peptides ana-
lyzed exhibited potential activity in antiviral, antidiabetic, blood–brain-barrier-penetrating,
anti-inflammatory, quorum-sensing, and neuropeptide functions. This high prevalence of
potential activity among the peptides analyzed is somewhat unusual and might be due
to the high rate of false positives. To further explore the likelihood of these findings, we
analyzed the distribution of the physicochemical properties using the modlAMP v4.3.0
tool [41] and how these differed among the datasets studied and generated. No differences
were observed between the raw data and the peptides from the Peptide Atlas (see Figure 3),
meaning that the activity identified was indeed feasible.

Table 3. Integrating AMP-Detector to evaluate unknown peptide sequences obtained from non-
annotated databases or de novo-generated peptides using generative learning methods.

Activity # Discovered from
Peptide Atlas

# Generated Using
Trained VAE

# Generated Using
Positive Examples

# Generated Used
Negative Examples

Antibacterial 403,367 336 63,709 58,826
Anti-Gram (+) 83,271 147 34,468 31,960
Antifungal 406,191 554 37,147 37,976
Blood–brain
barrier penetrating 1,259,618 38 12,384 11,277

Antiparasitic 133,555 563 2887 2077
Anti-inflamatory 2,999,776 1 27 27
Cell-penetrating 698,536 58 12,468 14,066
Anti mammalian
cell 81,701 93 16,360 14,611

Anuran defense 593,692 40 4729 4554
Anti-methicillin-resistant
S. aureus 29,964 114 12,984 12,774

Cell–cell
communication 129,651 2 13,237 13,475

Antioxidative 290,289 75 5307 4821
Antiangiogenic 292,815 34 37,954 33,980
Antiviral 2,582,176 29 24,987 24,178
Quorum sensing 2,088,671 17 16,477 15,624
Antimicrobial 305,496 640 49,497 45,325
Antimalarial 259,169 311 35,862 34,647
Anti-Gram (−) 152,568 232 37,009 33,168
Drug delivery vehicle 113,0481 60 14,147 15,857
Antidiabetic 3,344,580 1 4571 4518
Neuropeptide 2,499,312 1 20,188 19,898

As a second example, we incorporated the models here developed with generative
learning techniques for de novo peptide design. We explored two approaches: (i) emulating
transfer learning strategies using a pre-trained model to generate metalloproteins [42] and
(ii) training a generative model based on VAE architectures following the method proposed
by [43]. Two scenarios were examined for the pre-trained model approach: (i) generating
new sequences from peptides with reported antimicrobial activity in the literature and
(ii) applying the same methodology to peptides without reported antimicrobial activity.
Table 3 summarizes the peptides identified with the desired activity. In both scenarios,
100,000 peptides were generated and evaluated using the predictive models developed
in this study. Table 3 shows no significant differences observed in the peptides identified
for each activity type based on the input used. However, more peptides were consistently
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identified when using peptides with reported antimicrobial activity as input for de novo
peptide generation. The physicochemical properties, such as the isoelectric point and
hydrophobic radius, exhibited subtle differences in their distributions across the generated
peptides (cf. Figure 3).

Figure 3. Physicochemical property distribution analysis reveals concordance between existing
and generated peptide sequences. Using modlAMP, we explored the similarities between sequences
of different sources for nine physicochemical properties. The de novo generated sequences showed
differing distributions for the molecular weight, charge, and aromaticity; however, no significant
differences were observed in other properties. This suggests that the models generated are reliable
and produce sequences consistent with those previously reported. The Y-axes have been removed
from the subplots for clarity; the values do not play any role when comparing the shapes of the
probability distributions.

We used our generative model to create 1000 new peptide sequences, but 355 were not
unique and were discarded. Out of the remaining 645, we identified 640 with potential antimi-
crobial activity. This outcome aligns with the model’s training stage, which utilized antimicrobial
peptide sequences to learn about amino acid frequencies and relationships, and is also reflected
in the relative frequency of their constitutive amino acids (Figure 4A). Subsequent classification
revealed that over 500 of these peptides could have antifungal and antiparasitic properties,
while more than 300 may possess antibacterial and antimalarial properties.

To further explore the relationship between the physicochemical properties and mod-
els in the discovered sequences, we studied their distributions in different datasets. We
randomly selected 600 peptides from each strategy and dataset, distinguishing between
peptides registered in the Peptide Atlas, those generated using the VAE pre-trained models
and our VAE model, and the raw AMP peptides. We used the modlAMP tool to estimate
nine physicochemical properties of these sequences (cf. Figure 3 regarding how these prop-
erties are distributed among the datasets and Section S10 of the Supplementary Materials
for more details). Our findings showed that the sequences generated using our VAE model
had a higher molecular weight than those in other datasets, but no substantial differences
in other properties were observed. This indicates that the generated models are stable and
produce sequences that are consistent with those already reported.
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Figure 4. Visualization of generated antimicrobial peptides by applying VAE approaches. (A). Av-
eragefrequency of amino acids in the studied sequences depends on their source of origin. Sequences
created using pre-trained VAEs tend to have slightly more cysteine and glycine instances, regardless
of whether the original input was an AMP or not. On the other hand, raw AMPs, potential AMPs
identified in the Peptide Atlas, and AMPs generated using VAE trained with AMPs all show similar
patterns, except for isoleucine and leucine. In these cases, the peptides generated using VAEs have
a lower or higher frequency, respectively (see Table S4 in the Supplementary Materials for more
details). (B). Embedding visualization via t-SNE for the numerical representations generated by
the ProTrans t5 Uniref pre-trained model for the different sources analyzed. The sequences gen-
erated by the VAE trained with AMP sequences show greater dispersion and visual separation
compared to other sources, indicating possible new behaviors. This is reflected in the variations in
the amino acid properties and frequency. The representations for the potential AMPs generated via
the pre-trained VAE exhibit similar behavior. The same is true for the raw AMP sequences and the
potential AMPs identified in the Peptide Atlas, consistent with the analysis of the properties and
amino acid frequencies.

Compared to other analyzed strategies, the differences observed in the peptides
with potential antimicrobial activity, which were generated using the trained VAE, can be
attributed to the trends in the residues present in the generated sequences. For instance,
the higher occurrence of hydrophobic residues such as leucine and methionine in the
peptide sequences indicates their increased hydrophobicity (see Figure 4A). Additionally,
the lower frequency of charged residues affects properties like the charge density and
isoelectric point.

3. Materials and Methods
3.1. Data Collection and Preprocessing

We obtained peptide sequences from the Peptipedia v2.0 [28], including only those
with biological activity reported in the literature. Filters based on the target biological
activity were implemented to collect positive examples. These positive examples included
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antimicrobial, antibacterial, antiviral, antifungal, antiparasitic, anuran defense, antiproto-
zoal, antiangiogenic, antidiabetes, antibacterial Gram(+) and Gram(−), anti-inflammatory,
antimalarial, antimammalian cell, antioxidative, blood–brain-barrier-penetrating, cell–cell
communication, cell-penetrating, drug delivery vehicles, neuropeptides, and quorum sens-
ing, among others. For each dataset, negative examples were collected using peptide
sequences in Peptipedia v2.0 with reported biological activity differing from the positive
instances [28]. For example, all peptides without antimicrobial effects were used to generate
negative examples for the antimicrobial dataset.

Using a binary dataset as input, the examples were divided by category (positive or
negative). Then, the CD-Hit v4.8.1 tool [44] was applied to remove redundancies in each
category using a homology percentage of 90% and the rest of the configuration parameters
by default [33]. Finally, the representative sequences were employed to rebuild the binary
classification dataset. We addressed the class imbalance undersampling issue by randomly
selecting subsets of the negative class, as it was substantially larger than the positive class
in all datasets.

3.2. Encoding Peptide Sequences

Encoding, i.e., the numerical representation of the peptide sequences, is one critical
task when developing predictive models in protein science. Here, we explored different
pre-trained models (summarized in Table 4). The bio-embedding [45] tool was used to
apply the pre-trained models and generate the embeddings, combined with its reduced
dimensionality method. We also explored classic numerical representation strategies,
including one-hot encoding [46], physicochemical coding [47], and Fast Fourier Transform
approaches [48], to evaluate the performance of the machine learning algorithms using
different numerical representation strategies.

Table 4. Summary of pre-trained models employed for numerical representation of input dataset.

# Pre-Trained Model Description Tensor Size Reference

1 ProTrans t5 UniRef

The ProtTrans UniRef pre-trained model is a deep learning model
specifically trained for protein sequence representation and
understanding. It is trained on the UniRef50 database, which contains
clustered protein sequences to reduce redundancy and improve diversity.

1024 [49]

2 ProTrans t5 xlu50

ProtT5-XL-UniRef50 is based on the t5-3b model and was pre-trained on a
large corpus of protein sequences in a self-supervised fashion. This means
that it was pre-trained on the raw protein sequences only, with no humans
labeling them in any way (which is why it can be used with a large amount of publicly
available data), with an automatic process to generate inputs and labels
from the protein sequences.

1024 [49]

3 ProTrans T5-BDF

ProtT5-XL-BFD is based on the t5-3b model and was trained on a large
corpus of protein sequences in a self-supervised fashion. This means that it was
trained on the raw protein sequences only, with no human labeling
them in any way (which is why it can use many publicly available data),
with an automatic process to generate inputs and labels from the protein
sequences.

1024 [49]

4 Esm1b

The ESM-1b (Evolutionary Scale Modeling) pre-trained model is a variant
of the ESM model, designed for protein sequence modeling. It is based on
self-supervised learning techniques and utilizes a Transformer
architecture, similar to those used in natural language processing
tasks.

1280 [45]
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Table 4. Cont.

# Pre-Trained Model Description Tensor Size Reference

5 ProTrans XLNet

The ProtTrans XLNet pre-trained model is a variant of the XLNet model
customized for protein sequence analysis. XLNet is an extension of the
Transformer-based architecture, which integrates bidirectional context
learning with permutation-based training. Similarly, ProtTrans XLNet
leverages these features to learn contextual representations of amino
acids in protein sequences.

1024 [49]

6 ProTrans ALBERT

The ProtTrans ALBERT (A Lite BERT) pre-trained model is a variant of the
ALBERT model specifically adapted for protein sequence analysis. ALBERT
is a lightweight version of the BERT model, designed to reduce
the computational resource usage while maintaining its performance. Similarly,
ProtTrans ALBERT leverages this efficiency to provide effective
representations of amino acids in protein sequences.

4096 [49]

7 ProTrans BERT

The ProtTrans BERT (Bidirectional Encoder Representations from
Transformers) pre-trained model is a variant of the BERT model
specifically tailored to protein sequence analysis. Like its
counterpart in natural language processing, ProtTrans BERT utilizes a
Transformer-based architecture to learn contextual representations of
amino acids in protein sequences.

1024 [49]

3.3. Training and Validating Classification Models

The classification models developed in this work were built based on a classic pipeline
used to train predictive models using machine learning approaches [50]. Figure 1 summa-
rizes this work’s proposed method for the training of sequence-based predictive models.

First, the dataset is encoded as described in the previous section. Subsequently, each
encoded dataset is split into two datasets in a 90:10 ratio. The first dataset is used for model
development and the second for independent testing and benchmarking (see Figure 1A).

The model development dataset is divided into training and validation datasets using
an 80:20 ratio. Within this stage, we develop models using diverse supervised learning
algorithms and hyperparameters. The supervised learning algorithms explored in this
work include tree-based algorithms like decision trees; ensemble-based methods like Extra-
Trees, Hist Gradient Boosting, XGBoost, and Random Forest; distance-based algorithms
like K-Nearest Neighbors; and kernel-based methods like Support Vector Machine. Each
model is evaluated using classic performance metrics such as precision, recall, accuracy,
the F-score, and the Matthews correlation coefficient (MCC) (for details, see Section S1,
Supplementary Materials). A k-fold cross-validation with k = 10 is employed to prevent
overfitting. We repeat the whole process (i.e., partitioning into training and validation
datasets and exploring various algorithmic combinations, hyperparameters, and numerical
representations) 30 times to generate distributions of the performance metrics and obtain
robust results (see Figure 1B). Subsequently, we identify the best combinations of numer-
ical representation strategies and supervised learning algorithms by using the methods
proposed in [26] (see Figure 1C and Section S2 in the Supplementary Materials for more
details). Lastly, the selected combinations of machine learning algorithms and encoding
strategies are used as input for a Bayesian hyperparameter calibration process [51] (see
Figure 1C).

We utilize the independent testing dataset to assess the performance of the models
with the optimized hyperparameters produced in the previous stage. Performance compar-
isons between the validation and testing stages serve as tools for the selection of the best
model, considering factors such as (i) the highest performance in both the testing and vali-
dation sets, (ii) minimal differences between the validation and testing performance, and
(iii) low overfitting rates during training. Finally, the models are saved and exported
with the chosen combination of numerical representation strategies, supervised learning
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algorithms, and optimized hyperparameters to further explore new, unknown peptides
(see Figure 1D).

3.4. Benchmark Analysis

The performance obtained using the proposed methodology to train the binary classifi-
cation models was compared with that of tools, libraries, and predictive models previously
reported in the literature (cf. Section S3 in the Supplementary Materials for more details).
We conducted a literature survey on reported classification models regarding antimicrobial
peptide activity, including the subtypes analyzed in this work: antibacterial, antiviral, anti-
fungal, and antiparasitic. Then, we evaluated the feasibility of using each tool, following
the instructions described in the user manual, README, or descriptions on each repository
or web platform. All tools that could be tested and used correctly were selected and applied
to the benchmark dataset, obtaining the classifications of each peptide evaluated. The
performance of each tested tool was assessed using classic performance metrics.

3.5. Discovering Potential Peptides with Desirable Biological Activity from the Peptide Atlas

All peptide sequences from the Peptide Atlas [27] were collected and processed using
filters of the same length and a canonical residue evaluation and encoded using the method
associated with the best-performing models determined in this work. The models give
a probability for each category (has activity or has no activity) and are combined with a
threshold value to prevent error predictions (false positive or false negative predictions).
In this case, the threshold applied was estimated using the AUC score (see Table S4,
Supplementary Materials, for more details).

3.6. De Novo Design of Antimicrobial Peptides Using VAE

This work applied two VAE strategies to explore generative approaches for the gen-
eration of de novo potential antimicrobial peptides. First, we generated 100,000 novel
peptide sequences using the previously collected antimicrobial peptide dataset and the
model implemented by Greener et al. [42]. We analyzed the resulting dataset to remove
redundancies and exclude results already reported in Peptipedia [28] and the Peptide
Atlas [27].

The second strategy is based on the architecture and methods proposed by Hawkins-
Hooker et al. [43]. Using the processed antimicrobial peptide dataset, a VAE model is
trained by applying the architecture proposed in [43]. Then, 100,000 novel peptide se-
quences are generated using the trained models and the antimicrobial peptide dataset. The
same filters are applied to discard redundancies and coincidences with the Peptipedia and
Peptide Atlas databases.

Once the novel peptide sequences are generated, we apply the models and encoding
strategies developed in this work to classify these unknown peptide sequences. The stages
are (i) applying numerical representation for each classification model and (ii) predicting
the novel sequences using the antimicrobial classification model and the different subtypes
of classification models, like antiviral, antibacterial, and anuran defense. All classification
models use a threshold to generate the classification based on the probability predicted
for each category type (has activity or has no activity) on each model. This work applies a
threshold of 0.7 to reduce the probability of errors in classification.

Finally, the classified peptides are explored based on their moonlighting properties and
compared with the reported antimicrobial peptides and the predictions of novel potential
antimicrobial peptides detected from the Peptide Atlas database.

3.7. Implementation Strategies

All source code, including the modules, libraries, and demonstration scripts in the built
library, was implemented in Python v3.9.16. The classification models were implemented
using the packages available in the DMAKit v1.0.0 library [46]. The Bayesian hyperpa-
rameter optimization strategies were developed using the Optuna library [51]. Finally, a
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conda environment was constructed to facilitate the deployment of the constructed library,
combined with different Jupyter Notebooks, to ensure the replicability of the presented
work. AMP-Detector was implemented as an executable tool to facilitate the inference and
exploration of unknown peptide sequences. It accepts a Fasta format file and allows the
evaluation of one or multiple types of activity. AMP-Detector processes the input argu-
ments, including the peptide sequences and the activity to be evaluated. Next, it applies the
embedding representation and loads the classification models, which are then used to pre-
dict the associated biological activity. The tool generates a CSV file as output, containing the
sequences and all predictions produced by the classification models. All source code and
environmental configurations are available under the MIT licence for non-commercial use
in the GitHub repository https://github.com/ProteinEngineering-PESB2/amp_class_ml.
Moreover, all raw and coded datasets, the trained models exported in joblib format, the
discovered and explored peptide sequences from the Peptide Atlas database, and the
sequences generated through generative learning using VAEs are publicly available for
non-commercial use at the Google Drive link https://drive.google.com/drive/folders/
1IO_mL6Jt7vGQZ6aE7lK6crQFiLzZ62Cf?usp=sharing.

4. Conclusions

The novel contributions of our work are threefold. Firstly, we developed a sequence-
based approach to create functional classification models by combining protein language
models and classical machine learning methods. Secondly, we used this approach to build
AMP-Detector, a Python library integrated with 21 models for the classification of various
biological activity types, such as antimicrobial, antibacterial, and antiviral, achieving an
average precision of over 83%. The comparative analysis demonstrated that AMP-Detector
exhibits higher specificity and sensitivity compared to other state-of-the-art methods. Lastly,
we assessed the performance of these models in identifying and generating new peptides
with potential biological activity. We identified more than 300,000 potential AMPs in the
Peptide Atlas and proposed over 100,000 new sequences using a pre-trained VAE in a
transfer learning-inspired scheme and a new VAE trained on AMP sequences.

The combination of classification model design strategies, trained models, and inte-
gration strategies in design and discovery methods for potential AMPs demonstrates the
benefits of ML-based methods in expediting the discovery of peptides with pharmaceutical
activity. This approach also helps in designing de novo therapeutic peptides and represents
a competitive and widely applicable strategy for the study of peptides with specialized
biological activity, such as anticancer, antiviral, or antibacterial properties.

Our future work will consider the development of evaluation models for pharmaco-
logical properties, such as the half-life and IC50, and assess adverse effects like toxicity,
cytotoxicity, immunogenicity, and allergic effects. Additionally, we will explore strategies
like generative adversarial networks and diffusion models for the creation of new peptides
and then compare these strategies to determine the most effective approach. We also intend
to investigate methodological components related to designing classification models for
underrepresented biological activity types, utilizing transfer learning and semi-supervised
learning techniques to develop efficient and generalized classification models. These efforts
are aimed at facilitating the autonomous design of peptides with desirable therapeutic
properties through integrative ML methods.

Supplementary Materials: The following supporting information can be downloaded at https://
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