Skip to main content
. 2024 Aug 14;25(16):8851. doi: 10.3390/ijms25168851

Table 3.

Integrating AMP-Detector to evaluate unknown peptide sequences obtained from non-annotated databases or de novo-generated peptides using generative learning methods.

Activity # Discovered from Peptide Atlas # Generated Using Trained VAE # Generated Using Positive Examples # Generated Used Negative Examples
Antibacterial 403,367 336 63,709 58,826
Anti-Gram (+) 83,271 147 34,468 31,960
Antifungal 406,191 554 37,147 37,976
Blood–brain
barrier penetrating
1,259,618 38 12,384 11,277
Antiparasitic 133,555 563 2887 2077
Anti-inflamatory 2,999,776 1 27 27
Cell-penetrating 698,536 58 12,468 14,066
Anti mammalian
cell
81,701 93 16,360 14,611
Anuran defense 593,692 40 4729 4554
Anti-methicillin-resistant S. aureus 29,964 114 12,984 12,774
Cell–cell
communication
129,651 2 13,237 13,475
Antioxidative 290,289 75 5307 4821
Antiangiogenic 292,815 34 37,954 33,980
Antiviral 2,582,176 29 24,987 24,178
Quorum sensing 2,088,671 17 16,477 15,624
Antimicrobial 305,496 640 49,497 45,325
Antimalarial 259,169 311 35,862 34,647
Anti-Gram (−) 152,568 232 37,009 33,168
Drug delivery vehicle 113,0481 60 14,147 15,857
Antidiabetic 3,344,580 1 4571 4518
Neuropeptide 2,499,312 1 20,188 19,898