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Background. Studies of the diagnostic performance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
nucleocapsid antigen in blood (antigenemia) have reached variable conclusions. The potential utility of antigenemia
measurements as a clinical diagnostic test needs clarification.

Methods. We performed a systematic review of Pubmed, Embase, and Scopus through July 15, 2023, and requested source data
from corresponding authors.

Results. Summary sensitivity from 16 studies (4543 cases) sampled at <14 days of symptoms was 0.83 (0.75-0.89), and
specificity was 0.98 (0.87-1.00) from 6 studies (792 reverse transcription polymerase chain reaction-negative controls).
Summary sensitivity and specificity for paired respiratory specimens with cycle threshold values <33 were 0.91 (0.85-0.95) and
0.56 (0.39-0.73) from 10 studies (612 individuals). Source data from 1779 cases reveal that >70% have antigenemia 2 weeks
following symptom onset, which persists in <10% at 28 days. The available studies suffer from heterogeneity, and Omicron-era
data are scarce.

Conclusions. Nucleocapsid antigenemia currently has limited utility due to limitations of existing studies and lack of Omicron-
era data. Improved study designs targeting potential clinical uses in screening, surveillance, and complex clinical decision-making—

especially in immunocompromised patients—are needed.
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Coronavirus nucleocapsid protein was first observed in the
blood of individuals with severe acute respiratory syndrome
(SARS) during the 2003 outbreak in Guangzhou, China [1-5].
The SARS coronavirus 2 (SARS-CoV-2) nucleocapsid protein
is a 45.6-kDa, 419-amino acid protein coded near the 3’ end
of the viral genome, is important to virus structure and replica-
tion, and exhibits high similarity to the SARS-CoV nucleocapsid
protein [6-8]. The scientific community’s response to the global
pandemic of SARS-CoV-2 beginning in 2019 generated unprec-
edented quantities of diagnostic test-related data. Numerous
studies have described quantitative viral nucleocapsid protein
measurements in serum or plasma (antigenemia) framed as a

marker of acute infection or a predictor of disease severity [9].
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Yet a defined role for antigenemia measurements in clinical
care or public health remains unclear.

The appeal of a quantitative blood-based biomarker for
SARS-CoV-2 infection includes the following: (1) a sample
type less subject to variability than technique-dependent respi-
ratory specimens, (2) possible utility in surveillance utilizing
already collected blood specimens when respiratory sampling
is burdensome or not available, and (3) potential to reflect dis-
ease processes in ways not captured by an upper respiratory
swab specimen, such as compartmentalized infection or disease
monitoring in immunocompromised hosts. We sought to as-
sess the quality and quantity of evidence for nucleocapsid anti-
genemia as a diagnostic biomarker through a systematic review
of all available published data. We requested source data from
corresponding authors of each study and extracted results from
publications when necessary to perform meta-analyses of sen-
sitivity and specificity with respect to clinically defined acute
coronavirus disease 2019 (COVID-19) and paired respiratory
reverse transcription polymerase chain reaction (RT-PCR) cy-
cle threshold (Ct) values <33. We also performed an aggregate
data analysis to estimate antigenemia kinetics. Our analysis
highlights the need for precisely designed studies of antigene-
mia with modern variants to validate potential clinical uses.
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METHODS

Search Strategy

A search of Pubmed, Embase, and Scopus was performed on
February 25, 2023 (updated July 15, 2023), using terms for
SARS-CoV-2 infection (“COVID,” “SARS-CoV-2,” or “coronavi-
rus”), the nucleocapsid biomarker (“nucleocapsid,” “N protein,”
or “antigen”), and sample type (“blood,” “plasma,” or “serum”)
or the term “antigenemia” (see Supplementary Tables 1-3 for
full search terms). Results were initially imported into EndNote
20 to update and standardize metadata and remove duplicate
records.

Systematic Review

De-duplicated publication records were imported into the
COVIDence web application (Melbourne, Australia). Titles
and abstracts were screened for publications describing nucle-
ocapsid antigenemia measurements. Full texts were then as-
sessed for baseline inclusion criteria: (1) quantitative viral
nucleocapsid measurements in serum or plasma expressed
in terms of mass per unit volume and (2) cases defined by pos-
itive SARS-CoV-2 testing. At both stages, studies excluded by
both authors were omitted from further review and studies in-
cluded by at least 1 author were passed to the next stage.
Reasons for exclusion are provided in Supplementary
Figure 1. The protocol for this review was not prospectively
registered, and the protocol was not final before beginning
data extraction.

Data Extraction

Data independently extracted by 2 authors included study date,
location, assay platform, cutoff value, case definition, cases and
controls with and without antigenemia, and subsets of these
within 7 or 14 days since symptom onset and with paired respi-
ratory RT-PCR Ct values < or >33. Conlflicts between the 2 au-
thors were discussed to reach consensus.

The corresponding authors of all included studies were
contacted on or after May 9, 2023, with a request for original
data including duration of symptoms at sample collection,
month, year, patient age, precise antigenemia level, and con-
current nasal swab cycle threshold (Ct) value. The authors
of 17 studies provided data (Table 1) [10-15, 17-39]. Source
data were used to recalculate true positives (TPs), false posi-
tives (FPs), true negatives (TNs), and false negatives (FNs) us-
ing an index test cutoff of 2.97 pg/mL and to analyze
antigenemia kinetics.

Reference Standards

Acute COVID-19 (defined by RT-PCR respiratory testing and
clinical parameters) and nasal swab RT-PCR Ct values were
considered as references standards in separate meta-analyses
(Supplementary Figure 2).

Index Test

The index test was a quantitative viral nucleocapsid protein level
in plasma or serum (antigenemia). The most frequently used cut-
off across studies fell within a narrow range (2.97-3.0 pg/mL)
(Table 1). The lower limit of this range was chosen as a standard-
ized cutoff, and only studies where positive antigenemia was de-
fined by a cutoff value of 2.97, 2.98, or 3 pg/mL or where source
data were provided such that diagnostic performance could be
recalculated using the 2.97-pg/mL cutoff were included in the
primary meta-analysis. Alternate analyses that allow for heterog-
enous cutoff values are provided in Supplementary Figures 3
and 4.

Acute COVID-19 Meta-analysis

We performed 2 alternate meta-analyses with respect to acute
COVID-19, which was inconsistently defined across studies.
First, the authors’ definition of acute COVID-19 was accepted.
Alternately, only specimens obtained from patients with posi-
tive SARS-CoV-2 respiratory testing and <14 days of symp-
toms were included. An additional alternate analysis of cases
with <7 days of symptoms is in Supplementary Figure 3.

Multiple measurements from the same patient were included
in the meta-analysis if they originated from different time
points during the disease process. Parameters were placed on
source data, including when the reference was the authors’ def-
inition of acute COVID-19 if serial measurements from acute
COVID-19 cases were provided for weeks or months after di-
agnosis and/or symptom onset (Supplementary Table 4). For
the meta-analysis limited to cases with <14 days of symptoms,
TP and FN were extracted when symptom duration could be
determined. When grouped based on symptom duration, all
quanta not exceeding 14 days of symptoms were included.

A meta-analysis of specificity was performed using measure-
ments from patients with negative SARS-CoV-2 testing. No
specific parameters on timing of the negative testing were ap-
plied, and many studies did not provide this information.
Prepandemic specimens were not included in the specificity
meta-analysis.

The data elements for the meta-analyses included TP, FP, TN,
and FN observations from source data or data extracted from
the published manuscript and supplementary data. If not ex-
plicitly stated, TP and FN were calculated from the reported fre-
quency (f) of antigenemia multiplied by the total number of
cases (N) and rounding the result to the nearest integer (TP =
fX N, FN =N - TP). Outputs of the meta-analyses were pooled
sensitivity and specificity estimates and 95% confidence inter-
vals. Each analysis included a test for heterogeneity expressed
as an I? estimate, and a P value was derived from the Q test as
well as the chi-square test for differences in subgroups based
on common assay platforms (Quanterix Simoa, COV-
QUANTO, or “other assays” to encompass all assays not ap-
pearing >3 times in the included literature). Meta-analyses
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Study Events Total Proportion 95% CI
Ahava 2022 46 51 — 0.902 [0.786; 0.967]
Hingrat 2020 132 142 = 0.930 [0.874; 0.966]
Perna 2021 120 233 —— 0.515 [0.449; 0.581]
Sigal 2022 31 36 ——— 0.861 [0.705; 0.953]
Thudium 2021 332 341 == 0.974 [0.950; 0.988]
Wang 2021 64 74 —— 0.865 [0.765; 0.933]
Zhang 2021 157 177 — 0.887 [0.831;0.930]
1054 _ 0.885 [0.779; 0.944]

Blain 2022 25 56 —— 0.446 [0.313; 0.585]
Chenane 2022 496 754 E 3 0.658 [0.623; 0.692]
Oueslati 2022 37 56 —— 0.661 [0.522;0.782]
Parraud 2023 27 42 —— 0.643 [0.480; 0.784]
Veyrenche 2022 69 82 —— 0.841 [0.744; 0.913]
990 —_— 0.662 [0.541; 0.765]

Dambhorst 2023a 45 81 —i— 0.556 [0.441; 0.666]
Damhorst 2023b 17 30 —a 0.567 [0.374;0.745]
Favresse 2022 158 179 = 0.883 [0.826; 0.926]
Jilg 2023 147 229 —— 0.642 [0.576; 0.704]
Ogata 2020 34 57 —— 0.596 [0.458; 0.724]
Rogers 2022 2413 2540 0.950 [0.941;0.958]
Saini 2023 25 64 —— 0.391 [0.271; 0.521]
Shan 2021 80 102 —— 0.784 [0.692; 0.860]
Sullivan 2023 587 638 B 0.920 [0.896; 0.940]
Verkerke 2021 346 428 E 3 0.808 [0.768; 0.845]
Verkerke 2022 117 141 —l- 0.830 [0.757;0.888]
Wick 2022 225 266 —l- 0.846 [0.797; 0.887]
4755 _ 0.774 [0.663; 0.856]

Random effects model 6799 _ 0.793 [0.716; 0.853]

0.3 04 05 0.6 0.7 0.8 0.9
Sensitivity (2.97 pg/mL cutoff, author case definition)

Heterogeneity: 12 = 97% [96%; 98%), © = 1.0216, P < .01
Test for subgroup differences: Xﬁ =8.42,df=2(P=.01)

Figure 1.

Study Events Total Proportion 95% CI
Ahava 2022 43 45 — 0.956 [0.849; 0.995]
Hingrat 2020 132 142 R 0.930 [0.874; 0.966]
Wang 2021 60 70 — 0.857 [0.753; 0.929]
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C Study Events Total Proportion 95% CI
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Saini 2023 12 12 —= 1.000 [0.735; 1.000]
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Oueslati 2022 42 42 — 1.000 [0.916; 1.000]
Thudium 2021 337 467 = 0.722 [0.679; 0.762]
Zhang 2021 59 60 — 0.983 [0.911; 1.000]
527 E— 0.917 [0.516; 0.991]
Random effects model 792 - 0.979 [0.871; 0.997]
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Specificity (2.97 pg/mL cutoff)

Heterogeneity: 12 = 83% [64%; 92%], = 3.5512, P < .01
Test for subgroup differences: x§ =1.15, df = 2 (P = .056)

Meta-analyses of nucleocapsid antigenemia as a diagnostic marker of acute COVID-19 based on clinical diagnosis using an index text cutoff of 2.97 pg/mL.

Studies are grouped according to the assay used (Quanterix Simoa, COV-QUANTO, and other assays). A, Sensitivity using the authors” definition of acute COVID-19. B,
Sensitivity only for those cases with <14 days of symptoms. C, Specificity for SARS-CoV-2-negative individuals. Abbreviations: COVID-19, coronavirus disease 2019;

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Sensitivity and Specificity for Acute COVID-19

Summary sensitivity using the authors’ case definition was 0.79
(95% CI, 0.72-0.85) with significant heterogeneity (I*=97%
[96%-98%]) (Figure 1A). Summary sensitivity for cases within
14 days of symptom onset was 0.83 (0.75-0.89) and exhibited
similar heterogeneity (P=96% [94%-97%]) (Figure 1B).
Summary specificity for SARS-CoV-2-negative persons was
0.98 (0.87-1.00) with an I* of 83% (64%-92%) (Figure 1C).

Sensitivity and Specificity of Antigenemia for Ct Value <33

Summary sensitivity for antigenemia with respect to a respira-
tory RT-PCR Ct value <33 was 0.91 (0.85-0.95) with an I* of
57% (13%-79%) (Figure 2A). Summary specificity was 0.56
(0.39-0.73; I =58% [12%-80%]) (Figure 2B). Summary area
under the curve of the bivariate ROC model was 0.82

(Figure 2C). The gene targets included in each study are sum-
marized in Supplementary Table 8.

Assay Subgroup Analyses

Across-group differences were statistically significant in the sen-
sitivity meta-analyses utilizing the authors’ definition and symp-
toms <14 days to define acute COVID-19 (P =.01 and < .01,
respectively) (Figure 1) and in the specificity meta-analysis for
high concurrent upper respiratory tract Ct value (P <.01)
(Figure 2). However, the within-group heterogeneity was still
pronounced, and even instances where I* values were relatively
small (eg, <40%) the apparent homogeneity of assay-specific
results was likely attributable to the relatively small number of
studies with wide, largely overlapping confidence intervals. To
further clarify effects of outliers in light of high heterogeneity,
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Figure 2. Meta-analysis of nucleocapsid antigenemia as a diagnostic indicator of nasal swab RT-PCR Ct value <33. Univariate models for (A) sensitivity and (B) specificity,
and (C) summary ROC curve using a bivariate model. Abbreviations: Ct, cycle threshold; ROC, receiver operating characteristics; RT-PCR, reverse transcription polymerase

chain reaction.

a sensitivity analysis for assay subgroups with I* >90% is provid-
ed in Supplementary Table 9, which does not reveal any substan-
tial influence of outliers on overall sensitivity estimates.

Timing of Studies

No study systematically evaluated differences in antigenemia
between major variants. Only 2 studies collected data during
the Omicron era (Figure 3).

Kinetics of Antigenemia

Source data with symptom onset recorded were available for
1779 patients from 9 studies [13-15, 30, 32-36]. Most antigene-
mia was observed in the first 4 weeks following symptom onset,

and levels waned and nearly disappeared by 28 days (Figure 4A).
More than 70% of patients had antigenemia after 2 weeks
(Figure 4B), but these data are likely biased toward hospitalized
patients with more severe disease.

Quality Assessment
Bias assessments for each included study are presented in
Supplementary Table 10.

DISCUSSION

Interpretation of Meta-analyses
The clinical role of SARS-CoV-2 nucleocapsid antigenemia
measurements is unclear. Most potential applications would
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Figure 3. Timeline of studies identified in our review superimposed on variant trends retrieved from GISAID.org. The relative frequency of each variant is depicted as a
fraction of the sequenced isolates. Studies that did not indicate specimen collection dates were omitted.

rely on adequate diagnostic performance with respect to acute
COVID-19 or high respiratory viral load. Our meta-analysis
suggests that antigenemia is a moderately sensitive marker of
acute COVID-19 (0.83 [0.75-0.89]) and a highly sensitive
(0.91 [0.85-0.95]) but nonspecific (0.56 [0.39-0.73]) marker
of high respiratory tract viral loads. Our conclusions are limited
by between-study heterogeneity and lack of modern variant
data.

A significant source of heterogeneity between studies is the
definition of acute COVID-19. Using the authors’ definition
of acute COVID-19 as the reference standard showed lower
summary sensitivity (0.793) than when the reference standard
was restricted to cases within 14 days of symptom onset (sensi-
tivity, 0.830) (Figure 1). Many acute COVID-19 antigenemia
studies may therefore be at risk of inappropriately including re-
covered patients with persistent detectable RNA who present to
care with illness not due to SARS-CoV-2 infection.

A prior systematic review that did not perform a meta-
analysis concluded that timing of sample collection, assay
platform, and disease severity influence antigenemia measure-
ments [9]. We have addressed timing to the extent possible with
a reference standard based on symptom onset. Difference in se-
verity remains an important source of between-study heteroge-
neity. We were not able to adjust the analysis for differences in
severity, nor did we attempt a meta-analysis of the prognostic
value of antigenemia because of the lack of standardized and
granular severity data across studies. Several studies have inde-
pendently demonstrated an association of antigenemia levels
with severity of SARS-CoV-2 infection [15, 24, 33, 36].
Meanwhile, we do observe that acute COVID-19 with absent
or short-lived antigenemia seems plausible, and we would
expect this to be more common in less severe cases. Two
antigenemia studies with rigorously selected cohorts, the
ACTIV-3/TICO cohort (hospitalized cohort, 95% antigene-
mia) [24] and the ACTIV-2 (nonhospitalized cohort, 64% anti-
genemia) [18], illustrate this conclusion.

Heterogeneity can also be attributed to the use of different as-
say platforms, which included both ultrasensitive and standard
immunoassays. Forest plots in this analysis include subgroups
based on the 2 most common assays, Quanterix Simoa and
COV-QUANTO, while all other assay platforms were used less
frequently so they were categorized into a third subgroup, “other
assays.” Although across-group differences were statistically sig-
nificant in some analyses, significant within-group heterogeneity
was still observed in most subgroups. The overall small number
of studies and wide overlapping confidence intervals limit con-
clusions from these observations, but nonetheless highlight
needs for validation and clarification of unique cutoff values
for each assay platform and clinical application.

Sampling RT-PCR-negative individuals results in a high esti-
mate of specificity but likely overestimates true specificity due to
limited challenge bias [55]. More accurate estimates of specific-
ity should come from studies of diagnostic performance with
consecutive or random enrollment rather than case-control
designs.

RNA persistence following resolution of acute COVID-19 is
well documented, motivating interest in using antigenemia to
adjudicate resolved active infection [56]. Comparison of antigene-
mia with nasal swab RT-PCR Ct value, a surrogate of respiratory
tract viral load, suggests high sensitivity but poor specificity.
Limitations to the interpretation of these data must also be ac-
knowledged: Ct values do not necessarily correlate across instru-
ments or laboratories [57], many studies present data from
multiple RT-PCR instruments, and different viral gene targets
are included in the meta-analyzed data. Further, many are quali-
tative assays and are not validated for quantitative RT-PCR.

Use of respiratory tract biomarkers to assess active infection
is additionally flawed, as discordance between nasal swab find-
ings and lower respiratory tract findings has been described
[58-60]. While Ct value is often used as a surrogate for active
infection and transmission potential, more labor-intensive viral
culture assays may be a better reference standard. Only 2
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Figure 4. Antigenemia kinetics. A, Antigenemia levels vs days since symptom onset for source data from 10 studies. All measurements below the threshold value were
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studies compare antigenemia with viral culture and report
somewhat promising findings that absence of antigenemia
may help rule out a contagious state, but in total these are in-
conclusive owing to small sample sizes [14, 48].

The rapid evolution of SARS-CoV-2 as described by epide-
miologically relevant variants and subvariants as well as current
widespread immunity due to prior natural infection and vacci-
nation may limit the applicability of the current literature, as
the most recent data come from early 2022, shortly after the
emergence of the Omicron variant (Figure 3). The N gene
has been relatively conserved across variants compared with
spike antigen, and a limited analysis of Omicron compared
with early pandemic antigenemia suggests that similar ranges

are observed (Supplementary Figure 5). Eighteen of 44 studies
(including 9 of 30 studies included in our meta-analyses) did
not clarify the dates that sampling was performed, and among
the 26 studies with dates reported (including studies identified
without analyzable data), only 2 likely capture the Omicron
variant (Figure 3). Further, preexisting immunity due to vacci-
nation or prior infection—which has progressed dramatically
since the emergence of SARS-CoV-2—likely exerts a greater in-
fluence on antigenemia than inherent viral genomic changes.
Granular vaccination and prior infection data were not provid-
ed in most publications, and we were unable to perform an
analysis to further evaluate the impact of preexisting immunity
on antigenemia. This will be an important area of future study.

8 « OFID « Dambhorst et al


http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofae561#supplementary-data

Antigenemia Kinetics

Before this review, duration of antigenemia was uncertain.
Using available source data, which we expect are biased toward
hospitalized patients, we performed an aggregate analysis of
antigenemia kinetics relative to symptom onset (Figure 4).
Our analysis suggests that antigenemia persists in >70% of hos-
pitalized patients for ~2 weeks after symptom onset and wanes
by the end of the fourth week in >90% of patients. This estab-
lishes the third and fourth weeks after symptom onset as a
period of uncertainty in the interpretation of antigenemia mea-
surements. We do not have sufficient data to describe how
many of these cases were still symptomatic or who may have
a clinical picture consistent with persistent (or protracted)
SARS-CoV-2 infection [61, 62].

Clinical Scenarios for Future Investigation

Considering the available data, our opinion is that nucleocapsid
antigenemia measurements cannot serve as an alternative to
RT-PCR in patients presenting for evaluation of COVID-19-
like symptoms. This stems from imperfect sensitivity (estimated
through meta-analysis to be 79.3%) in cohorts with presumptive
acute COVID-19. However, clinical scenarios should be consid-
ered where antigenemia measurements provide value but still
require validation.

The most promising role for antigenemia is in evaluation of
complex clinical presentations in immunocompromised persons
who are at risk for complications of SARS-CoV-2 infection in-
cluding persistent infection [58, 61-63]. Immunocompromised
patients may present with syndromes where persistent
SARS-CoV-2 infection is considered among other diagnoses
and often require extensive workup including advanced imaging
and bronchoscopy. In some of these cases, discordant testing has
been observed with RT-PCR-negative nasal swabs but compelling
evidence of active infection in the lower respiratory tract (authors’
unpublished observations) [58-60]. A multidisciplinary evalua-
tion of such cases often involves consideration of biomarkers
for atypical bacteria, endemic fungi, and mold infections that
have poor performance characteristics [64-68]. Our aggregate
analysis of antigenemia kinetics (Figure 4) raises the hypothesis
that persistent antigenemia beyond 4 weeks may support a diag-
nosis of persistent SARS-CoV-2 infection. Prospective studies to
determine duration of antigenemia in immunocompromised in-
dividuals and correlation with symptoms and viral and immune
biomarkers are needed. Antigenemia to guide therapy such as du-
ration of antivirals or administration of convalescent plasma in
these patients should also be investigated.

Another application may be surveillance in inpatient health
care settings where universal nasal swab sampling is not per-
formed but blood sampling is performed. While false-positive
antigenemia screening should be expected in some patients
with resolved SARS-CoV-2 infection presenting during weeks
3-4 following symptom onset, universal testing of blood

samples collected for routine testing may still provide an esti-
mate of infection prevalence.

Three papers examined antigenemia in the SARS-CoV-2-
associated multisystem inflammatory syndrome in children
(MIS-C), but with conflicting findings [13, 27, 37].
Nucleocapsid antigenemia was identified in 9 of 16 children
(56.3%) with MIS-C by Yonker et al. [37] but only 3 of 53
(5.7%) in the study Sigal et al. [27], and our prior study did not
find nucleocapsid antigenemia in any of 26 MIS-C cases [13].
Notably, time since COVID-19 or SARS-CoV-2 exposure was a
median (range) of 26 (12-62) days in the Yonker et al. study,
and 2 of 3 antigenemic patients in the Sigal study had a recent pos-
itive SARS-CoV-2 RT-PCR, indicating that these patients may
have had waning antigenemia from the primary infection. Viral
spike antigenemia, which is beyond the scope of this review,
was more heavily associated with MIS-C cases in the study by
Yonker et al. but still rare in the other 2 MIS-C cohorts.

Limited study of the broadly defined postacute sequelae of
SARS-CoV-2 infection (PASC) has also been performed, find-
ing persistent nucleocapsid antigenemia in 1 of 12 patients for
months after COVID diagnosis [30]. Further study of MIS-C,
PASC, and other SARS-CoV-2-associated sequelae is needed
and may warrant comprehensive assessment of viral compo-
nents in a range of sample types.

Future studies aiming to characterize antigenemia as a bio-
marker or evaluate diagnostic performance should provide dates
of sample collection and/or variant status of cases, time of sample
collection relative to symptom onset, and immune status of the pa-
tients including reasons for immune compromise, vaccination
status, and history of prior SARS-CoV-2 infections.

CONCLUSIONS

SARS-CoV-2 nucleocapsid antigenemia remains an interesting
phenomenon but cannot replace respiratory sampling for the di-
agnosis of acute COVID-19. Studies characterizing diagnostic per-
formance suffer from heterogeneity, poor reporting practices,
fundamental reference standard limitations, and lack of published
studies in the Omicron era. Antigenemia appears very common in
the first 2 weeks following symptom onset in hospitalized patients
and disappears in nearly all patients by the end of the fourth week.
Roles for antigenemia measurements in surveillance where blood
specimens are already collected for other reasons, in the evaluation
and treatment of immunocompromised patients presenting with
complex syndromes, and as clues to the pathophysiology of seque-
lae of SARS-CoV-2 infection warrant ongoing investigation.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases
online. Consisting of data provided by the authors to benefit the reader, the
posted materials are not copyedited and are the sole responsibility of the au-
thors, so questions or comments should be addressed to the corresponding
author.
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