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Abstract
Background and objective The aim of this study was to investigate potential hub genes for dilated cardiomyopathy 
(DCM).

Methods Five DCM-related microarray datasets were downloaded from the Gene Expression Omnibus (GEO). 
Differentially expressed genes (DEGs) were used for identification. Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment, disease ontology, gene ontology annotation and protein-protein interaction (PPI) network 
analysis were then performed, while a random forest was constructed to explore central genes. Artificial neural 
networks were used to compare with known genes and to develop new diagnostic models. 240 population blood 
samples were collected and expression of hub genes was verified in these samples using RT-PCR and demonstrated 
by Nomogram.

Results After differential analysis, 33 genes were statistically significant (adjusted P < 0.05). Functional enrichment of 
these differential genes resulted in 85 Gene Ontology (GO) functions identified and 6 pathways enriched for the KEGG 
pathway. PPI networks and molecular complex assays identified 10 hub genes (adjusted P < 0.05). Random forest 
identified SMOC2 and SFRP4 as the most important, followed by FCER1G and FRZB. NeuraHF models (SMOC2, SFRP4, 
FCER1G and FRZB) were selected by artificial neural network model and had better diagnostic efficacy for the onset 
of DCM, compared with the traditional KG-DCM models (MYH7, ACTC1, TTN and LMNA). Finally, SFRP4 and FRZB were 
expressed higher in DCM verified by RT-PCR and as a factor for DCM identified by Nomogram.

Conclusions We performed an integrated analysis and identified SFRP4 and FRZB as a new factor for DCM. But the 
exact mechanism still needs further experimental verification.

Keywords GEO analysis, Dilated cardiomyopathy, Artificial neural network, Random forest

Exploring the predictive values of SERP4 
and FRZB in dilated cardiomyopathy based 
on an integrated analysis
Bin Qi1, Hai-Yan Wang1, Xiao Ma1, Yu-Feng Chi1 and Chun Gui1*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12872-024-04255-6&domain=pdf&date_stamp=2024-10-17


Page 2 of 13Qi et al. BMC Cardiovascular Disorders          (2024) 24:577 

Introduction
Dilated cardiomyopathy (DCM) is a specific type of car-
diomyopathy that is caused by enlargement of the heart 
chambers for various reasons and is a common cause of 
heart failure and death [1].

In adults, dilated cardiomyopathy arises more com-
monly in men than in women. The prevalence is one in 
2500 individuals, with an incidence of seven per 100 000 
per year and the familial type might account for 20–48% 
of all cases [2].

DCM is an impairment of the dilated and contractile 
function of the left ventricle. Patients with DCM usually 
have a poor prognosis, with a 5-year survival rate of less 
than 50% after the initial diagnosis. Patients with DCM 
often die of congestive heart failure, which is also one of 
the common causes of heart transplantation [3]. Other 
clinical manifestations of DCM include arrhythmias, 
thromboembolism and sudden death [3].

The commonly used clinical diagnostic techniques for 
DCM have several limitations. The positive detection of 
AHA in immunomarkers reflects the presence of auto-
immune damage in patients and is commonly seen in 
patients with VMC and its progression to DCM. Brain 
natriuretic peptide/N-terminal natriuretic peptide lev-
els are often indicative of heart failure, and the etiology 
of heart failure is not only DCM. Echocardiogram is 
another kind of commonly used technology that evalu-
ates cardiac function, the individual that it relies on 
expert more is operated skilled degree and diagnostic 
experience, make check repeatability is poor. The early 
diagnosis rate of dilated cardiomyopathy is low and the 
long-term prognosis is poor. Therefore, there is an urgent 
need for new diagnostic models to be developed to com-
plement the existing diagnostic inefficiencies.

Technological advances have improved the accuracy of 
diagnosis, and the precise identification of disease-caus-
ing genes by sequencing has provided a solid theoretical 
foundation and technical support for the development of 
diagnostic and prognostic models, while the new diag-
nostic model of DCM can also give sequencing data for 
in-depth mining [4]. In this study, differentially expressed 
genes (DEGs) in DCM and normal myocardium were 
screened from the Comprehensive Gene Expression 
Database (GEO). We used gene enrichment analysis to 
interact with protein-protein interaction (PPI) networks 
to understand the role of these DEGs. We used random 
forest algorithm to identify key genes expressed in DCM. 
Then we input these key genes into artificial neural net-
work to construct the genetic diagnosis model of DCM. 
At the same time, a diagnostic model was constructed 
using genes that had been proved to be significantly dif-
ferent in the patients of DCM. Finally, we compared the 
sensitivity and specificity between the two diagnostic 
models.

Materials and methods
Data selection and preprocessing
In total, five datasets were downloaded for analysis 
GSE42955 [5], GSE79962 [6], GSE120895 [7], GSE9800 
and GSE17800 [8]) (GEO, http://www.ncbi.nlm.nih.gov/
geo/). GSE42955 was based on the GPL6244 platform 
of Affymetrix Human Gene 1.0 ST Array and included 
12 DCM patients and 5 controls collected from human 
myocardial biopsy tissues [5]. GSE79662 was also based 
on the GPL6244 platform of Affymetrix Human Gene 
1.0 ST Array and included 9 DCM patients and 11 con-
trols collected from human myocardial biopsy tissues [6]. 
GSE42955 and GSE79962 were derived from the same 
tissue source and based on the same sequencing platform. 
To obtain a large sample of microarray data set, we com-
bined two sample microarray datasets (GSE42955 and 
GSE79962) as a training dataset. GSE120895 was based 
on the GPL570 platform of Affymetrix Human Genome 
U133 Plus 2.0 Array and included 47 DCM patients and 8 
controls collected from human myocardial biopsy tissues 
[7]. Because GSE120895 contains a larger sample size 
of DCM patients, we chose it as the validation dataset. 
These datasets were converted to logarithmic form after 
standardization, and the R package ComBat was used to 
remove the batch effects [9]. A training dataset with 37 
samples and a validation dataset with 55 samples were 
obtained using classical and Bayesian correction meth-
ods. GES9800 and GSE17800 as the validation dataset, 
the analysis method is similar to the previous dataset.

Differentially expressed genes (DEGs) screening
After we combined two sample microarray datasets 
(GSE42955 and GSE79962) as a training dataset, data 
preprocessing and expression of genes were processed 
using R software (version 4.1.1). DEG was defined as 
adjusted P-values needing to be less than 0.05 and 
(log2FC| > 1). Data processing methods and visualization 
of graphs were performed with the help of the “Limma” 
and “Pheatmap” packages in the R [10].

Function analyzed for DEGs
Gene ontology (GO), disease ontology (DO) enrichment 
and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) were used to illustrate the pathways of the 
DEGs. We employed DOSE and the clusterProfiler pack-
age in R [11, 12]. An adjusted P value (Q-value) of < 0.05 
was regarded as statistically significant. Please refer to 
our previous studies for details of our analysis methodol-
ogy [13].

Protein–protein interaction (PPI) network and potential 
key gene analyses
The potential interactions between DEGs were stud-
ied with the help of the Interacting Genes/Proteins 
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(STRING) plugin. The PPI network was visualized using 
Cytoscape software (version 3.8.1) [14]. We used the 
Molecular Complex Detection (MCODE) app to detect 
the major and most notable clustering modules. For 
further subsequent analysis, we set EASE ≤ 0.05 and 
count ≥ 2 as the cutoff value and MCODE score > 8 as the 
threshold. We have explained the use of this method in 
detail in a previous manuscript [15].

Random forest (RF) classification
During data processing, DEG needs to be classified, and 
we use R-package RandomForest for this process [16]. 
In the first step, we need to find the optimal number of 
all variables. 4 is the optimal number of variables for the 
binary tree in the whole node, and 131 is also the optimal 
number of trees in the random forest, which minimizes 
the error. Second, the decreasing accuracy method (Gini 
coefficient method) is used to construct the random for-
est model and to obtain the dimensional importance 
values in the model. Based on the importance, the first 
4 genes greater than 1 were selected as disease-specific 
genes for subsequent model construction. Next, the four 
important genes in the training dataset were selected for 
unsupervised hierarchical clustering and reclassified, and 
heat maps were drawn using the Pheatmap package.

Neural network to build disease classification model
The training model of the neural network is selected as 
the training data set. All the data are normalized and the 
maximum and minimum values are distinguished from 
the weight. To construct the artificial neural network 
model for the variables, we employed the R package for 
neural networks to perform the analysis. The DCM clas-
sification model was constructed by first obtaining the 
gene weight information, and this process set 5 hidden 
layers as model parameters. The disease classification 
score in the model is defined as the sum of the product 
of the weight scores multiplied by the expression lev-
els of important genes. To ensure accuracy, the model 
results are then subjected to 5-fold cross-validation, and 
the results of the 5-fold cross-validation are calculated 
using a confusion matrix function, which is done using 
the Caret software package [17]. Validation of the AUC 
classification performance is calculated using the pROC 
software package [18].

Additional data verification
The validity of the classification and scoring model of 
DCM disease and normal samples was verified on the 
independent dataset GSE120895. The efficiency of the 
different classifications is calibrated using the area under 
the ROC curve, and its calculation and visualization of 
the graphs are done using the pROC software package. 
The effectiveness of classification was then compared 

with that of 4 other reported DCM disease biomarkers. 
At the same time, the optimal threshold of ROC curve 
and the sensitivity and specificity classification threshold 
of disease and normal samples under this threshold were 
calculated.

Study population
In total, 240 patients were recruited from the inpatient 
department at the First Affiliated Hospital, Guangxi Med-
ical University from 2019-6-1 to 2020-12-31. Ischemic 
cardiomyopathy due to coronary stenosis was excluded 
after completion of coronary angiography, and all admit-
ted patients met the diagnostic criteria for dilated cardio-
myopathy: (1) Evidence of ventricular enlargement and 
reduced myocardial contractile function. LVEDd > 5.0 cm 
(women) and LVEDd > 5.5  cm (men) (or greater than 
117% of the predicted value for age and body surface 
area, i.e., 2 times the SD of the predicted value + 5%); 
LVEF < 45% (Simpsons’ method), and LVFS < 25%; (2) 
Excluding cardiac valvular disease, congenital heart dis-
ease, or ischemic heart disease [19]. Exclusion criteria 
included subjects with poor compliance, incomplete 
clinical data, contrast agent sensitivity and autoimmune 
diseases. Additionally, subjects with obvious surgical 
contraindications were excluded. Clinical data collec-
tion, biochemical measurements and diagnostic criteria 
were performed according to internationally standard-
ized methods, following a common protocol. The study 
adhered to the Declaration of Helsinki of 1975 (http://
www.wma.net/en/30publications/10policies/b3/) and its 
revision in 2008 and the Ethics Committee of First Affili-
ated Hospital, Guangxi Medical University agreed with 
the study design (No: Lunshen-2019-KY; Feb. 02, 2019). 
Informed consent was obtained from all subjects after 
receiving a full explanation of the study.

RNA isolation, reverse transcription (RT) and quantitative 
PCR (qPCR)
Fasting blood samples (5 mL) were collected in EDTA 
and separated by centrifugation at 3000  g for 15  min. 
The RNA was extracted according to the manufacturer’s 
protocols. Total RNA was eluted in 30 µL of RNase-
free water. RNA was reverse transcribed to cDNA with 
reverse transcriptase kit. The reaction system contained 
total RNA 2  µg, Enzyme Mix 2 µL, RNase-free water 
up to 20 µL. The reaction contained 0.2 µL PCR For-
ward Primer, 0.4 µL PCR Reverse Primer, 3.0 µL cDNA, 
RNase-free water up to 20 µL. All reactions were run in 
duplicate. The average of the Ct value was calculated after 
the PCRs were run in duplicate for each sample. The spe-
cific primer design for the validation genes is carried out 
under the guidance of a professional company, as detailed 
in the Supplementary Table 1.

http://www.wma.net/en/30publications/10policies/b3/
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Statistical analysis
The statistical packages SPSS 22.0 (SPSS Inc., Chicago, 
IL, USA) and R software (version 4.1.1) were used for sta-
tistical analysis. Quantitative variables were expressed as 
mean ± standard deviation, and two sample means were 
compared using the T-test, or if the samples did not con-
form to a normal distribution, the interquartile spacing 
was used. The difference in the percentages were com-
pared using the Chi-square test. The predictive accuracy 
of the risk model was assessed by the discrimination 
measured by the C statistic and the calibration evaluated 
by the Hosmer-Lemeshow χ2 statistic. All tests were two-
sided, and P < 0.05 was considered statistically significant.

Results
Differential expression analysis
See Fig.  1 for a flow chart of the analysis of the manu-
script. After normalization (Supplementary Table 2), 
data from 21 DCM patients and 16 control samples were 
retrospectively analyzed from the conjoint analysis of 
GSE42955 and GSE79962. After the analysis, 33 DEGs 
were obtained: 15 genes were significantly upregulated 
and 18 genes were significantly downregulated (P < 0.05 
and |log2FC| > 1). The volcanic plot of gene average 
expression levels was shown in Fig. 2A. The heat map of 

the screened 33 DEGs in the conjoint dataset was shown 
in Fig. 2B.

Functional analysis of DEGs
The clusterProfiler software package was used for GO 
enrichment analysis of the important DEGs obtained in 
the first step. The results of GO enrichment analysis rep-
resent three parts, including biological processes, cellular 
components, and molecular functions (Fig. 3A). Among 
these results, relevant biological processes involved in 
DCM include cell chemotaxis, receptor-mediated endo-
cytosis, leukocyte chemotaxis; relevant cellular com-
ponents involved in DCM include collagen- containing, 
extracellular matrix vacuolar lumen, blood micropar-
ticle; relevant molecular functions involved in DCM 
include extracellular matrix structural constituent con-
ferring compression resistance, extracellular matrix 
structural constituent, growth factor activity. Figure  3B 
intensively shows part of the GO enriched terms and 
the significant DEGs involved. KEGG enrichment analy-
sis indicated that the main DEGs enrichment was in the 
pathway of Phagosome, Complement and coagulation 
cascades, Ae-RAe signaling pathway in diabetic compli-
cations (Fig. 3C). Figure 3D intensively shows part of the 
KEGG pathways which the significant DEGs involved in. 

Fig. 1 The flowchart for analysis
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Detailed data for GO and KEGG were visible in Supple-
mentary Table 3, Supplementary Table 4. Finally, we 
used the STRING database to develop the PPI network 
of these DEGs (Fig. 3E). Detected by MCODE methods 
that 10 genes with the higher degree and MOCDE_score 
(Supplementary Table 5).

Random forest screening for DEGs
Next, we took the DEGs into the random forest classifier. 
The lowest error rate occurred when the number of vari-
ables was 4; meanwhile, the optimal number of trees in 
DCM classifier was set to 131 due to the low error rate 
and stability (Fig. 4A). In the process of building the ran-
dom forest model, the variable importance of the output 
results was measured from the Angle of reducing accu-
racy and mean square error (Gini coefficient method) 
(Fig. 4B). Four DEGs of greater than 1 importance (Gini 
coefficient method) were identified as candidate genes 
for subsequent analysis. Among the four variables, 
SMOC2 and SFRP4 are the most important, followed 
by FCER1G and FRZB. In the 37 samples in the com-
bined dataset of GSE42955 and GSE79962, these 4 genes 
could be used to distinguish between disease and normal 
samples (Fig.  4C). Among them, the expression level of 
FCER1G was high in normal samples. On the other hand, 
SMOC2, SFRP4 and FRZB were highly expressed in dis-
ease samples.

Construction of the artificial neural network model
Based on the combined datasets of GSE42955 and 
GSE79962, an artificial neural network model based on 
neural network package was constructed. This data-
set has previously been preprocessed to normalize the 

data. Before starting the calculation, the maximum and 
minimum values are normalized and the number of hid-
den layers is set to 5. There are no fixed rules on how 
many layers and neurons to use when choosing param-
eters. It is generally believed that the number of neu-
rons should take into account the size of input layer and 
output layer. Since we selected four key genes to build 
the model through the random forest tree in the previ-
ous step, we set the parameter of the number of neurons 
as 4. The combined dataset neural network topology of 
GSE42955 and GSE79962 shows 4 input layers, 5 hidden 
layers, and 2 output layers in total (Fig. 5A). In order to 
evaluate the results of the neural network model more 
effectively, we chose a five-fold cross-validation method 
(Supplementary Table 6). In order to remove the batch 
effect of selected key genes in different samples, we 
scored the genes if the gene was expressed in the sample 
was greater than the median expression value of the gene 
in all samples, then the gene was marked with 1 score; 
otherwise, it was marked with 0 score, and the results of 
four genes were shown in Supplementary Table 7. The 
purpose of gene scoring was to calculate its weight in the 
neural network. Classification efficiency of model scores 
constructed using gene expression and gene weights. 
The formula for calculating the classification score of the 
disease neural network model is as follows: neuraHF = 
(Gene Expression x Neural Network Weight). The weight 
of each gene (input layer) reaching the hidden node was 
detailed in Supplementary Table 8. The weight of each 
hidden node to the sample attribute (output layer) was 
detailed in Supplementary Table 9. Correspondingly, we 
used the same method to construct another neural net-
work model of four identified key genes of DCM (MYH7, 

Fig. 2 DEG analysis and Heatmap. (A): Volcano plot for DEGs. Items with statistical significance and upregulated expression are marked with red dots, and 
downregulated expression is marked with green. (B): Heatmap for DEGs. The red strip represents high relative expression, and the blue strip represents 
low relative expression
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ACTC1, TTN and LMNA) (Fig. 5B), we called this neural 
network model the KG-DCM.

Validation of artificial neural network model
First, we verified the accuracy of the neural net-
work model(neuralDCM) in the combined datasets of 
GSE42955 and GSE79962. The accuracy of Control group 

was 0.938 and the accuracy of treat group was 0.952. 
The AUC of neuralDCM was 0.975(95%CI 0.921-1.000) 
(Fig.  6A). The neural network model could distinguish 
the control group from the treatment group accurately. 
Then we verified the accuracy of the neural network 
model (KG-DCM) in the combined datasets of GSE42955 
and GSE79962. The accuracy of Control group was 0.562 

Fig. 3 Functional annotation and PPI network. (A): GO analysis for DEGs. (B): Ribbons linking the genes with their assigned terms for GO analysis. The 
logFC is represented by the blue-to-red coding near the marked genes. (C): KEGG analysis for DEGs. (D): Ribbons linking the genes with their assigned 
terms for KEGG analysis. The logFC is represented by the blue-to-red coding near the marked genes. (E): PPI network of the selected DEGs. Edge stands 
for the interaction between two genes. The darker is the edge, the darker is the node. A degree was used to describe the importance of protein nodes in 
the network; darker filling shows a high degree, and white represents a low degree. The significant modules were identified from the PPI network using 
the molecular complex detection method with a score of > 8.0
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and the accuracy of treat group was 0.952. The AUC of 
KG-DCM was 0.789(95%CI 0.616–0.938) (Fig.  6B). An 
independent validation dataset GSE120895 was used 
to evaluate the classification efficiency of neuralDCM 
and KG-DCM and compare their AUC values through 
maximum and minimum standardized data processing. 
The accuracy of Control group was 0.875, the accuracy 
of treat group was 0.660 and the AUC was 0.818(95%CI 
0.660–0.932) through the neuralDCM model in the data-
set GSE120895 (Fig. 6C). The accuracy of Control group 
was 0.375, the accuracy of treat group was 0.681 and the 
AUC was 0.609(95%CI 0.396–0.816) through the KG-
DCM model in the dataset GSE120895 (Fig. 6D).

Validation
We selected two microarrays (GSE9800 and GSE17800) 
with dilated cardiomyopathy to validate the screened hub 
genes. As shown in Fig. 7 (A-D), four hub genes (SMOC2, 
SFRP4, FCER1G and FRZB) were compared in Nor-
mal and DCM in GSE9800, but only SFRP4 and FRZB 
with significance (P < 0.05). The same situation could be 
found in GSE17800 Fig. 7 (E-H). Then, to further verify 
the function of the two hub genes (SFRP4 and FRZB), we 

collected the data of some patients hospitalized, mea-
sured the relative gene expression after collecting the 
peripheral blood and isolation of T cells, and compared 
the gene expression level between control and DCM. 
Table 1 shows the general situation of 240 patients with 
gender and age matching. We considered all the vari-
able data, including the relative expression of two hub 
genes (SFRP4 and FRZB), age, sex, BMI, blood pressure, 
serum glucose, lipid profile, renal function, blood uric 
acid, cardiac enzyme profile, left ventricular diastolic 
and end-systolic diameters, cardiac ejection fraction, 
which were the best subset of risk factors to related to 
DCM risk score and risk model (nomogram)The level of 
BMI, DBP, LDL-C, Creatinine and LVEDd were higher 
in DCM. The opposite trend was reflected in the level of 
SBP, HDL-C, HR, LVEDs and EF where DCM was lower 
than in the normal group (Fig. 8C). We defined the sores 
as follows: male = 1; female = 2. The nomogram had excel-
lent discriminative power with a C-statistic and was well 
calibrated with the Hosmer-Lemeshow χ 2 statistic. The 
predicted probabilities of developing DCM ranged from 
0.0002 to 99.6%. After calculation, the relative expression 
of levels of SFRP4 and FRZB, Sex, Heart Beat, Creatinine, 

Fig. 5 Artificial neural network model. (A): Results of neural network visualization for DEGs. (B): Results of neural network visualization for four genes that 
have been confirmed to be associated with DCM

 

Fig. 4 Random Forest model. (A): Relationship between the number of decision trees and the model error. The x-axis represents the number of decision 
trees, and the y-axis represents the error rate of the constructed model. (B): The importance of all variables in the random forest classifier through the 
Gini coefficient method. The x-axis represents the mean decrease in the Gini index, and the y-axis represents all variables. (C): Expression of key genes in 
disease group and normal group
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CKMB, LVEDd, LVEDs and EF were significantly related 
to the risk of DCM, with statistical significance. The rela-
tive expression of peripheral blood RT–PCR showed that 
the expression of SFRP4 and FRZB was statistically sig-
nificant in the comparison of cases and controls (Fig. 8A 
and B).

Discussion
In recent years, machine learning algorithms have gradu-
ally become a trendy and hot topic, with their powerful 
computational analysis capabilities to analyze disease 
diagnosis or prognostic models to inform treatment. In 
turn, the expression data of genes in public databases can 
be used as analytical variables to provide a sound ana-
lytical basis for biomarkers as diagnostic or prognostic 

Fig. 6 ROC curve analyses for the diagnostic credibility. (A and C): Diagnostic model constructed by DEGs. (B and D): Diagnostic model constructed by 
four genes that have been confirmed to be associated with DCM
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of diseases [20–23]. As an exclusive diagnosis of DCM, 
there is often a lack of direct and effective diagnosis. As 
a result, DCM is often not recognized or treated early, 
and by the time it is diagnosed, patients often have 
obvious symptoms of heart failure [24, 25]. Early detec-
tion and diagnosis of dilated cardiomyopathy is of great 
importance to the long-term prognosis of patients. In 
this study, we calculated the DCM-related DEGs for the 
first time, and obtain four important candidate DEGs by 
random forest classifier. Neural network model was used 
to determine the predictive weight of related genes, and 
the classification model neuraDCM was constructed. At 
the same time, we constructed a classification model KG-
DCM consisting of four genes that have been identified 
to be closely related to DCM. We evaluated the classifica-
tion efficiency of the model neuraHF and the model KG-
DCM in combined samples (GSE42955 and GSE79962) 
and independent samples (GSE120895) respectively. 
AUC of neuralDCM is highly efficient, and neuralDCM 
has a better classification efficiency than KG-DCM which 

composed of DCM key biomarkers. We aimed to develop 
a diagnostic model based on gene expression data using 
as many samples as possible from GEO database. We 
used a new approach [neuraHF = (Gene Expression x 
Neural Network Weight)] to redefine the importance of 
genes, and although it was not fully argued, we proved 
our conclusions in subsequent genetic validation. Ulti-
mately, in other microarrays (GSE9800 and GSE17800) as 
well as in population sample validation, we identified two 
hub genes (SFRP4 and FRZB) whose high expression was 
strongly associated with the development of DCM.

To make the DEGs more accurate, we used two micro-
arrays (GSE42955 and GSE79962) from the same tis-
sue sample source and the same sequencing platform 
for joint analysis, and at the same time, batch effect was 
removed to reduce the error. Gene enrichment analysis 
suggested that the function of DEGs were related to cell 
chemotaxis, receptor-mediated endocytosis, leukocyte 
chemotaxis, phagosome and complement. The above 
enrichment analysis suggested that the differential genes 

Fig. 7 Expression of four hub genes in different microarrays. (A - D): Expression in GSE9800. (E - H): Expression in GSE17800
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were concentrated in cellular immunity and inflamma-
tory response. Based on MeanDecreaseGini, the first 4 
hub genes screened by RF model were included in DEGs 
classification. We used these four genes to construct an 
artificial neural network model. Then we used different 
types of microarrays to calculate the weight of hub genes 
using artificial neural network. Another diagnostic model 
KG-DCM was created based on the composition of four 
known pathogenic genes for DCM. By comparing with 
KG-DCM model, we found that the neuralDCM model 
constructed by us was superior to the model constructed 
by known DCM pathogenic genes in both sensitivity and 
specificity. The results of AUC scores also showed that 
our model obtained high AUC scores, indicating that it 
can separate DCM samples from normal samples with 
good probability in microarray data. However, as the 
method has only been validated in our experiments, it is 
yet to be supported by cohort studies with large samples.

SFRP4 (secreted frizzled related protein 4) is a mem-
ber of the SFRP family, it contains cysteine-rich domains 
homologous to the WNT binding site of crimped pro-
teins. SFRPs act as soluble regulators of Wnt signals. 
Expression of SFRP4 in ventricular myocytes and expres-
sion of apoptosis-related genes [26]. Serum levels of 

SFRP4, an adipocytokine, are significantly elevated in 
patients with different types of diabetes [27, 28]. Mean-
while circulating SFRP4 levels were positively corre-
lated with glucose, insulin and hba1c levels [29]. Serum 
SFRP4 levels in patients with stable coronary artery dis-
ease (CAD) are also positively correlated with body mass 
index, waist circumference, and triglycerides, all of which 
are associated with metabolic syndrome [30]. SFRP4 lev-
els are elevated in human failing hearts due to DCM or 
CAD [31]. Study results suggest that SFRP4 is a novel 
biomarker of CAD and might play a role in the develop-
ment of CAD [32].

FRZB (frizzled related protein) encodes a protein that is 
secreted and is involved in regulating bone development. 
Defects in this gene are responsible for susceptibility to 
female-specific osteoarthritis (OA). Previous studies have 
demonstrated that FRZB is highly evolutionarily con-
served in vertebrates and that its function is significantly 
reduced after knockdown using zebrafish embryos, along 
with a significant reduction in embryonic vascular integ-
rity. This has also been verified in other experiments, and 
FRZB is considered a key gene in the development and 
progression of abdominal aortic aneurysms [33]. Some 
experimental studies have shown that SFRP1 and SFRP2 
are beneficial for cardiac remodeling [34, 35], increased 
left ventricular wall tension may be a potential activator 
of SFRP3 expression and release in vitro in addition [36]. 
Secreted crimp-related proteins (SFRPs) bind directly to 
Wnt ligands and may interfere with both classical and 
non-classical Wnt pathways [35, 37].

Previous studies have shown that DCM is due to a virus 
that causes natural killer (NK) cells and macrophages 
to induce a host immune response, leading to cytokine 
production and inflammatory cell infiltration. In this 
process, antigen-specific T lymphocytes and antibody-
producing B cells induce an immune-mediated response 
leading to myocardial necrosis. these cells involved in 
immune-mediation include killer T cells, helper T cells 
and natural killer cells. therefore, our choice to validate 
gene expression using the patient’s peripheral blood 
T cells is highly. We therefore chose to validate gene 
expression using peripheral blood T cells from patients, 
which is very convincing [38]. It is noteworthy that all 
the up-regulated genes (SFRP4 and FRZB) of the 2 genes 
selected by RF in our neuralDCM model were reported 
to be involved in the Wnt signaling pathway. Two of them 
were confirmed to be directly involved in the Wnt signal-
ing pathway [35, 39]. All the up-regulated genes we used 
to construct the neuralDCM model were involved in the 
Wnt signaling pathway. It can generally indicate that Wnt 
signaling pathway is activated in DCM patients, and the 
model we constructed is accurate and effective in accor-
dance with the real situation. Wingless (Wnt) signaling 
pathways regulate many important cellular processes 

Table 1 Comparison of demographic, lifestyle characteristics 
and serum lipid levels among different groups
Parameter Normal DCM
Number 88 152
Male/female 26/62 42/110
Age (years) 52.02 ± 8.21 52.38 ± 8.56
Height (cm) 169.71 ± 8.25 168.93 ± 8.03
Weight (kg) 54.20 ± 5.85 53.69 ± 6.79
Body mass index (kg/m2) 28.66 ± 6.54 29.81 ± 6.39a

SBP (mmHg) 107.38 ± 13.57 106.55 ± 15.28a

DBP (mmHg) 77.69 ± 10.54 79.62 ± 9.91a

TC (mmol/L) 4.97 ± 1.35 5.28 ± 1.23
TG (mmol/L)1 1.58(0.39) 1.72(0.64)
HDL-C (mmol/L) 1.62 ± 0.55 1.57 ± 0.49a

LDL-C (mmol/L) 2.97 ± 0.83 3.01 ± 0.74a

Heart Beat (times/minutes) 77.62 ± 10.72 76.88 ± 11.31c

Creatinine, (µmol/L) 75.69 ± 12.08 77.35 ± 11.57a

Troponin T, (µg/L) 0.02 ± 0.01 0.03 ± 0.01
CK, (U/L) 88.62 ± 44.22 86.57 ± 42.21
CKMB, (U/L) 14.68 ± 2.57 13.75 ± 3.87
LVDd(mm) 49.81 ± 19.61 51.67 ± 18.23c

LVDs(mm) 33.59 ± 11.92 30.12 ± 13.05c

EF (%) 69.56 ± 14.27 67.32 ± 13.25c

DCM, dilated cardiomyopathy; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein 
cholesterol; LDL-C, low-density lipoprotein cholesterol; LVDd, Left ventricular 
end diastolic dimension. LVDs, left ventricular end-systolic dimension. EF, 
ejection fraction.1Because of not normally distributed, the value of triglyceride 
was presented as median (interquartile range), the difference between the two 
groups was determined by the Wilcoxon-Mann-Whitney test. The P value was 
defined as the comparison of case and control groups. aP < 0.05; bP < 0.01; cP < 
0.001
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during embryonic development, and proper heart for-
mation requires coordinated Wnt signaling [40, 41]. 
Wnt activity is generally low in adult organisms and is 
closely regulated. However, when pathological stress or 
injury leads to dysregulation, both low and high activ-
ity of Wnt signaling is associated with many clinical dis-
eases, including cardiovascular disease [42, 43]. Soluble 
Wnt modulators are involved in the progression of clini-
cal DCM, and there are potentially complex interactions 
between different members of the Wnt family. It is con-
ceivable that a better understanding of Wnt signaling in 
DCM could provide us with new tools in the therapeutic 
drug apparatus [44].

This manuscript also has some shortcomings, the sam-
ple size could be relatively small, which may limit the 
generalizability of the findings. Additionally, the lack of 
certain data, such as lifestyle characteristics, raises con-
cerns about potential biases or omissions in the analysis. 
Third, it fails to explore the specific mechanisms of these 
two hub genes.

Conclusion
DCM is a specific type of cardiomyopathy that is a com-
mon cause of heart failure and death. We performed 
an integrated analysis that Random Forest and artificial 
neural networks were constructed for developing a new 
diagnostic model. Furthermore, RT-PCR and Nomo-
gram were employed to verify the hub genes. SFRP4 and 
FRZB as a new diagnostic model for DCM. But, the exact 
mechanism still needs further experimental verification.
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DCM  Dilated Cardiomyopathy
DEG  Differential Expressed Genes
DEIRG  Differentially Expressed Immune-Related Gene
DO  Disease Ontology
GEO  Gene Expression Omnibus
GO  Gene Ontology
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MCODE  Molecular Complex Detection
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Fig. 8 Expression in patient and Nomogram to estimate individual DCM probability. (A - B): Expression of two genes in different groups. (C): Each predic-
tor variable characteristic has a corresponding point value based on its position on the top point scale and contribution to the model. The probability of 
DCM for each subject is calculated by summing the points for each variable to obtain a total point value that corresponds to a probability of DCM from 
the scale presented on the bottom line. *P < 0.05
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