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Abstract

With the advances in artificial intelligence (AI), data‐driven algorithms are

becoming increasingly popular in the medical domain. However, due to the

nonlinear and complex behavior of many of these algorithms, decision‐making

by such algorithms is not trustworthy for clinicians and is considered a black‐
box process. Hence, the scientific community has introduced explainable

artificial intelligence (XAI) to remedy the problem. This systematic scoping

review investigates the application of XAI in breast cancer detection and risk

prediction. We conducted a comprehensive search on Scopus, IEEE Explore,

PubMed, and Google Scholar (first 50 citations) using a systematic search

strategy. The search spanned from January 2017 to July 2023, focusing on

peer‐reviewed studies implementing XAI methods in breast cancer datasets.

Thirty studies met our inclusion criteria and were included in the analysis.

The results revealed that SHapley Additive exPlanations (SHAP) is the top

model‐agnostic XAI technique in breast cancer research in terms of usage,

explaining the model prediction results, diagnosis and classification of

biomarkers, and prognosis and survival analysis. Additionally, the SHAP

model primarily explained tree‐based ensemble machine learning models. The

most common reason is that SHAP is model agnostic, which makes it both

popular and useful for explaining any model prediction. Additionally, it is
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relatively easy to implement effectively and completely suits performant

models, such as tree‐based models. Explainable AI improves the transparency,

interpretability, fairness, and trustworthiness of AI‐enabled health systems

and medical devices and, ultimately, the quality of care and outcomes.
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1 | INTRODUCTION

Breast cancer (BC) is one of the most common cancers
with high morbidity and mortality globally. Early
detection and treatment significantly increase the
chances of survival [1]. With the growing interest in
artificial intelligence (AI), computer‐aided diagnosis
(CAD) based on AI has become a valuable tool for the
detection, classification, and diagnosis of cancer biomar-
kers and morphological features.

Compared to rule‐based systems [2] that require
human intervention in decision‐making, AI models can
learn from medical data and generate new patterns by
themselves. However, AI systems are susceptible to
several biases [3], mostly stemming from low‐quality
datasets, faulty algorithms, and human cognitive biases
that may lead to inaccurate decisions, predictions, or
inferences [4]. Additionally, many AI systems have
raised concerns among clinicians about accountability,
fairness of AI algorithms, and lack of transparency [5], a
critical factor for high‐stakes domains such as healthcare,
where a minor error in decision‐making can lead to
irreparable consequences [6].

Despite significant progress over the last years in
terms of fine‐tuning [7] and optimizing [8–11] AI
algorithms to tackle supervised and unsupervised tasks,
a considerable number of these algorithms remain
enigmatic, classified as Black‐box and are yet to be
demystified. To this end, the scientific community has
started investigating techniques and methods to make
AI algorithms more understandable, explainable, and
interpretable. In recent years, explainable artificial
intelligence (XAI), coined by DARPA [12], has emerged
as a notable and noteworthy topic of discussion in the
AI community. The rationale behind XAI lies in the
assumption that such techniques establish rules for
more trustworthy AI systems by making them more
transparent, understandable, interpretable, safe, and
reliable while making a decision or recommending an
action [13, 14].

Typically, AI models are evaluated based on their
prediction errors [15] without providing enough trans-
parency to the end users throughout this process. As
Figure 1 shows, XAI methods are formulated to be
applied to the result and provide transparency; however,
the human‐in‐the‐loop (HITL) concept must also be
applied to achieve trustworthiness. XAI is basically
employing human–agent interaction methods to utilize
human knowledge and intuition to comprehend the
rationale behind the results it gains [16]. As Figure 1
illustrates, a result generated by the AI model passes
through a suitable XAI method. Then, the human agent
benefits from the transparency created by the XAI to
validate, confirm, or enhance the predictions [17]. It
should be noted that the human agent's decision is based
on the collaboration between clinicians and XAI experts.
If the results are not correct or satisfying, the XAI
module investigates the model, data, or both and reruns
the outcomes to the AI system throughout an iterative
process until a consensus over the results is reached.

Most of the review articles on XAI models investigate
the application of XAI in general healthcare [18–20].
Although there have been reviews of the subject on other
types of cancer [21], to the best of our knowledge, our
contribution to reviewing existing XAI technologies in

FIGURE 1 Explainable artificial intelligence (XAI) as a
human‐agent problem‐solving method.
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breast cancer screening, risk detection, and prediction is
distinctive both in terms of scope and breadth. This paper
provides a comprehensive summary of published studies
and then elaborates on the background and concepts
associated with the XAI methods used in these studies.
Finally, we highlight the most popular XAI methods and
explain the rationale behind their popularity.

The remainder of this paper is organized as follows.
Section 2 covers the background, including the introduction
to AI models, the concept of accuracy‐explainability trade‐
off, and the classification of XAI methods. Section 3
describes the research method. Section 4 provides tabulated
results of implemented XAI methods in breast cancer
research. Section 5 discusses the details and elaborates on
the utilized methods. Finally, Section 6 concludes our
survey by highlighting XAI's achievements, strengths, and
limitations and discussing future research opportunities.

2 | BACKGROUND

2.1 | Overview of AI models

AI models employ data‐driven algorithms to reach
decisions or identify explanatory patterns. Machine learn-
ing (ML) algorithms fall into three types: regression and
classification, which are supervised, and clustering, which

is unsupervised. If the output is a continuous variable, we
deal with regression, but when it is discrete labels or
categories, then we use classification [22]. Clustering
algorithms identify and group similar data points based
on their characteristics. The most popular ML models used
in breast cancer studies are listed in Table 1.

Deep learning (DL) is a subcategory of ML that may
be supervised or unsupervised. Unlike traditional
machine learning, DL models require much less manual
human intervention since they automate the feature
extraction, saving time and resources. DL models are
capable of addressing model accuracy and performance
for unstructured data such as speech, images, videos, or
texts, whereas classical ML models do not function
effectively.

In BC datasets, we usually deal with high‐dimensional,
multimodal [30] structured and unstructured data, which
are often big, noisy, and sparse, making them challenging
to analyze. Thanks to neural networks' universal approxi-
mation [31, 32] and the advantage of auto‐differentiation
[33], deep learning models can be applied to many of these
problems. DL models can learn the complex nonlinear
relationships between the features and target variables,
making them viable data‐driven models that enable new
discoveries in breast cancer classification and detection.
Frequently used DL models and their variants in BC
studies are listed in Table 2.

TABLE 1 List of popular machine learning (ML) models.

ML model Acronym Type of learning Type of problem

Linear regression N/A Supervised Regression

Logistic regression LR Supervised Classification

Decision trees DT Supervised Regression, classification

K‐means N/A Unsupervised Clustering

Naive Bayes NB Supervised Classification

Support vector machines SVM Supervised Regression, classification

K‐nearest neighbors KNN Supervised Regression, classification

Ensemble learning modelsa

Extremely randomized trees [23] Extra‐trees (ET) Supervised Regression, classification

Random forests [24] RF

Gradient boosting machines GBM

eXtreme gradient boosting [25] XGBoost

Light gradient boosting machine [26] LightGBM

Gradient boosted decision trees GBDT

Adaptive boosting [27] AdaBoost

Category boosting [28] CatBoost

aEnsemble learning is a meta‐learning approach that combines multiple models to make a decision, typically in supervised ML tasks [29].
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2.2 | Accuracy‐explainability trade‐off

As Figure 2 illustrates, the accuracy‐explainability trade‐off
refers to the balance between the accuracy of an AI model
and its explainability [56]. The goal of any AI model is to
generate highly accurate results. From the XAI perspective,
the models must be explainable. However, achieving both
accuracy and explainability is far from trivial. Regarding
explainability, AI models can be black‐box, white‐box, or
gray‐box [12, 57], as depicted in Figure 2.

White‐box models are intrinsically transparent and
explainable [58]. However, they are limited to learning
only linear associations between input features and the
target variable. Although white‐box models may not achieve
high accuracy levels, they offer human‐understandable
explanations. In contrast, black‐box models are nontran-
sparent by nature [59]. While these models may have
outstanding performance, they suffer from a lack of
explainability. Gray‐box models strike a balance between
accuracy and explainability. Generally, any data‐driven
learning algorithm, including black‐ and‐white‐box models,
is considered a gray box [57, 60]. For a gray‐box model,
connections from input data to model output can be
explained despite not being fully transparent [60].

2.3 | Classification of XAI methods

The transparency of AI systems can be addressed from
different perspectives. The results of XAI methods can be
presented in various ways, including numerical, rules,
textual, visual, or a combination of these [61]. As
Figure 3 depicts, three critical factors for categorizing
XAI methods of explanation exist: scope, stage, and type.

TABLE 2 List of popular deep learning (DL) models.

DL model Acronym Variants Acronym

Convolutional neural network [34] CNN Visual geometry group [35] VGG (VGG‐16, VGG‐19)

AlexNet [36] N/A

Xception [37] N/A

GoogLeNet [38] N/A

GoogLeNet inception V3 [39] Inception V3

GoogLeNet inception V4 [40] Inception V4

Residual networks [41] ResNet

ResNeXt [42] N/A

ResNet (Split attention networks) [43] ResNeSt

U‐Net [44] N/A

Graph convolutional network [45] GCN

Dense convolutional network [46] DenseNet

EfficientNet [47] N/A

MobileNet [48–50] N/A

ShufflieNet [51] N/A

SqueezeNet [52] N/A

Recurrent neural network RNN Long short‐term memory [53] LSTM

Bidirectional LSTM [54] BiLSTM

Gated recurrent unit [55] GRU

FIGURE 2 Trade‐off between model accuracy and explainability.
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The scope of explainability is either local or global.
The local method aims to shed light on an AI model for a
specific input [62, 63] and explains why a particular
decision was made by highlighting the input feature
influencing the model's output. However, this approach
cannot find a general relationship between input features
and outputs [64]. The global method provides a broader
understanding by analyzing the model's overall structure
and general patterns across the entire data set or a larger
subset, helping users understand its biases, limitations,
and general decision‐making patterns [62, 63].

Intrinsic and post hoc [65] refer to the stage of
explanation. The intrinsic approach refers to using white‐
box models which are interpretable by nature. The post
hoc approach relates to explainable methods that “explain
the model predictions after the training and inference
processes” [62, 64]. Generally, the post hoc approach,
compared to intrinsic models (white‐box models) [65], is
more accurate since post hoc explainable methods must
be applied to black‐box models' prediction, and black‐box
models tend to perform better in results. Although some of
these methods, such as rule extraction [66] and tree
extraction [67], can turn black‐box models into white‐box,
there is a complexity–accuracy trade‐off [57, 64]. Addi-
tionally, post hoc methods are either model‐specific or
model‐agnostic. Model‐specific methods are designed to
explain specific black‐box models by investigating their
internal factors and interactions [64]. For example, many
techniques are developed to analyze DL models, which
attempt to find the contribution of artificial neurons on
their final decisions through backpropagation (backprop)
error [68–71]. Model‐agnostic methods provide explana-
tions independent of a specific AI model. Some common
post hoc XAI methods are tabulated in Appendix A.

XAI methods can be classified based on the type of
explanations they offer [64]. As Figure 3 demonstrates,
there are four types of explanations: feature importance,
white‐box model, example‐based XAI, and visual ex-
planations [64]. For the first type, XAI methods create
numbers/values for the input features to express the
feature's importance. For the second type, XAI methods
“create a white‐box model that mimics the original black‐
box model and is inherently explainable” [64]. The
example‐based type, also known as data point [65], uses
samples from the training datasets to explain the model's
action. For the last type, XAI methods offer a type of
explainability based on purely visual explanations [64].

3 | RESEARCH METHOD

This systematic review is carried out using the preferred
reporting items on systematic reviews and meta‐analysis
(PRISMA) [72] guideline in three steps as follows:

Step 1: Identifying studies—As mentioned in the
introduction, our focus for this paper was on studies
that examined existing XAI methods in breast
cancer research. We conducted a comprehensive
search utilizing some of the most popular and
trusted citation platforms [73], including Scopus,
IEEE Xplore, PubMed, and Google Scholar (first 50
citations) from January 2017 to July 2023 using the
combination of keywords and MeSH terms
described in Table 3. A total of 193 studies were
included in this step.

Step 2: Selecting the studies—In Step 2, we selected
articles for inclusion based on specific criteria: they had
to be original studies published in peer‐reviewed
English‐language journals, utilizing at least one XAI
methodology within the context of breast cancer. Two
reviewers (Amirehsan Ghasemi and Soheil Hashtar-
khani), screened citations by title and abstract,
excluding various types of irrelevant papers, such as
different review papers (n=16), those discussing XAI
but unrelated to breast cancer (n=18), those discuss-
ing breast cancer but unrelated to XAI (n=20),
preprints awaiting peer review (n=7), conference
papers (n=34), duplicate titles (n=37), and nonre-
search materials like books, dissertations, editorials,
and technical notes (n=12), resulting in the exclusion
of 144 studies. Subsequently, 49 articles underwent full‐
text scrutiny, with inaccessible or irrelevant articles
being excluded. This left us with 30 articles that met
the inclusion criteria for our comprehensive review.
Figure 4 illustrates a summary of our search strategy
and steps.

FIGURE 3 Classification of explainable artificial intelligence
(XAI) methods.
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TABLE 3 Explored databases and the results.

Boolean search strings
Number of
search results

Database

Scopus TITLE‐ABS‐KEY (“Explainable Artificial Intelligence” OR “Explainable AI” OR “XAI” OR
“Explainable Machine Learning” OR “Interpretable Machine Learning” OR “Interpretable
AI”) AND TITLE‐ABS‐KEY (“Breast Cancer”) AND PUBYEAR > 2016

n= 104

IEEE Xplore (“Abstract”:“Explainable Artificial Intelligence” OR “Abstract”:“Explainable AI” OR
“Abstract”:“XAI” OR “Abstract”:“Explainable Machine Learning” OR
“Abstract”:“Interpretable Machine Learning” OR “Abstract”:“Interpretable AI”) AND
(“Abstract”:“Breast Cancer”)

n= 9

PubMed (“Breast Neoplasms”[Mesh] OR “breast cancer”) AND (“XAI” OR “Interpretable Machine
Learning” OR “Explainable Artificial Intelligence” OR “Explainable AI”) string from 2017

n= 30

Web search engine

Google Scholar (“Explainable Artificial Intelligence” OR “XAI” OR “Explainable AI”) AND “Breast Cancer” n= 50

FIGURE 4 Preferred reporting items on systematic reviews and meta‐analysis guideline for article selection.

Step 3: Data extraction and summarization—A
data extraction form was developed in Google
Sheets, consisting of eight variables, including
authors, year, the aim of the study (objective),
data set(s), data type, important features, type of

AI (ML or DL), and the explained model. Two
reviewers (Amirehsan Ghasemi and Soheil
Hashtarkhani) extracted data from all included
articles, and any disagreement was resolved by
consensus.
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4 | RESULTS

Almost 30 studies have been identified in the literature
utilizing XAI methods in breast cancer settings. XAI
methods used in these studies include SHAP, LIME, CAM,
Grad‐CAM, Grad‐CAM++, and LRP. The number of
studies and explained AI models for each method are
shown in Figure 5. Tables 4–9 provide tabular representa-
tions of the included studies. A detailed description of the
results is provided in the discussion section (Section 5).

5 | DISCUSSION

5.1 | Post hoc XAI methods: Model‐
agnostic

5.1.1 | SHapley Additive
exPlanations (SHAP)

SHAP [116] offer local and global explanations based on the
Shapley value [117], a solution concept used in cooperative
game theory. In SHAP, the input features of an observation
act as players in a game, and the prediction serves as the
reward. SHAP computes the average marginal contribution
of each player to the reward [64, 65] and ensures that the
distribution of reward among players is fair [18, 118]. In BC
studies, SHAP can potentially find the contribution of
biomarkers (players important features in Table 4) to the
prediction (reward objective in Table 4).

As provided in Table 4, most studies (12/13) imple-
mented ensemble ML learning as the predictors. Only in

one study (1/13) [89] did authors first utilize LR‐based to
discriminate between upregulated and regular expression
of HER2 protein, then pathologists' diagnoses (IHC) in
conjunction with fluorescent in situ hybridization (IHC+
FISH) were used as the training outputs. In Chakraborthy
et al. [74], SHAP showed that “by boosting the B cell and
CD8+ T cell fractions or B cell and NK T cell fractions in the
tumor microenvironment (TME) to levels above their
inflection points, the survival rate of BC patients could
increase by up to 18%.” In Rezazadeh et al. [76], texture
analysis of the ultrasound images based on the gray‐level
co‐occurrence matrix (GLCM) predicted the likelihood of
malignancy of breast tumors. SHAP was used to find the
most critical features: GLCM correlation and GLCM energy
within different pixel distances along the 90° direction.

In summary, SHAP emerged as the most frequently
used XAI method in the BC studies (13/30). Notably, no
DL models were used in conjunction with SHAP. Instead,
tree‐based ensemble learning ML models, specifically
XGBoost (9/13 studies), were the most widely used models.
This can be attributed to the high‐speed SHAP algorithm,
which is well‐suited for tree‐based models such as
XGBoost, Catboost, GBM, AdaBoost, and so on [18].

5.1.2 | Local interpretable model agnostic
explanations (LIME)

LIME [119] provides a local explanation using a surrogate
model. As outlined in Table 5, LIME is utilized in 5 out of
30 studies to explain the model prediction by highlighting
the contribution of the most important features. LIME
creates a linear local surrogate mode that is intrinsically
interpretable around a sample (data point) and improves
transparency by producing feature importance values.
The surrogate model in LIME modifies some parts of the
given features and generates perturbed instances to
understand how the output changes. The perturbation
depends on the nature of the input sample. For instance,
one method to perturb an image is by replacing certain
parts with gray color [120]. In Kaplun et al. [90], to
explain the image classification, LIME puts a mask of
yellow pixels to highlight the important image segments
the model focuses on to make the decision.

In Adnan et al. [93], the authors have implemented
SHAP in conjunction with LIME to explain that a small
number of highly compact and biological gene cluster
features resulted in similar or better performance than
classifiers built with many more individual genes. With
training on smaller gene clusters, LIME proved that the
classifiers have better AUC than the original classifiers
except in RF and rSVM. In Saarela and Jauhiainen [92],
the authors used linear and nonlinear ML classifiers with

FIGURE 5 Explainable artificial intelligence (XAI) methods
and explained models used in the literature.
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LIME to understand how they differ in explaining
features' importance. It was found that the nonlinear
model (RF) offered better explainability as it focused on
fewer features (9) compared to the nonlinear model (all
except one feature). Deshmukh et al. [97] used LIME to
quantify the impact of patient and treatment character-
istics on BC distant metastasis. It reached the results of
different impacts ranging from high impacts, such as the
nonuse of adjuvant chemotherapy, to moderate impact of
carcinoma with medullary features cancer type, to a low
impact of oral contraception use.

As a model‐agnostic method, LIME was used to explain
various ML models, including RF, SVM, ensemble learning,
and a shallow DL learning model, as detailed in Kaplun et al.
[90]. LIME only offers a local interpretation, and compared
to SHAP, when a large volume of predictions needs to be
explained, it has a higher speed and can be a more excellent
alternative. In summary of the model‐agnostic methods used
in studies (18/30), SHAP was preferred over LIME to shed
light on the most important features. This is because SHAP
is relatively easy to implement and provides both local and
global explanations, and compared to LIME, it has a higher
speed on the global‐level explanation for high‐performance
ensemble ML models.

5.2 | Post hoc XAI methods: Model‐
specific

Several XAI methods are specifically designed for
different DL architectures focusing on the feature
importance type of explanation. Most of these methods
are propagation‐based and enjoy the availability of
gradients computed during the training.

5.2.1 | Class activation map (CAM)

CAM [121] is a local backpropagation‐based method that
uses a global average pooling (GAP) layer after the last
convolutional layer, followed by the classification layer to
identify the most discriminative regions of an image in
the convolutional neural network (CNN) [34]. This
technique combines a linear weighted sum of the feature
maps to gain a heatmap that highlights class‐specific
regions of the image. CAM is limited to existing networks
that have the described architecture.

As listed in Table 6, (5/30) studies have used CAM to
determine how accurately the CNN model localized the
breast masses. Qi et al. [98] proposed two CNN‐based
networks, the Mt‐Net and the Sn‐Net, to identify
malignant tumors and recognize solid nodules step‐by‐
step. To enable the two networks to collaborateT
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effectively, CAM was introduced as an enhancement
mechanism to improve the accuracy and sensitivity of the
classification results for both networks.

5.2.2 | Gradient‐weighted class activation
mapping (Grad‐CAM)

Grad‐CAM [122] is a local backpropagation‐based
method that uses the feature maps produced by the last
layer of a CNN to create a coarse localization class‐
specific heatmap where the hot part corresponds to a
particular class. Grad‐CAM is based on CAM but is not
limited to fully connected CNNs. Grad‐CAM can be
applied to any CNN architecture without retraining or
architectural modification as long as the layers are
differentiable.

As detailed in Table 7, (4/30) studies used Grad‐CAM
to determine how accurately the CNN model localized the
breast masses. The authors of article [104] have also
investigated the performance of the model‐agnostic LIME
in conjunction with Grad‐CAM to investigate the aspects
and utilities of two different XAI methods in explaining
the misclassification of breast masses. The results high-
light the usability of XAI in understanding the mechanism
of used AI models and their failures, which can provide

valuable insights toward explainable CAD systems. In
Gerbasi et al. [107], the authors also implemented Deep
SHAP, a high‐speed approximation algorithm for comput-
ing SHAP values in DL models, to produce maps visually
interpreting the classification results, which in the maps,
pink pixels strongly contributed to the final predicted class
(malignant), and the blue pixels contributed to the
prediction of opposite class (benign).

5.2.3 | Gradient‐weighted class activation
mapping++ (Grad‐CAM++)

Grad‐CAM++ [123] is a local backpropagation‐based
method built upon Grad‐CAM to enhance visual
explanations of CNN. Compared to Grad‐CAM, it
provides better visual explanations of model predictions
in terms of better localization of objects and explaining
occurrences of multiple objects of a class in a single
image [123]. As listed in Table 8, only one study (1/30)
used Grad‐CAM++. To et al. [110] developed an
ensemble learning‐based approach to locate cancerous
regions in DUV whole‐slide images (WSI). It used Grad‐
CAM++ on a pretrained DenseNet169 model to generate
regional significance maps to classify each WSI confi-
dently as cancerous or benign.

TABLE 8 List of studies that used Grad‐class activation map++.

Authors Year Objective Data set(s) Data type

Machine learning
(ML)/Deep
learning (DL)

Explained
model

To et al. [110] 2023 Improving classification
performance and effectively
identifying cancerous
regions in DUV whole‐slide
images (WSI)

Medical College of
Wisconsin (MCW) tissue
bank [111] (60 samples, 24
normal/benign and 36
malignant)

DUV‐WSI
image

ML/DL ResNet50,
XGBoost

TABLE 9 List of explainable artificial intelligence studies that used layerwise relevance propagation.

Authors Year Objective Data set(s) Data type

Machine learning
(ML)/Deep
learning (DL)

Explained
model

Grisci
et al. [112]

2021 Propose relevance aggregation
approach, a DL algorithm that
correctly identifies which features
are the most important for the
network's predictions in an
unstructured tabular data set

Curated Microarray
Database
(CuMiDa) [113]

Tabular
unstructured
data

DL LSTM

Chereda
et al. [114]

2021 Extend the procedure of LRP to
make it available for Graph‐CNN
(GCN) and test its applicability on
a large breast cancer data set

Gene Expression
Omnibus (GEO) [115]

Genomics
data

DL Graph‐CNN
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5.2.4 | Layer‐wise relevance
propagation (LRP)

LRP [124] is a local propagation‐based approach. LRP
calculates the relevance score for a specific output at the
classifier layer. It proceeds backward, exploits the DL
structure, and calculates each neuron's explanatory
factors (relevance R) for each layer during the backward
pass until it reaches the input image [18, 124]. Based on
the computed relevance score, LRP generates a heatmap
with highlighted critical regions that can be used to
explain the prediction. Two studies (2/30) have imple-
mented LRP; the details are described in Table 9.

Grisci et al. [112] introduced relevance aggregation, an
XAI approach based on LRP that combines the relevance
derived from several samples as learned by a neural
network and generates scores for each input feature. The
study results showed that the model could correctly
identify which input features or relevant ones are the
most important for the model's predictions, facilitate
knowledge discovery, and help identify incorrect or
irrelevant rules or machine biases in the case of the poorly
trained implemented AI model. Chereda et al. [114]
extended the procedure of LRP to make it available for
GCN to explain its decisions. They tested it on a large BC
genomic data set. They showed that the model, named
graph layer‐wise relevance propagation (GLRP), provides
patient‐specific molecular subnetworks that agree with
clinical knowledge and can identify common, novel, and
potentially druggable drivers of tumor progression.

In summary, 12 out of 30 studies used model‐specific
XAI methods, and CAM and Grad‐CAM were the most
used models, respectively.

5.3 | Clinical applications

Figure 6 illustrates the diverse applications of each XAI
method across various clinical scenarios. The studies
primarily focused on either diagnosing/classifying breast
cancer or conducting survival/prognosis analyses of pa-
tients. Within these study types, image recognition tech-
niques were employed on radiology data, or alternative
approaches utilizing clinical and demographic data were
explored. Notably, SHAP was frequently utilized in clinical
data analysis studies rather than image recognition studies.
This preference may be attributed to the computational
resource intensity of SHAP, posing challenges in handling
the high‐dimensional feature space inherent in image data.
Conversely, techniques such as CAM and Grad‐CAM are
computationally less intensive, which makes them a better
choice for image processing tasks, especially in real‐time
applications. In diagnosis/classification studies, the primary

objective was to employ supervised learning methods for
distinguishing between healthy and diseased patients,
facilitating early detection. XAI models played a crucial
role in helping clinicians comprehend and validate intricate
patterns and features that influence diagnostic outcomes. In
survival/prognosis models, clinicians sought to predict the
onset of events such as mortality or metastasis in patients.
XAI methods proved instrumental in interpreting and
elucidating the contribution of each factor to a patient's
outcome measure. This interpretability makes the models
more understandable, usable, and trustworthy for both
clinicians and patients, fostering a perception and interpre-
tation of the predictions and building confidence in the
decision‐making process.

5.4 | Future directions

The rapid evolution of AI models, as evidenced by advanced
frameworks such as GPT and generative AI‐based models, is
significantly transforming the healthcare applications land-
scape. As these models continue to advance and become
more intricate, the necessity for XAI methods becomes
increasingly imperative. In the healthcare domain, where
precision and interpretability are of paramount importance,
the demand for robust XAI techniques is expected to grow.
Future research should prioritize the refinement and
advancement of XAI methodologies to effectively uncover
the intricacies of advanced AI models in healthcare
contexts. The synergy between the rapid advancements in
AI technologies and the evolving landscape of XAI is
crucial, shaping the trajectory of personalized healthcare
and ensuring that these innovative models translate into
tangible benefits for both clinicians and patients.

FIGURE 6 Explainable artificial intelligence (XAI) methods are
applied in different clinical applications of breast cancer literature.
Numbers inside the bubbles represent the number of studies.
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5.5 | Study limitations

This systematic scoping review has some limitations that
warrant consideration. While efforts were made to
minimize publication bias, excluding non‐English lan-
guage articles, non‐access, and gray literature may have
resulted in the omission of some valuable information.
Additionally, despite our best efforts to construct a
comprehensive search strategy across multiple databases
using combinations of Boolean search strings and MeSH
terms, the diverse terminology associated with XAI
methods and breast cancer may have led to the inadver-
tent omission of certain studies. Moreover, we only
investigated the existing established XAI methods; how-
ever, XAI schemes based on or independent of these
methods could be observed in a few studies. To ensure the
integrity and credibility of the study, we did not consider
some of the studies with low or no citations in this survey.

6 | CONCLUSIONS

We systematically reviewed breast cancer studies that
successfully implemented the existing XAI methods to
their model predictors. In summary, SHAP was the most
used model‐agnostic method. The frequent use of this
method with tree‐based ensemble ML models is related
to the speed and compatibility that SHAP provided for
these models. Grad‐CAM and CAM were widely used
model‐specific XAI methods in these studies. We noticed
that other explanatory methods, as provided in Appen-
dix A, have not been used in breast cancer studies and
can still be examined and compared as future endeavors.

Additionally, the XAI methods used in the selected
studies only provided a sanity check to the model's
predictor results. As was mentioned in the introduc-
tion, finding the biases in the model and data can be
achieved using explainability methods that were either
missing or only mentioned in a few of the studies and
should be investigated for further studies. Moreover,
although the clinical applications of XAI methods were
investigated in our study, the results generated by these
methods were not evaluated by oncologists. Therefore,
to provide trustworthiness, the reliability of the results
through clinical evaluation is needed. Researchers have
already used XAI domain‐specific explanations to
improve understanding, interpretation, trustworthi-
ness, and reliability of the results in different medical
domains for evaluating health interventions [125],
disease causal pathway analysis [126], mental health
surveillance and precision resource allocation [127],
precision dermatology and disease diagnosis [128],
immune response predictors [129], and investigating

the links between socioenvironmental risk factors and
Alzheimer's disease [130].

Potential challenges associated with the application of
XAI, especially when dealing with complex multimodal
clinical and medical data, include but are not limited to
the availability of data in appropriate temporal and
geographic resolutions; its representativeness, diversity,
and types of modalities involved, semantic heterogeneity,
fusion of heterogeneous data streams, AI‐readiness of
clinical data sets [131], and algorithmic and human biases
in explanations that addressing them can increase the
efficiency and acceptance of multimodal XAI schemes.

Addressing these challenges is key to the widespread
acceptance of multimodal XAI models and algorithms in
cancer care delivery and treatment.
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APPENDIX A: POPULAR MODEL ‐
AGNOSTIC AND MODEL ‐SPECIFIC XAI
METHODS
The summary of model‐agnostic and model‐specific XAI
methods is listed as follows.

See Tables A1–A4.

TABLE A1 Model‐agnostic explainable artificial intelligence (XAI) methods.

Model‐agnostic method Acronym Type of XAI Scope of XAI Technique

SHapley Additive exPlanations [116] SHAP Feature importance Local, Global Game‐theory

Local interpretable model agnostic explanations [119] LIME Feature importance Local Surrogate model

Anchors [132] N/A Feature importance Local Surrogate model

Occlusion sensitivity [133] Occlusion Feature importance Local Perturbation‐based

Partial dependence plots [134] PDP Visual explanations Global Marginalization

Counterfactuals [135] N/A Example‐based XAI Global Data point

Rule extraction [66] N/A White‐Box model Global White‐box

Tree extraction [67] N/A White‐Box model Global White‐box

TABLE A2 Model‐agnostic: Code/Toolbox.

Model‐agnostic method Code/Toolbox

SHAP https://github.com/slundberg/shap

LIME https://github.com/marcotcr

Anchors https://github.com/marcotcr/anchor

Occlusion Can be found here: https://www.mathworks.com

PDP Can be found here [136]

Counterfactuals Can be found here [137]https://github.com/SeldonIO/alibi
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TABLE A3 Model‐specific explainable artificial intelligence (XAI) methods.

Model‐specific method Acronym Black‐box model Type of XAI Scope of XAI Technique

Class activation map [121] CAM Convolutional neural
network (CNN)

Feature importance Local Propagation‐based

Gradient‐weighted class
activation mapping [122]

Grad‐CAM CNN Feature importance Local Propagation‐based

Gradient‐weighted class
activation mapping++ [123]

Grad‐CAM++ CNN Feature importance Local Propagation‐based

Integrated gradients [138] IG All DL models Feature importance Local Propagation‐based

Deep Learning Important
FeaTures [139]

DeepLIFT All DL models Feature importance Local Propagation‐based

Layerwise relevance
propagation [124]

LRP All DL models Feature importance Local Propagation‐based

Deep Taylor
decomposition [140]

DTD All DL models Feature importance Local Propagation‐based

Guided backpropagation [141] GBP All DL models Feature importance Local Propagation‐based

Activation maximization [142] N/A All DL models Feature importance Global Propagation‐based

Testing with concept activation
vectors [143]

TCAV All DL models Feature importance Global Concept‐based

Model explanation for graph
neural networks [144]

GraphLIME GNN Feature importance Local Surrogate model

TABLE A4 Model‐specific explainable artificial intelligence methods: Code/Toolbox.

Model‐specific method Code/Toolbox

CAM https://github.com/zhoubolei/CAM

Grad‐CAM https://github.com/ramprs/grad-cam/

Grad‐CAM++ https://github.com/adityac94/Grad_CAM_plus_plus

IG https://github.com/ankurtaly/Integrated-Gradients

DeepLIFT https://github.com/kundajelab/deeplift

LRP, DTD https://github.com/chr5tphr/zennit

https://github.com/albermax/innvestigate

Guided backpropagation https://github.com/mateuszbuda/ALL-CNN

TCAV https://github.com/tensor?ow/tcav

GraphLIME https://github.com/WilliamCCHuang/GraphLIME
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