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Abstract

Background: As the primary Ca2þ release channel in skeletal muscle sarcoplasmic reticulum (SR), mutations in type 1

ryanodine receptor (RyR1) or its binding partners underlie a constellation of muscle disorders, including malignant

hyperthermia (MH). In patients with MH mutations, triggering agents including halogenated volatile anaesthetics bias

RyR1 to an open state resulting in uncontrolled Ca2þ release, increased sarcomere tension, and heat production. Propofol

does not trigger MH and is commonly used for patients at risk of MH. The atomic-level interactions of any anaesthetic

with RyR1 are unknown.

Methods: RyR1 opening was measured by [3H]ryanodine binding in heavy SR vesicles (wild type) and single-channel

recordings of MH mutant R615C RyR1 in planar lipid bilayers, each exposed to propofol or the photoaffinity ligand

analogue m-azipropofol (AziPm). Activator-mediated wild-type RyR1 opening as a function of propofol concentration was

measured by Fura-2 Ca2þ imaging of human skeletal myotubes. AziPm binding sites, reflecting propofol binding, were

identified on RyR1 using photoaffinity labelling. Propofol binding affinity to a photoadducted site was predicted using

molecular dynamics (MD) simulation.

Results: Both propofol and AziPm decreased RyR1 opening in planar lipid bilayers (P<0.01) and heavy SR vesicles, and

inhibited activator-induced Ca2þ release from human skeletal myotube SR. Several putative propofol binding sites on

RyR1 were photoadducted by AziPm. MD simulation predicted propofol KD values of 55.8 mM and 1.4 mM in the V4828

pocket in open and closed RyR1, respectively.

Conclusions: Propofol demonstrated direct binding and inhibition of RyR1 at clinically plausible concentrations,

consistent with the hypothesis that propofol partially mitigates malignant hyperthermia by inhibition of induced Ca2þ

flux through RyR1.

Keywords: free energy perturbation; malignant hyperthermia; photoaffinity labelling; propofol; ryanodine receptor 1;

skeletal muscle
Rece

© 20

creat

For P
Editor’s key points

� Type 1 ryanodine receptor (RyR1) is the primary Ca2þ

release channel in skeletal muscle sarcoplasmic re-

ticulum, and mutations underlie various muscle

disorders, including malignant hyperthermia, which
ived: 1 March 2024; Accepted: 18 June 2024

24 The Authors. Published by Elsevier Ltd on behalf of British Journal of Anaes

ivecommons.org/licenses/by/4.0/).

ermissions, please email: permissions@elsevier.com
is triggered by channel opening by volatile anaes-

thetics, but not propofol.

� Propofol and the photoaffinity ligand analogue m-

azipropofol (AziPm) decreased RyR1 opening and

inhibited activator-induced Ca2þ release fromhuman

skeletal myotube sacroplasmic reticulum.
thesia. This is an open access article under the CC BY license (http://

1093

https://orcid.org/0000-0003-1323-3244
https://orcid.org/0000-0002-0793-2391
https://orcid.org/0000-0001-6915-1390
mailto:thomas.joseph@pennmedicine.upenn.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:permissions@elsevier.com
https://doi.org/10.1016/j.bja.2024.06.048


1094 - Joseph et al.
� Several putative propofol binding sites on RyR1 were

identified by photolabeling with by AziPm and mo-

lecular dynamic simulation.

� Propofol bound to and inhibited RyR1 at clinically

plausible concentrations, suggesting that propofol

might partially mitigate malignant hyperthermia by

inhibition of induced Ca2þ flux through RyR1.
Ryanodine receptor 1 (RyR1) is the primary Ca2þ release

channel in the sarcoplasmic reticulum (SR) of skeletal muscle.

It is a critical element of excitation-contraction coupling, along

with voltage-gated calcium channel CaV1.1, STAC3, and

Junctophilin-1 or Junctophilin-2.1 A complex interplay of

allosteric mechanisms controls the opening of RyR1, including

small molecules, protein binding partners, and post-

translational modifications.2

Dysregulation of RyR1 underlies the pathophysiology of a

constellation of muscle disorders, including central core dis-

ease,3 multiminicore disease,4 and malignant hyperthermia

(MH).5 During an MH episode, RyR1 is biased to an open state,

resulting in uncontrolled flowof Ca2þ ions out of the SR, causing

heat production and often muscle rigour. Returning this excess

ofCa2þ to the SR consumesATP, creating ahypermetabolic state

associated with acidosis, hyperkalaemia, rhabdomyolysis, and

hyperthermia. The necessary conditions for MH include one of

many causative mutations in RyR1, CaV1.1, STAC3, or an un-

identified additional gene together with a triggering drug (vola-

tile anaesthetics or suxamethonium). Even with all factors, an

MH episode might not trigger. It is presumed, but not directly

shown, that triggering drugs bind to RyR1 or its partners.

Anaesthesia must often be continued during an MH episode

to safely conclude the surgical procedure. Nontriggering agents

are substituted for triggering agents. Propofol, a g-aminobutyric

acid type A (GABAA) receptor agonist, is the general anaesthetic

of choice because it has not been reported to trigger MH,6 but it

does have many similar targets and effects as volatile anaes-

thetics.7 Thus it would be surprising if propofol had no effect on

RyR1, at which the volatile anaesthetics have a strong effect.

Here, we provide evidence that propofol binds directly to RyR1

and inhibits its opening at clinically reasonable concentrations.

We also identify binding sites and computationally show that

propofol binding affinity makes them plausible RyR1 inhibitory

sites.
Methods

Detailed methods are available in the Supplementary material.

[3H]Ryanodine binding assay

This was conducted as described.8 Heavy SR (HSR) vesicles

were provided by Francisco Alvarado (Cardiovascular

Research Center, School of Medicine and Public Health, Uni-

versity of Wisconsin, Madison, WI, USA). Propofol (1e100 mM)

or AziPm (1e48 mM) was added to HSR protein in 200 mM KCl,

100 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES) buffer (pH 7.2), 5 nM [3H]ryanodine (56 Ci mmol�1), 1

mMEGTA, and enough CaCl2 to set free [Ca2þ] at 100 nM (pCa 7)

or 10 mM (pCa 5). Inclusion of 20 mM unlabelled ryanodine in

some samples allowed for nonspecific binding estimations.

After incubation for 2 h at 37�C, filters were washed and [3H]
ryanodine determined with liquid scintillation counting. Ex-

periments were done in triplicate.
Purification of rabbit or pig RyR1

Frozen rabbit or pig skeletal muscle (~200 g) was blended,

centrifuged, filtered, and centrifuged again at higher speed at

4�C. Pelletswere solubilised incalcium-freebuffer containing 1%

3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

hydrate (CHAPS), and 0.2% soybean phosphatidylcholine with

100 ml of protease inhibitor cocktail. His-GST-FKBP12.6 (~5 mg,

made in-house) was added, followed by ultracentrifugation. The

supernatant was incubated at 4�C with pre-equilibrated GS4B

resin (Cytiva, Marlborough, MA, USA). RyR1 was eluted from the

resin using TEV protease (made in-house). The eluents were

further concentrated and purified with gel filtration using

Superose 6 10/300 GL (Cytiva, Marlborough, MA, USA). Fractions

containing RyR1 complexes measured by absorbance at 280 nm

and were concentrated to ~2 mg ml-1.
RyR1 proteolipsome reconstitution

RyR1 was reconstituted into proteoliposomes as described.9

Briefly, a 5:3 mixture of 1,2-dioleoyl-sn-glycero-3-phosphoethan-

olamine (DOPE) and 1,2-dioleoyl-sn-glycero-3-phosphocholine

(DOPC) (Avanti Polar Lipids, Alabaster, AL, USA) were dried into

a thin filmand solubilisedwith 400 ml of rabbit RyR1 (0.7mgml�1).

Following dialysis, the samples were aliquoted, flash-frozen in

liquid nitrogen, and stored at �80�C.
Planar lipid bilayer methods: single channel
recordings

Using the Orbit mini setup and EDR2 software (Nanion Tech-

nologies, Livingston, NJ, USA), recordings were obtained in

parallel with multielectrode-cavity-array chips (Ionera Tech-

nologies, Freiburg, Germany). The cis and trans chambers

contained symmetrical solutions of 250 mM HEPES, 150 mM

KCl, 1 mM EGTA (pH 7.3), 0.2 mM CaCl2 ([Ca2þ] free ¼ 0.1 mM).

To promote fusion to prepared suspended bilayers, 5% glycerol

was incorporated into the proteoliposomes and 1e2 ml RyR1
proteoliposomes were added to the cis chamber. To further

promote fusion, voltage was maintained at þ40 mV. Re-

cordingswere started at the point of successful RyR1 insertion.

Propofol was introduced to the cis chamber and concentra-

tions determined by absorbance at 270 nm.10 All RyR1 mea-

surements were conducted at 22�C and constant voltage of

e60 mV. Recordings were filtered at final bandwidth of 10 kHz.

Clampfit software (10.6, Molecular Devices, San Jose, CA, USA)

was used to analyse current traces and only channels with a

conductance > 700 pS were included in the analysis.11
Calcium imaging in human skeletal myotubes

Human skeletal muscle cells were maintained in growth me-

dium in a 5% CO2 atmosphere at 37�C. After passage and to

induce differentiation, plated cells were incubated overnight

in growth medium, then in differentiation medium, the latter

changed every other day. Multinuclear myotubes typically

formed within 5e6 days. Differentiated myotubes were loaded

with 1.5 mM Fura-2 AM marker in 20% bovine serum albumin

(BSA) and incubated for 15min to allow de-esterification. Fura-

2 binds to intracellular Ca2þ, with the ratio of emission at 340

nm and 380 nm directly related to the concentration of
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Ca2þ.12e14 Emission ratio was measured using a fluorescent

microscope with a cooled high-speed digital video camera and

MetaFluor software (version 7.10.4.407, MetaMorph 2020, Mo-

lecular Devices, LLC, San Jose, CA, USA). Changes in Fura-2

fluorescence were measured for each drug concentration

(n¼40e50 cells): ryanodine (2e1000 nM) or propofol (2e300

mM). Data were normalised to the maximal response of cells,

and IC50 calculated by fitting to Hill curves using PRISM 10

software (GraphPad Software, San Diego, CA, USA).
Photolabelling of RyR1-FKBP12.6

AziPm (5 mM) was added (with and without 200 mM propofol to

determine specificity) to purified RyR1-FKBP12.6 at a final protein

concentrationof 1mgml�1. Sampleswereequilibratedon ice in the

dark for 5 min then irradiated for 30min at 350 nmwith an RPR-

3000 Rayonet lamp in 1-mmpath length quartz cuvettes through

a 295-nm glass filter (Newport Corporation, Franklin, MA, USA).
In-solution protein digestion

After UV exposure, proteins were precipitated in acetone,

pelleted, washed, and air-dried before resuspension in 50 mM

TriseHCl, pH 8.0, 1% Triton X-100, and 0.5% SDS. Insoluble

debris was pelleted and resuspended in NH4HCO3. Samples

were treated with dithiothreitol (DTT) and iodoacetamide

(IAA) before sequencing-grademodified trypsin was added at a

1:20 protease/protein ratio (w/w) with additional of 0.2% (w/v

%) ProteaseMAX (Promega, Madison, WI, USA) surfactant.

Proteins were digested and then diluted with NH4HCO3 and

0.02% ProteaseMAX surfactant before the addition of

sequencing-grade chymotrypsin at 1:20 protease/protein ratio

(w/w). Proteins were digested and acidified before centrifuga-

tion to remove insoluble debris. Finally, the sample was

desalted using C18 stage tips, dried under vacuum and

resuspended in 0.1% formic acid before mass spectrometry.
In-gel protein digestion

Photolabelled proteins were separated by SDS-PAGE; the rRyR1

band was excised, destained, dehydrated, and dried before

proteins were reduced by 5 mM DTT and 50 mM NH4HCO3.

Samples were then alkylated with 55 mM IAA in 50 mM

NH4HCO3, dehydrated, and dried before resuspension in 0.2%

ProteaseMAX surfactant and 50 mMNH4HCO3. After this point

the digestion, suspension, and extraction were essentially

identical to the above in-solution scheme.
Mass spectrometry

Mass spectrometry was performed as reported.15 Briefly,

desalted peptideswere injected into a Thermo LTQOrbitrap XL

Mass Spectrometer (Thermo Fisher Scientific, Waltham, MA,

USA) or an Orbitrap Elite Hybrid Ion Trap mass spectrometer.

Peptides were eluted with 100 min with linear gradients of

acetonitrile in 0.1% formic acid. Spectral analysis was con-

ducted using MaxQuant16 to search b and y ions against the

rRyR1 sequence. All analyses included dynamic oxidation of

methionine (þ15.9949 m/z) as well as static alkylation of

cysteine (þ57.0215 m/z; iodoacetamide alkylation). Photo-

labelled peptides were searched for the additional dynamic

AziPm modifications. Both in-solution and in-gel sequential

trypsin/chymotrypsin digests were searched without enzyme

specification with a false discovery rate of 0.01. Samples were
analysed in triplicate and samples containing no photoaffinity

ligand (controls) were run to identify false positives.
Molecular dynamics simulations

Weusedcryo-electronmicroscopymodels (PDB: 6X34, openstate;

and 6X36, closed-state) of pig R615C RyR1.9 Only the central pore

domain of RyR1, itself a functional channel,17 was simulated, as

the entire protein is computationally impractical for demanding

free energy perturbation (FEP) molecular dynamics (MD) simula-

tions. Systems were constructed using CHARMM-GUI.18 All sim-

ulationswere conductedusingNAMD2.14or319withCHARMM36

force field, existing propofol parameters20e22 and TIP3P water.

Production simulations were conducted in the

isothermiceisobaric ensemble with Langevin thermostat. The

lipid bilayers consisted of 70% 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC) and 30% cholesterol.

Streamlined Alchemical Free Energy Perturbation (SAFEP)

methodology23,24 was used to determine the absolute binding

free energy of propofol ðDG+
bindÞ. SAFEP uses a limited set of

restraints on the ligand to maintain its bound conformation

during alchemical transformations and improve sampling of

states that most contribute to DG+
bind. The restraints are then

corrected to yield an accurate absolute DG+
bind. The overall

expression is:

DG+
bind ¼eDG*

site þ DGDBC � DG+
V þ DG*

bulk

where DG*
bulk is the energy of decoupling the unbound ligand

from solvated to gas phase, DG+
V and DGDBC energies of volu-

metric and distance-from-bound-conformation (DBC) re-

straints, respectively, and eDG*
site is the energy of coupling the

ligand from gas phase to the protein-bound state. DG*
bulk and

DG*
site were calculated using FEP MD, DGDBC using thermody-

namic integration, and DG+
V parametrically. The Bennett

acceptance ratio method was used to calculate free energy

differences in FEP calculations.
Results

m-Azipropofol and propofol decrease the proportion of
open wild-type RyR1

Wemeasured [3H]ryanodine binding, reflecting the proportion

of open RyR1 in HSR vesicles, as a function of m-azipropofol

(AziPm) and propofol concentrations.8 At low [Ca2þ] (pCa 7, 100

nM), AziPm and propofol each reduced the proportion of open

channels, with IC50 values of 6.9 mM and 5.8 mM, respectively.

At activating [Ca2þ] (pCa 5, 10 mM), a similar trend was

observed, with IC50 values of 4.8 mM and 6.7 mM, respectively

(Fig. 1). With AziPm, pCa 7 was a sufficient activating concen-

tration to observe its inhibitory effects.
AziPm and propofol inhibit R615C RyR1 channel
opening in planar lipid bilayers

The R615C mutation predisposes pigs to MH-like porcine stress

syndrome,25 serving as a model of human MH; the analogous

human mutation is R614C. We measured the channel open

probability of homozygous pig R615C RyR1 reconstituted in

planar lipid bilayers (PLBs) as a function of AziPm and propofol

concentrationswith anactivating concentration of Ca2þ (40 mM).

Without drug, channel open probability was 0.11. This

decreased, respectively, to 0.03, 0.07, and 0.04with 10 mMAziPm,

10 mM propofol, and 30 mM propofol (Fig. 2).
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Fig 1. [3H]Ryanodine binding to skeletal muscle heavy sarcoplasmic reticulum vesicles as a function of propofol (left) or AziPm concen-

tration (right). Values expressed as percentage of control (0 mM propofol or AziPm).
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Propofol inhibits activator-mediated RyR1 channel
opening in wild-type cultured human skeletal
myotubes

We studied the effect of propofol on intracellular Ca2þ con-

centration inwild-type human skeletalmusclemyotubes (HSM)

in the presence of the RyR1 activator ryanodine. Higher 340:380
C
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C
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Fig 2. Ryanodine receptor 1 channel opening probability as a functio

**P<0.01 vs control, Mann-Whitney test (n¼5).
nm ratios measured using Fura-2 Ca2þ imaging indicate

increased Ca2þ release attributable to RyR1 opening. Without

propofol, the 340:380 nm ratio saturated at ~ 1 mM ryanodine

(Fig. 3), indicating that ryanodine at 1 mM is maximally potent.

When propofol was added to HSM Fura-2 preparations con-

taining 1 mM ryanodine, the 340:380 nm ratio decreased as
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open probability.
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propofol concentration increased, suggesting propofol inhibits

RyR1 opening (mean IC50 ¼ 29.5 mM [SE¼0.1 mM]).
AziPm binding sites identified on RyR1 by
photoaffinity labelling

AziPm is chemically and functionally similar to propofol,26 so

photoadducted residues likely indicate propofol binding sites.

Photoaffinity labelling was conducted with RyR1 purified from

skeletal muscle of wild-type rabbit (Oryctolagus cuniculus),

wild-type pig (Sus scrofa), and R615C pig. Rabbit and pig RyR1

have 97% sequence identity with human RyR1; most

nonidentical residues reside outside the transmembrane

domain. A preparation of RyR1 and FKBP12.6 (calstabin-2,

which stabilises the closed state likely favoured by propofol

and AziPm) was incubated with AziPm and irradiated.26 Pho-

toadducted RyR1 residues were identified using mass spec-

trometry. Sequence coverage was 83%, 87.5%, and 80.2%
Table 1 AziPm photoadducted sites in ryanodine receptor 1. WT, wil

Domain Rabbit Pig WT Pig R615

Cytoplasmic V1689 V1689
T2069 L2068 R2072

I2183 I2183
M2440
C2555

Core solenoid M3638 M3634 M3634
L3798 L3793 L3793
I4058 I4053 I4053
D4220 I4213 I4213

Transmembrane Y4554 L4553 L4553
F4568 A4572 A4572
Y4715 Y4713 Y4713
I4737 I4735 I4735
L4827 V4828 I4824

V4828
L4850 L4848 L4848

L4909 L4909
across rabbit, pig WT, and pig R615C proteins, respectively.

Coverage maps and spectra are in Supplementary Figures

S2eS7. No photolabelled peptides were identified in non-

photolabelled control samples. Pretreatment with 200 mM
propofol prevented adduction by AziPm in most sites

(Supplementary Tables S1 - S3) implying AziPm and propofol

binding sites are similar. Taken together with the PLB data,

these data suggest that AziPm and propofol bind and act in the

same locations on RyR1. The identified sites are listed in

Table 1 and depicted in Figure 4. Unless otherwise noted, we

refer to all photoadducted sites by their sequence locations in

the rabbit RyR1 unless present only in pig RyR1. Many of the

sites are adjacent to functionally significant RyR1 regions.27
Propofol binds near V4828

The photoadducted V4828 residue in the S4eS5 linker forms

part of a binding pocket surrounded by lipophilic a-helices,
d type.

C Notes

Junctional solenoid (JSol)
JSol
Bridging solenoid (BSol)
BSol
BSol
BSol
Central solenoid (CSol)
CSol
Thumb-and-forefinger (TaF), near ATP binding site
Pseudo voltage sensing domain (pVSD)
S1
S2eS3 linker; near caffeine site
S2eS3 linker; caffeine site
S4eS5 linker

S5
Pore

mailto:Image of Fig 3|eps
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Fig 4. (a) Ryanodine receptor 1 (RyR1) residues photoadducted by

AziPm, shown as black spheres. For visual clarity only two of the

four monomers are shown. (b) V4828 site in open-state RyR1

occupied by propofol. (c) V4828 site in closed-state RyR1 occu-

pied by propofol. Representative poses taken from equilibrium

molecular dynamics simulations.
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and is adjacent to the pore lumen (Fig. 1). Mutations in this

region (T4825I, H4832Y in rabbit) increase Ca2þ affinities for

activation and decrease it for deactivation in vitro: channel

open probabilities are increased at both low and high [Ca2þ],
but not at intermediate concentrations,27 with predicted af-

finity similar to clinical concentration. The specific photo-

adducted atom (e.g. side chain or carbonyl) is by definition not

identified. As neither the bound pose of the nonphotolysed

parent ligand nor its affinity are determined experimentally,

we used MD simulation to predict these. Because it would be

computationally prohibitive to simulate the entire RyR1, we

included only the pore-containing transmembrane domain

(TMD, residues 4546e5029), itself a functional channel,17

embedded in a lipid bilayer surrounded by 0.15 M KCl. We
initialised each system by manually placing a single propofol

molecule in one V4828 pocket followed by minimisation and

equilibration MD simulation. This approach imposes no en-

ergetic penalty while the ligand is in the pocket, allowing it to

locate a local energetic minimum.28

In 50 ns productionMD simulations, propofol remained in a

stable orientation (Fig. 4). In both open- and closed-state RyR1,

its hydroxyl group remained oriented away from V4828,

although with different orientations. We used SAFEP MD23 to

predict its binding affinity, with aqueous propofol as the un-

bound reference point. The predicted Gibbs free energy of

propofol binding to open-state RyR1 was DG+
bind ¼ e5.9 [SE 0.1

kcal mol�1], corresponding to KD ¼ 55.8 mM (95% confidence

interval [CI]: 40.3e77.3 mM). This includes aqueous phase

decoupling energy DG*
bulk ¼ 1.0 kcal mol�1, restraint correction

DGDBC ¼ 0.9 [SD 0.1 kcal mol�1], and volumetric correction

DG+
V ¼ 0.4 kcal mol�1. For closed-state RyR1, DG+

bind ¼ e8.4 kcal

mol�1 [SE 0.1 kcal mol�1], corresponding to KD ¼ 1.4 mM (95% CI:

1.0e2.0 mM), with DGDBC ¼ 1.6 kcal mol�1 [SD 0.1 kcal mol�1] and

the same DG*
bulk and DG+

V. Convergencewas excellent (Fig. S1 in

the supplementary material). As KD depends logarithmically

on DG, small changes in DG lead to large changes in KD.
Discussion

Propofol decreases RyR1 open probability in PLBs and HSM and

inhibits [3H]ryanodine binding to SR vesicles. Photoaffinity

labelling identified several propofol binding sites on RyR1.

Overall, these data show that propofol both binds RyR1 in

specific sites and inhibits pore opening.

The plasma concentration of propofol at human loss of

consciousness was estimated29 to be ~10 mM, within an order

of magnitude of our IC50 for both propofol inhibition of RyR1 in

HSM and predicted binding affinity in the V4828 pocket. Prior

studies showed RyR1 inhibition only at high propofol con-

centrations, which we believe is a result of incomplete sol-

ubilisation and lack of free propofol concentration

measurements, allowing the possibility of differential binding

between sites and unknown allosteric interactions among

them.30e32 All our different approaches agree with respect to

concentration dependence. As propofol avidly binds serum

proteins,33 the plasma concentration required to elicit RyR1

inhibition would be higher than in an otherwise protein-free

environment as with our HSM experiments.

In all four subunits, the RyR1 TMD has at least six trans-

membrane helices of which four encode a (pseudo-)voltage-

sensing domain, similar to the inositol-3,4,5-triphosphate (IP3)

receptor and voltage-gated ion channels in the Nav, Kv, and

Cav families. Propofol inhibition of channels with TMDs

similar to that of the RyR1 is not unique.34e36 Moreover,

binding in the conserved S4e5 linker domain appears to be a

canonical feature in ion channels such as NaChBac, NavMs,

and Kv1.2.
34,37 Because propofol binding sites are distributed

across this enormous protein, we hypothesise that an allo-

steric mechanism at least partly underlies its effects. For

example, disruption of subunit cooperativity may be impor-

tant for the function of RyR2.38

This study has some limitations. As we did not evaluate a

functional model of MH using intact muscle, our prediction

that propofol inhibits the clinical presentation of MH is hy-

pothetical and may be trigger-dependent. For example, pro-

pofol was unable to reverse heat generation in MH pigs

exposed to a high concentration of halothane, a strong

trigger.39 Further, AziPm might adduct sites that the parent

mailto:Image of Fig 4|eps
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ligand propofol does not bind, or vice versa, as the diazirine

group and halogens render it chemically distinct from the

parent ligand, and because the RyR1 sequence was incom-

pletely covered. However, at least in apoferritin, photo-

labelling, crystallography and fluorescence competition

placed AziPm and propofol in the same site.26 It is reassuring

that identical or highly analogous residues were adducted in

RyR1 purified from three different sources, and no apparent

photochemical selectivity for specific residues was observed.

We compared photoadduction in wild-type and the only

readily available mutant protein, pig R615C RyR1. Despite

substantial global conformational changes induced by the

mutation,9 the photoadducted residues were the same with

one exception (L2068 in WT vs R2072 in R615C). This suggests

that the presence of the R615C mutation decreases the energy

barrier for RyR1 activation, rather than altering anaesthetic

binding.

With the caveat that true in vivo RyR1 effect-site concen-

trations resulting from clinically relevant propofol doses are

unknown and therefore not directly comparable to IC50 and KD

values reported here, our results invite the hypothesis that

clinical manifestations of MH would be actively inhibited by

propofol boluses or infusions, subject to its pharmacokinetics.

Skeletal muscle weakness from RyR1 inhibition could

conceivably result from propofol administration in both wild-

type and mutant RyR1, which might partly explain clinically

observed muscle relaxation. However, results from human

testing are mixed.40,41

Our findings potentially transfer to other disease states

arising from increased RyR1 activation. For example, calcium

dysregulation could be an upstream mechanism in neurode-

generativedisorders.Asall threeRyR1subtypes:RyR1, RyR2, and

RyR3, are present in neuronal endoplasmic reticulum, RyR

channel dysfunction is correlated to disease progression.42e44

Thus, in addition to potential salutary effects in MH, this in-

vites the hypothesis that a propofol-based anaesthetic is less

likely to aggravate these disorders than known triggering

anaesthetics.
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