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Abstract
Machine learning can be used to create “biologic clocks” that predict age. However, 
organs, tissues, and biofluids may age at different rates from the organism as a whole. 
We sought to understand how cerebrospinal fluid (CSF) changes with age to inform 
the development of brain aging-related disease mechanisms and identify potential 
anti-aging therapeutic targets. Several epigenetic clocks exist based on plasma and 
neuronal tissues; however, plasma may not reflect brain aging specifically and tissue-
based clocks require samples that are difficult to obtain from living participants. To 
address these problems, we developed a machine learning clock that uses CSF prot-
eomics to predict the chronological age of individuals with a 0.79 Pearson correlation 
and mean estimated error (MAE) of 4.30 years in our validation cohort. Additionally, 
we analyzed proteins highly weighted by the algorithm to gain insights into changes in 
CSF and uncover novel insights into brain aging. We also demonstrate a novel method 
to create a minimal protein clock that uses just 109 protein features from the origi-
nal clock to achieve a similar accuracy (0.75 correlation, MAE 5.41). Finally, we dem-
onstrate that our clock identifies novel proteins that are highly predictive of age in 
interactions with other proteins, but do not directly correlate with chronological age 
themselves. In conclusion, we propose that our CSF protein aging clock can identify 
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1  |  INTRODUC TION

As the brain ages, humans experience decreased mental process-
ing speed (Manard et al., 2014) and an increased likelihood of de-
mentia and neurodegenerative disease (Boyle et  al.,  2013). The 
composition of cerebrospinal fluid (CSF) also changes with age: 
total protein turnover slows (Chen et al., 2012), the blood–brain 
barrier becomes more permeable to molecules from plasma (Knox 
et al., 2022), and expression in the choroid plexus is altered (Tahira 
et al., 2021). These changes to proteins in the extracellular envi-
ronment of the central nervous system (CNS) may contribute to 
proteostatic dysregulation in brain tissue, accumulation of toxic 
molecules, and impairment of mechanisms preventing neurode-
generation (Marques et  al.,  2013). Additionally, the prevalence 
of age associated diseases such as late onset Alzheimer's disease 
(AD) changes over time, with the incidence of AD doubling every 
5 years after age 65 (Qiu et al., 2009).

Understanding the proteomic changes that occur during aging in 
biological fluids may provide new therapeutics for neurodegenera-
tive disorders and brain health-span extension. For example, admin-
istering CSF (Iram et al., 2022) from young animals into older animals 
has beneficial therapeutic effects on memory, health, and cognition. 
However, more work needs to be done to understand the mechanis-
tic changes underlying these benefits and effects on aging. In order 
to determine if interventions reverse or delay aging, objective met-
rics, that is, biomarkers, that can measure the age of an organism or 
tissue are needed.

To this end, there has been great interest in developing aging 
“clocks” that can predict the age of an organism from biomarkers. 
Deviations in these clocks from expected chronological age can 
be used to determine if interventions are effective at modulating 
aging. The majority of these clocks have been based on changes 
in epigenetic methylation marks on DNA in plasma or tissues 
(Horvath, 2013), (Zhang et al., 2019), (Johnson et al., 2020). Brain cell 
and brain tissue-specific clocks have also been developed that show 
excellent correlations with chronological age (Buckley et al., 2023; 
Horvath, 2013) including epigenetic plasma clocks that have been 
optimized for brain aging (Cole, 2020).

However, several major challenges remain that limit the util-
ity of these clocks to understand brain aging and identify testable 
protein targets for therapeutic intervention. While many robust 
plasma-based epigenetic aging clocks have been developed, they 
have proven insufficient in reflecting neuropathologies associated 

with brain aging (Fransquet et al., 2021). Brain- and tissue-specific 
clocks provide a more direct measurement of brain aging; however, 
these clocks cannot typically be used in living patients due to lack 
of access to samples. While methylation-based surrogates that cor-
relate with protein concentration have been developed and proven 
valuable in diagnosing disease (Fu et  al.,  2021), greater predictive 
power might be obtained by measuring protein concentration di-
rectly. Thus, there is need for a proteomics-based clock that is both 
reflective of brain aging and acceptable for use in living individuals.

Recently, several novel minimally invasive clocks have arisen that 
do not rely on epigenetics. Notably, MRI clocks which use imaging 
of brain volumes and other metrics to predict age (Cole, 2020), and a 
proteomics based blood clock which uses blood circulating proteins 
to infer the ages of organs throughout the body (Oh et al., 2023). We 
believe these are large steps forward as imaging-based clocks can 
be used in live subjects and organ-age inference clocks provide in-
formation about multiple regions of the body from easily obtainable 
plasma. However, neither of these clocks directly measures the pro-
teomic changes that occur in the aging brain environment. Proteins 
are the machinery of life; they are the direct drivers of the reactions 
that make up biology and the end point for biological functionality. 
This makes their impact on aging directly interpretable and hypoth-
eses generated from their study testable. Thus, we believe there is 
great need for a CSF proteomics clock that can measure CSF aging, 
provide direct insight into the pathways and proteins that change 
during age, and uncover new targets for brain aging and neurode-
generation interventions.

In this study, we present a machine learning-based aging clock that 
uses human CSF proteomics data as an input to predict the chronolog-
ical age of the CNS. As CSF is readily available via lumbar punctures, it 
provides an opportunity to approximate brain aging in living persons. 
CSF is routinely banked by many cohorts studying age-related brain 
diseases, such as Parkinson's disease (PD) and AD making it an acces-
sible biofluid to understand the impact of diseases and treatments on 
brain aging. While taking CSF is a more invasive process than blood 
draws, it is drawn regularly in some parts of Europe and it's use has 
significantly increased in memory and neurology clinics to allow for 
accurate diagnosis of Alzheimer's disease. We selected CSF proteomic 
measures from cognitively normal, non-AD controls to investigate age-
related changes in CSF. We then implemented a machine-learning al-
gorithm to build a CSF proteomics biologic clock to identify specific 
age-related proteins, allowing a physiologic interpretation of the aging 
proteome. Here we demonstrate that our clock has high concordance 

novel proteins that influence the rate of aging of the central nervous system (CNS), 
in a manner that would not be identifiable by examining their individual relationships 
with age.
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with chronological age, identifies an interpretable set of proteins and 
pathways used to estimate biological CNS age, and provides insights 
into the biological processes of CNS aging. We hypothesize that neg-
atively weighted proteins used by the model to predict age will be as-
sociated with protective effects on age-associated brain pathologies 
and decline (i.e., youth-associated mechanisms), and that loss of these 
proteins will be associated with harmful aging phenotypes. Likewise, 
we hypothesize many proteins with positive weights will be associated 
with detrimental CNS aging-associated phenotypes or compensatory 
responses to aging. Highly weighted proteins may identify potential tar-
gets or pathways for aging interventions. To explore these hypotheses, 
we analyzed the top highly positively and highly negatively weighted 
proteins identified by our model and found age-associated effects in 
the literature. We also explored age predictive changes on a systems 
level by examining pathways that are highly enriched for proteins used 
by our model to predict age (Figure 1). In addition to our full model, 
we also showcase a more compact minimal model, that uses an order 
of magnitude fewer proteins, with similar performance and a method 
to generate such compact models. Finally, we tested our clock on a 
second validation cohort and a group of cognitively normal but amyloid 
beta plaque positive (Aβ+) individuals to see if this presymptomatic AD 
group demonstrated accelerated biological aging in the CNS.

2  |  MATERIAL S AND METHODS

2.1  |  Cohorts

Demographic, diagnostic, and CSF proteomics data for this study 
was obtained via a data request to the Knight Alzheimer Disease 
Research Center (ADRC). Proteomics data was generated by the 
NeuroGenomics and Informatics (NGI) Center at Washington 
University and protein concentrations were measured via the 
SomaLogic proteomics platform. The original cohort consisted of 
857 participants with varying ranges of Clincial Dementia Rating 
(CDR) and AD pathology. To remove bias from age related disease 
states, such as AD and other forms of dementia, we narrowed our 
cohort down to 437 cognitively normal participants with CDR = 0, 
and Aβ42/40 ratios more than 0.0673 as the cutoff for amyloid 
positivity (Barthélemy et  al.,  2023). Aβ42/40 ratios were meas-
ured via Lumipulse. Participant age ranged from 43 to 91 years old 
with a median age of 69. Regarding sex at birth, 249 of the partici-
pants were female and 188 were male. Participant years of educa-
tion ranged from a minimum of 9 years to a maximum of 24 years 
with a median of 16 years. Race of the cohort was as follows: 382 
White (non-Hispanic), 52 Black, two people of mixed race and one 
of Asian descent. A second validation cohort was obtained from the 
Alzheimer's Disease Neuroimaging Initiative (ADNI). The full cohort 
included 735 individuals for which there was CSF proteomics data 
available. The subcohort of cognitively normal amyloid negative in-
dividuals consisted of 44 individuals with CDRs of 0. CSF measure-
ment on the Elecsys platform of pTau/Aß42 < =0.025 was used to 
determine amyloid positive status. This threshold was determined 

by ROC analysis that gave the best sensitivity and specificity with 
PET centiloid scores used for amyloid beta status classification.

2.2  |  Machine learning and elastic net model

A custom python program was built to train an elastic net-based 
machine learning algorithm to predict participant chronological age 
based on 7008 protein measurements (features) in human CSF. The 
elastic net algorithm was implemented via the scikit-learn machine 
learning library. Missing data points were imputed using a k near-
est neighbor-based approach with K = 2. Prior to training the data 
was scaled from 0 to 1 using the min-max feature scaler of scikit-
learn, which gave the best performance of the data transformation 
approaches tried. Additional scaling approaches explored included 
log transforming the data, the scikit-learn standard scaler and the 
scikit-learn power transformer (which also normalizes unit-variance). 
To generate the model, the data were randomly split into two sets: a 
“training set” consisting of 349 individuals (80% of the dataset) and a 
“test set” (20% of the dataset) consisting of 88 individuals held aside 
to validate the model. The training set was then split again into two 
groups consisting of 279 individuals (80% of the training set) and 70 
individuals (20% of the training set). This first set, the “sub training 
set,” was used to train the elastic net and find the optimal tuning 
parameters (L1 and Alpha), while the second set, the “sub validation 
set,” was used as validation data for this stage of the training. The 
tuning parameters of the final model were an Alpha of 0.0012 and 
an L1 of 0.58. After optimal tuning parameters and feature weights 
were determined, a third order polynomial, the “transformation 
polynomial,” was fit on the age predicted by the model on the sub 
validation set and the real chronological age of the participants. The 
polynomial used in the final validation of the model took the form: 
y = 68.5 + 16.7·x – 4.0·x2–0.8·x3, where x is the original prediction 
made by the model and y is the adjusted prediction. Subsequently 
a linear transformation was trained to shift the data such that a lin-
ear regression fit to the data had an x and y intercept of approxi-
mately zero. The linear shift took the form y = ((60.7 – x)/0.82) + 60.7. 
Weights for both the polynomial and linear transformations were 
trained on the training data only and at no point had access to the 
final validation data used in figures. When making final predictions 
for the validation group, the model was given access only to the 
7008 SomaLogic measured protein concentrations and had no other 
information about the validation group participants.

2.3  |  Feature extraction

Upon training of the final model each protein feature was given a 
weight based on how much it was used in the final model to predict 
chronological age. Features with a weight of zero were not used at 
all by the model. Features with a positive weight contributed to in-
creased estimations of age, whereas features with negative weights 
contributed to decreased estimations of age.
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F I G U R E  1 A graphical overview depicting development of the CSF aging clock, model feature extraction, and bioinformatics. (1) CSF 
from 437 cognitively normal, amyloid beta negative individuals were measured using the SomaLogic system to quantify 7008 proteins. (2) An 
elastic net was trained on the proteomics profiles to develop a machine learning algorithm that predicts biological CSF age. (3) Proteins used 
to predict age were extracted from the model, ranked and categorized into older associated and younger associated groups. (4) Pathway 
enrichment was performed via the bioinformatics tool Metascape to look for pathways enriched in model proteins in the Reactome pathway 
knowledgebase.
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2.4  |  Pathway enrichment

The bioinformatic tool Metascape (Zhou et  al.,  2019) (https://​metas​
cape.​org) was used to find pathways in the Reactome knowledge 
base (Gillespie et al., 2022) that were enriched for features used by 
the final model to predict age. Metascape is a tool designed to analyze 
and interpret OMICs-based data, and Reactome is a manually curated 
database that provides molecular details across a broad range of physi-
ological and pathological biological processes in humans. Settings for 
Metascape included a minimum overlap of 3, p value cutoff of 0.01 and 
a minimum enrichment score of 1.5. A total of 1157 model weighted 
human protein features were used in the enrichment search and all 
7008 possible protein features were used as a background.

2.5  |  Statistical analysis

A Pearson correlation between model predicted ages and chrono-
logical ages was used as a measure of model accuracy. Models were 
trained to maximize this correlation during the training phase. R2 val-
ues were generated by fitting a linear regression between model pre-
dicted ages and chronological ages. Correlation with chronological age 
was generated via spearman correlation across the entire cognitively 
normal, Aβ plaque negative (Aβ-) cohort. A one tailed t-test was used to 
test the hypothesis that Aβ plaque positive (Aβ+) status in cognitively 
normal individuals would accelerate biological aging.

2.6  |  Iterative re-weighting and down-sampling

An elastic net machine learning algorithm was used to generate our 
full 1157 protein feature CSF aging clock as described above. These 
protein features were then ranked by absolute value of weights given 
by the full model. The bottom five least weighted protein features 
were then removed from the dataset, and the model was retrained 
on the remaining proteins to generate a new ranking. This process 
was then repeated 230 times until only four proteins remained from 
the original 1157 proteins. Pearson correlation values were then cal-
culated and plotted versus proteins used by each model to generate 
Figure 4a.

3  |  RESULTS

3.1  |  Machine learning model

To create a machine learning algorithm to predict chronological age 
from proteins in human CSF, we trained a modified elastic net on 
the concentrations of 7008 proteins in human CSF as measured on 
the Somalogic proteomics system. Of the 7008 measured CSF pro-
teins, the model made use of 1157 proteins to predict age. Figure 2a 
shows the trained model's predictions of age in years (y-axis) versus 
the actual chronological ages of the 88 individuals in the validation 

cohort (x-axis). Predictions made by the model showed a high level 
of agreement with chronological age at the time of CSF draw, with a 
Pearson correlation of 0.85 and mean estimated error of 3.94 years. 
Additonally, we preformed 100-fold cross testing of our model gen-
eration method and confirmed that our selected model was represe-
natative of the median Pearson correlation and MAE performance of 
these model distributions (Appendix S2). The trained model was then 
validated on the CSF proteomes of an additional 735 participants 
from an additional cohort, the Alzheimer's Disease Neuroimaging 
Initiative (ADNI). The model continued to perform well on this co-
hort with a Pearson correlation to chronological age of 0.79 and an 
MAE of 4.30 (Figure 2b). As the original model was trained on only 
cognitively normal, amyloid beta negative individuals, and the ADNI 
cohort included participants with a range of cognitive states and 
amyloid status, we created a subcohort of 44 individuals who we 
confirmed were amyloid beta negative and cognitively normal. We 
then validated our CSF aging model on this subcohort and obtained 
similar results to the full cohort, with a Pearson correlation of 0.81 
and MAE of 4.85 (Figure 2c). This validation confirms the power of 
our model to predict chronological age from CSF proteomics.

3.2  |  Cohort-wide protein correlation with age

An additional way we sought to understand how CSF proteins in our 
cohort changed with age was correlation. We performed Spearman 
correlations with chronological age on the concentrations of all pro-
teins in our data using p < 0.0001 as the threshold for significance. 
We observed that 2117 protein features (30%) of the 7008 pos-
sible protein features significantly correlated with age (Figure  3a). 
Of these, 340 age correlated proteins were used by our model 
(Figure 3b). Figure 3c shows the top 10 positively weighted and neg-
atively weighted proteins that significantly correlated with age. A full 
list of all proteins that significantly correlated with age is available in 
the extended materials (Appendix S1).

3.3  |  Model feature extraction

To investigate which proteins in CSF were predictive of aging, we 
extracted features from our elastic net and ranked them by the 
model weight, an indication of how much impact each protein had 
on the final prediction. A positive weight indicates higher protein 
concentrations are predictive of older ages, whereas a negative 
weight indicates higher concentrations predict more youthful states. 
An advantage of elastic net-based models over many other machine 
learning models is that they are both interpretable and excel at ex-
cluding non-informative features, while retaining informative but 
redundant features by distributing their predictive weights. Of the 
7008 total proteins, 1157 were used by the model to predict aging, 
while 5851 proteins had weights of zero indicating our model did not 
find them informative. Five hundred and eighty-nine proteins had 
positive weights, while 568 proteins had negative weights. Table 1 

https://metascape.org
https://metascape.org
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summarizes the top 10 positively and negatively weighted proteins 
extracted from the model. A full list of all proteins and weights used 
by the model can be found in the extended materials (Appendix S1).

3.4  |  Pathways enriched for model 
predictive proteins

To gain further insight into the biological impact of age predictive 
protein changes in CSF we searched for biochemical pathways 
enriched for proteins used by our model. To do this we used the 
bioinformatics platform Metascape to search the Reactome knowl-
edgebase for pathways significantly enriched for model weighted 
proteins. All 1157 positively and negatively weighted protein fea-
tures were used in this analysis, and the entire set of 7008 possible 

proteins was used as a background. Metascape found a total of 
seven nonredundant pathways in which proteins in our model were 
significantly enriched (p < = 0.01). A list of enriched pathways and 
proteins enriched in each pathway is available in Table 2.

3.5  |  Generation of a minimal protein model for 
age prediction

In addition to the full 1157 protein model, we set out to generate 
a model using the fewest proteins possible while maintaining ac-
curacy. Our goal was to create a minimal model that was more ac-
cessible to use due to requiring fewer proteomics measurements 
and determine the smallest set of proteins with enough informa-
tion content to predict age. To do so we developed a process we 

F I G U R E  2 Age predicted via CSF proteomics elastic net model versus chronological age. An elastic net was trained to predict 
chronological age from SomaLogic CSF proteomics profiles, each containing measurements of 7008 different proteins. (a) The model was 
trained on 349 cognitively normal, amyloid beta negative, participants from the Knight ADRC, ages 43–91 with a median age of 69. The 
trained model is shown predicting the ages of an additional 88 cognitively normal participants not included in the training data. The model 
made use of 1157 protein features to generate predicted CSF age and shows a 0.85 Pearson correlation with chronological age (p = 2.79E-
25) and a mean average error of 3.94 years. (b) The trained model was then validated using CSF proteomics from an additional cohort, the 
Alzheimer's Disease Neuroimaging Initiative (ADNI) consisting of a new set of 735 individuals. The model validated on this cohort with 
a Pearson correlation of 0.79 with chronological age (p = 3.57E-161) and MAE of 4.30 years. (c) As the ADNI cohort included a range of 
individuals with varying clinical dementia ratings (CDR) and amyloid beta statuses a subcohort was created of 44 ADNI participants who 
were verified to be cognitively normal and amyloid beta negative. The model was then validated on this subcohort and had a 0.81 Pearson 
correlation with chronological age (p = 3.15E-11) and MAE of 4.85 years.
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called iterative feature down-sampling, whereby we progressively 
retrained our elastic net using features in the previous elastic net, 
re-ranking by absolute value of model weights and dropping the bot-
tom 10. We then graphed the Pearson correlations of each model 
(Figure 4a). Model accuracy dropped steeply around 109 proteins, 
with our 109-protein model (Pearson 0.84, p = 1.13E-24) (Figure 4b) 
performing nearly as well as our full 1157 protein model (Pearson 
0.85, p = 2.79E-25) (Figure 2) on the ADRC test data. To validate the 
109-protein model on an additional cohort, the pretrained model 
was run on both the full ADNI cohort (Pearson 0.75, p = 6.49E-132) 
(Figure 4c) and the subset of ADNI participants verified to be amy-
loid beta negative and cognitively normal (Pearson 0.83, p = 4.48E-
12) (Figure 4d). Top protein features were then extracted from the 
model (Figure 4e), and the full 109 protein features were used for 
pathway analysis. Notably, representatives from all pathways en-
riched for by the full model were present in pathways enriched for 
by the 109-protein model. It is possible that these proteins contain 
enough age predictive information to represent the missing proteins 
from their respective pathways and may be of further interest bio-
logically. A full list of all proteins in the 109-protein model, and their 
training weights, is available in the Appendix S1.

3.6  |  Amyloid beta status in cognitively normal 
individuals does not affect the accuracy of our CSF 
aging clock

One application of our CSF proteomics aging clock was to examine 
if participants diagnosed with age associated diseases such as AD 
deviate significantly in predicted age versus healthy individuals. 

To do this we compared the validation cohort of our clock, who 
were all both cognitively normal (CDR = 0) and Aβ-, to a new group 
of cognitively normal (CDR = 0) but Aβ + individuals, indicating pr-
esymptomatic AD. Each group contained a total of 65 age, race, 
and gender matched participants. We then applied the full 1157 
protein feature clock to both groups and plotted the difference 
in years between clock's predicted age and participant's chrono-
logical age as a measure of clock accuracy. We hypothesized that 
Aβ + individuals would show an increase in predicted age com-
parted to Aβ- participants. However, we found no significant dif-
ferences in clock predicted age accuracy between the two groups. 
Both Aβ- and Aβ + groups had an average difference in age predic-
tion of around −1 years (−1.03 and −0.86, respectively) and a one 
tailed T-test revealed a p value of 0.86 (Figure 5). This supports 
the null hypothesis that biological CNS age as measured by CSF 
proteins is not affected in cognitively normal people with amyloid 
plaques.

4  |  C SF AGING PROTEIN AND PATHWAY 
ANALYSIS

4.1  |  Proteins predictive of increased age

Proteins with positive model weights are features that our model 
found to be predictive of older chronological ages. The high weights 
given to these proteins (relative to other proteins in the dataset) in-
dicate that increases in their CSF concentrations were highly associ-
ated with increased age in the context of other proteins in the model. 
Here we explore what is known about these proteins and pathways, 

F I G U R E  3 Proteins that vary 
significantly with age via Spearman 
correlation. We ran Spearman 
correlations with chronological age on 
the concentrations of all 7008 proteins 
measured in our cohort of CDR = 0, 
Aβ- individuals. (a) 30% (2117) of all CSF 
proteins measured significantly correlated 
with age (p < 0.0001) while 70% (4891) 
of measured proteins showed no such 
relationship. (b) Three hundred and forty 
of the 1157 proteins used in our elastic 
net model to predict age were found to 
significantly correlate with chronological 
age. (c) A chart showing the full names, 
Entrez gene IDs and correlation values 
of the top 10 significant positively and 
negatively correlated proteins with 
chronological age.
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discuss them in the context of CSF aging and propose hypotheses 
based on our clock weights and correlations with age across the en-
tire CDR = 0, Aβ- cohort.

4.1.1  |  Biomarkers of neuronal damage

Our top-ranking protein was alanine aminotransferase 1 (ALT). 
High levels of ALT in plasma have been associated with decreased 
cerebral blood flow to several areas of the brain (Chen et al., 2021). 
Plasma levels of ALT have also been positively associated with 

brain PET imaging of fludeoxyglucose, a marker to visualize neu-
ronal injury (Nho et al., 2019). However, we hypothesize ALT may 
be playing a neuroprotective role in CSF. Here we observed that 
ALT is both significantly higher with age in CSF (Spearman = 0.50) 
and was the most important predictor of age in our clock overall. 
ALT is an enzyme that converts glutamate into alpha-ketoglutarate 
and pyruvate into alanine. Molecular changes that occur dur-
ing aging, such as impairment of glutamate transporters, render 
neurons vulnerable to excitotoxicity (Mattson & Magnus, 2006). 
When glutamate reuptake is inhibited, cells experience oxidative 
stress, neurodegeneration, and death. Glutamate excitotoxicity 

Protein full name Protein Gene Age correlation

CSF top 10 proteins positively correlated with age

Neurofilament heavy 
polypeptide

NFH NEFH 0.64

Neurofilament light 
polypeptide

NFL NEFL 0.62

Growth/differentiation factor 
15

MIC-1 GDF15 0.61

Spermatogenesis-associated 
protein 9

SPAT9 SPATA9 0.59

Potassium voltage-gated 
channel subfamily E regulatory 
beta subunit 5:Cytoplasmic 
domain

KCE1L:CD KCNE5 0.57

Thrombospondin-1 Thrombospondin-1 THBS1 0.57

Myosin, light chain 9, 
regulatory

MYL9 MYL9 0.57

Coiled-coil domain-containing 
protein 80

URB CCDC80 0.56

Left–right determination 
factor 2

Lefty-A LEFTY2 0.55

Activin A Activin A INHBA 0.54

CSF top 10 proteins negatively correlated with age

Sialidase-1 NEUR1 NEU1 −0.43

Testis-specific serine/
threonine-protein kinase 1

TSSK1 TSSK1B −0.40

Procollagen-lysine,2-
oxoglutarate 5-dioxygenase 2

PLOD2 PLOD2 −0.38

Fibroblast growth factor 8 
isoform B

FGF-8B FGF8 −0.37

RNA-binding protein 39 RBM39 RBM39 −0.37

Prostate and testis expressed 
protein 1

PATE PATE1 −0.36

Brain-derived neurotrophic 
factor

BDNF BDNF −0.36

Coiled-coil-helix-coiled-coil-
helix domain-containing 
protein 7

CHCH7 CHCHD7 −0.36

ATPase family AAA domain-
containing protein 1

ATAD1 ATAD1 −0.36

Glucocorticoid modulatory 
element-binding protein 2

GMEB2 GMEB2 −0.35

TA B L E  1 Top proteins used to predict 
age by CSF proteomics model. Features 
used by the elastic net to predict age 
were extracted along with their model 
weights. This table shows the full names, 
abbreviations, Entrez gene symbols 
and model weights of both the top 10 
positively weighted (top) and top 10 
negatively weighted (bottom) proteins 
ordered by model weight. The table also 
shows each protein's spearman correlation 
with age across the entire dataset. Values 
are listed where spearman correlation 
with age significance met a threshold of 
p < 0.0001. NS is listed if the protein did 
not correlate with age significantly.



    |  9 of 19MELENDEZ et al.

also plays a significant role in the pathogenesis of several acute 
and chronic neurological conditions including Huntington's dis-
ease and Alzheimer's disease. ALT and other glutamate degrad-
ing enzymes have been tested in-vitro as a means to mitigate 
glutamate toxicity, with ALT being the most successful of these 
enzymes at protecting cells. (Matthews et al., 2000). Lastly, glu-
tamate concentrations have been shown to decrease in the brain 
with age (Kaiser et al., 2005). Here we propose that ALT upregula-
tion is a novel compensatory mechanism used in aging brains to 
decrease glutamate and mitigate age-related vulnerability to exci-
totoxicity and may be an important CSF biomarker for brain health 
and dysfunction. Since little is known about the presence of ALT 
in the CNS at this time, work should be done to see if CSF levels 
of ALT correlate with markers of brain health and neurodegenera-
tion and if ALT could be a therapeutic target to relieve glutamate 
excitotoxicity with age.

Another biomarker used in our clock to predict advancing age 
was neurofilament heavy polypeptide (NFH). Neurofilaments are 
important components of the cytoskeletal structure of neurons and 
are released into CSF upon axonal injury (Kušnierová et al., 2019). 
In addition to being highly weighted by our clock, NFH was one of 
the most positively correlated proteins with age (Spearman: 0.65). 
Recently there has been mounting interest in using neurofilaments 
as indicators of neurodegeneration in age-associated neurological 
diseases such as AD, PD, and Amyotrophic Lateral Sclerosis (ALS) 
(Budelier et al., 2022; Gordon, 2020; Preische et al., 2019). We in-
terpret higher levels of NFH with age as an increase in neurodegen-
eration. This fits the observation that our CSF aging model relies 

on markers of brain injury and dysfunction as proaging signals to 
predict age.

4.1.2  |  Increased markers of neuroinflammation

Interleukin-7 (IL-7) is a homeostatic cytokine that is produced in a 
wide variety of immune cells and is required for their survival. IL-7 
has been shown to be neuro-inflammatory, promote apoptosis 
of neuronal cells and activate microglia drawing them to neuronal 
injury sites (Carrette & Surh,  2012). We observed IL-7 to be both 
positively correlated with age (Spearman = 0.22) and one of the top 
positively weighted proteins in our model. Inhibition of IL-7 at spinal 
cord injury sites has been shown to improve recovery in mouse mod-
els (Carrette & Surh, 2012). We hypothesize IL-7 may have potential 
as a therapeutic target for decreasing age-associated neuroinflam-
mation. Given its important role in immune cell survival, inhibition of 
IL-7 in the CNS may alleviate age-associated activation of the innate 
immune system and mitigate damage caused by such inflammation.

Another protein potentially involved in increased activity of 
the innate immune system with age is adhesion G-protein cou-
pled receptor G1 (GPR56). GPR56 is found to be expressed in 
oligodendrocyte precursor cells (OPCs), and disruption leads to a 
decrease in mature oligodendrocytes and OPCs resulting in hypo-
myelination (Ackerman et al., 2015). Given its role in myelination, 
it is curious that GPR56, is both positively weighted by our model 
as a predictor of increased age and positively correlated with age 
(Spearman = 0.42). One observation that might explain this is that 

Description p Value −log10 (p)
Features in pathway (Entrez gene 
symbol)

Glycoprotein hormones 0.000008 5.08 CGA, FSHB, INHA, INHBA, 
INHBB, INHBC, LHB, TSHB, 
CES1, CPB1, ENPEP, GZMH, IGF1, 
P4HB, REN, PLA2G7, and GHRL

Complement cascade 0.000156 3.81 C1QC, C2, C3, C4A, C4B, C7, 
C8A, C8B, C8G, C9, CPN2, CR1, 
CR2, CFD, FCN2, CFH, CFHR2, 
CFP, VTN, and FCN3

Scavenging by Class A 
Receptors

0.000164 3.78 APOB, COL1A1, COL3A1, 
FTH1, FTL, HSP90B1, MARCO, 
COLEC12, SCARA5, SCARB1, 
HPX, SAA1, SPARC, and APOL1

Non-integrin membrane-
ECM interactions

0.000953 3.02 COL1A1, COL2A1, COL3A1, 
COL10A1, COL11A2, DAG1, TNC, 
ITGA2, ITGB1, PDGFA, TGFB1, 
VTN, SDC3, and TRAPPC4

Mitochondrial fatty 
acid beta-oxidation of 
unsaturated fatty acids

0.001054 2.98 ACADL, ACADM, ECI1, and 
DECR1

TP53 regulates 
transcription of death 
receptors and ligands

0.002879 2.54 FAS, IGFBP3, TP53, TNFRSF10D, 
TNFRSF10B, BCL6, BID, and 
TP53I3

Terminal pathway of 
complement

0.006540 2.18 C7, C8A, C8B, C8G, and C9

TA B L E  2 Pathways enriched by 
model proteins. The bioinformatic tool 
Metascape was used to find pathways 
in the Reactome knowledgebase that 
were enriched for features used by our 
full model to predict age. Thousand one 
hundred and fifty-seven model weighted 
protein features (submitted as Entrez 
Gene IDs) were used in the enrichment 
search and all 7008 possible features 
were used as a background. Displayed 
are pathways found to be significantly 
enriched for proteins in our model 
(p < 0.01 and enrichment score >1.5), 
the name of each Reactome pathway, p 
values, and the Entrez gene symbols of 
model proteins enriched in each pathway.
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F I G U R E  4 Iterative down-sampling of proteins to create a minimal CSF aging model. An elastic net was trained on progressively fewer 
proteins to create a minimal model for predicting chronological age from CSF. Training began with the 1157 protein features identified in the 
full model. After each round of retraining, proteins were reordered by the absolute values of their new weights, and the bottom 10 proteins 
were eliminated. (a) The number of proteins used plotted against the Pearson correlation of the model's prediction of ages versus known 
chronological ages. (b) The results of a 109-protein “minimal” model predicting age versus known chronological age on the validation cohort. 
This minimal model had a 0.84 Pearson correlation with chronological age of the ADRC validation group (p = 1.13E-24) and an MAE of 4.0 (c) 
The ADRC trained 109-protein model used to predict chronological ages of the full ADNI validation cohort. The 109-protein model validated 
on this cohort with a Pearson correlation of 0.75 with chronological age (p = 6.49E-132) and MAE of 5.41 years. (d) The ADRC trained 
109-protein model used to predict chronological ages of participants from the ADNI cohort who were verified to be amyloid beta negative 
and cognitively normal. The 109-protein model validated on this cohort with a Pearson correlation of 0.83 with chronological age (p = 4.48E-
12) and MAE of 5.91 years. (e) Top 10 protein features weighted by absolute value in the 109-protein minimal model.
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GPR56 is highly expressed in microglia of the CNS (Ganesh et al., 
2020). Thus, it may be that increased GPR56 in the CSF is another 
indicator of an increasingly active innate immune system in the 
aging brain.

4.1.3  |  Compensatory and protective proteins

Antileukoproteinase (SLPI) is a secreted protein that inhibits leuko-
cyte serine proteases. It is released from epithelial surfaces to pro-
tect them from attack by endogenous proteolytic enzymes (Doumas 
et al., 2005). Although, SLPI is expressed in mucosal linings there is 
increasing evidence that it plays a role in mediation of inflammation 
in the nervous system as well. In one study, SLPI was found to local-
ize to neurons and astrocytes in ischemic tissue in rats following 
occlusion of the middle cerebral artery. In the same model, induced 
SLPI expression via adenovirus significantly reduced ischemic le-
sion size compared to controls, suggesting that SLPI may have 
neuroprotective properties (Wang et al., 2003). SLPI also has anti-
inflammatory functions on macrophages by suppressing their abil-
ity to release proinflammatory cytokines and nitric oxide (Doumas 
et  al.,  2005). We found SLPI to be both highly positively model 
weighted, indicating its predictiveness of increased age, as well as 
significantly positively correlated with age (Spearman = 0.48). We 
hypothesize this increased SLPI concentration with age in CSF may 
be a compensatory mechanism to counteract age associated inflam-
mation and protect tissues from proteolytic damage by endogenous 
enzymes as the brain ages. Inducing SLPI expression in the brain 
may be another therapeutic avenue to reduce the age-associated 
neuroinflammation observed in this study.

4.1.4  |  Additional proteins

Several top positively weighted model proteins do not clearly fit 
into a classifiable category, their roles in brain aging and the CSF are 
relatively unknown, or, in one case, they were found to be a strong 
model predictor but not significantly correlated with age.

Pulmonary surfactant-associated protein D (SP-D) was the 
7th highest ranked positively weighed protein in our model, but 
did not significantly correlate with age (p = 0.06). We hypothesize 
that proteins with such a disparity provide valuable information 
in predicting the age of individuals in the model, but only under 
specific circumstances and in conjunction with other model pro-
teins. For example, SP-D may become highly correlated with age 
when a participant has a specific disease or disorder, but is other-
wise unhelpful when predicting age. Alternatively, proteins with 
high model predictability, but low correlations, may interact with 
other proteins such that the relationships can only be detected 
by a higher structure model. High levels of SP-D are associated 
with hydrocephalus, enlargement of inner CSF spaces (Schob 
et al., 2016), and dementia (Nybo et al., 2007). While the literature 
clearly demonstrates SP-D is connected with age-associated con-
ditions, understanding the circumstances in which our model uses 
SP-D as a predictor of age remains a challenge.

Finally, we found four proteins on our list to be both strongly 
positively weighted in our model and significantly correlated 
with age (p < 0.0001); however, little else is known about their 
relationship with aging or their function in the central nervous 
system. Given the nature of other, better studied, proteins on 
this list, high priority should be placed on understanding the bi-
ology of these proteins in this context. These proteins include: 

F I G U R E  5 CSF aging model run on 
a cognitively normal (CDR = 0) group 
with amyloid plaques. We ran our CSF 
aging model on a CDR = 0 Aβ + group 
of 65 people previously unseen by our 
pretrained model and compared results 
to a group of 65 CDR = 0, Aβ-, age, sex, 
and ethnicity-matched participants from 
the validation dataset (also unseen by 
the model until after weights had been 
determined from the training set). Seen 
above are the differences between 
model predicted age and chronological 
age for each participant (Y axis). The Aβ- 
averaged a deviation of −1.03 years from 
chronological age, while the Aβ + group 
deviated by −0.86 years. This difference 
was not found to be significant by a one 
tailed T-test (P = 0.86).
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left–right determination factor 2 (Lefty-A, Spearman = 0.55), suc-
cinate dehydrogenase assembly factor 2, mitochondrial (SDHF2, 
Spearman = 0.48), prostasin (Spearman = 0.3), and syntenin-2 
(SDCB2, Spearman = 0.27).

4.2  |  Proteins predictive of decreased age

Proteins with negative weights are those that our model found to 
be predictive of younger chronological ages. We hypothesize that 
these are proteins that are lost with age and may be protective or 
beneficial if upregulated in the CNS. Here we discuss what is known 
about several of the top negatively weighted proteins found by the 
model and propose hypotheses based on our clock weights and cor-
relations with age across the entire CDR = 0, Aβ- cohort. Unlike the 
previously discussed positively weighted proteins, only four out of 
the top 10 negatively weighted proteins are significantly negatively 
correlated with age, with the remaining six showing no significant 
trend across the cohort. Why this trend is observed so much more 
in the negatively weighted proteins is unknown; however, when an-
alyzing such data, it is important to note that spearman correlations 
only capture monotonic increases or decreases, and that trends 
such as waves or peaks that may be of significant biological interest 
and predictive value are not captured by simple correlations.

4.2.1  |  Loss of anti-inflammatory and metabolism 
regulating proteins

Our top negatively weighted protein in the model was complement 
C1q tumor necrosis factor-related protein 3 (C1QT3). C1QT3 levels 
in CSF were also significantly negatively correlated with chronologi-
cal age (Spearman = −0.24). C1QT3 is a secreted protein expressed 
in many tissues and is known to have a wide range of effects includ-
ing anti-inflammatory activity, promotion of cellular differentiation 
and growth (Li et  al.,  2017), and is a known negative regulator of 
gluconeogenesis (Peterson et  al.,  2013), a process whose reduc-
tion has been shown to enhance lifespan (Hachinohe et al., 2013). 
Overexpression of C1QT3 in mice was also shown to improve insulin 
sensitivity (Peterson et  al.,  2013) and administration of C1QT3 in 
a different mouse model was shown to reduce damage following 
heart attacks (Yuasa et al., 2016). Work should be done to under-
stand the effects of C1QT3 on lifespan and its role in the CNS.

4.2.2  |  Loss of post-transcriptional 
modification proteins

We found geranylgeranyl pyrophosphate synthase (GGPPS) to be 
both negatively weighted in our model and significantly negatively 
correlated with aging (Spearman = −0.24). GGPPS is a key regulator 
for protein prenylation, an important post translational protein modi-
fication required for cell survival, proliferation, differentiation, and 

migration (Palsuledesai & Distefano,  2015). One such form of pre-
nylation is when geranylgeranyl pyrophosphate (GGPP) is attached 
to the cysteine at the c-terminus of a protein. GGPP is generated 
from farnesyl pyrophosphate (FPP) via a chemical reaction catalyzed 
by GGPPS (Wang & Casey, 2016). Prenylation necessary for proper 
development of the cerebellum and deletion of GGPPS in neuronal 
progenitor cells in mice caused depletion of granule cell progenitors 
leading to cerebellar hypoplasia (Cheng et al., 2023). Inhibition of me-
valonate production, a precursor for farnesyl and geranylgeranyl, via 
an inhibitor causes apoptosis and cell death in neurons and this ef-
fect can be rescued by addition of exogenous GGPP preventing cell 
death (Tanaka et al., 2000). Deficiency in geranylgeranyltranfersase-1 
(GGT), the protein that transfers geranylgeranyl groups from GGPP to 
target proteins, has been shown to reduce long-term potentiation in 
the hippocampus and decrease dendritic spine density in cortical neu-
rons in mice (Hottman et al., 2018). Thus, maintenance of GGPPS may 
be important to maintain GGPP levels during aging and loss of this 
protein may lead to neuronal vulnerability, and deficiency in memory 
formation through the lack of precursors needed for prenylation.

4.2.3  |  Proteins of unknown function that 
negatively correlate with age

Two proteins that were in the top negatively weighted proteins had 
limited information regarding their functions in the CNS. These in-
clude transmembrane protein 87B (TM87B, Spearman = −0.29) and 
chymotrypsinogen B2 (CTRB2, Spearman = −0.16). While TM87B 
significantly correlated with age, CTRB2 just barely missed the cut 
at p = 0.0006. Very little is known about the normal function of ei-
ther of these proteins. Given their strong weights in the model and 
negative associations with chronological age in the CSF, more work 
should be done to understand the nature of these proteins and how 
they affect the aging CNS.

4.2.4  |  Negatively weighted proteins that do not 
correlate with age

Of the top 10 proteins negatively weighted in our model, six were not 
significantly correlated with age via Spearman correlation (p > 0.0001). 
These include: Glutamate receptor ionotropic, kainate 2 (GRIK2, 
p = 0.109), PAI-2 (p = 0.045), platelet-derived growth factor receptor 
alpha (PDGFRA, p = 0.002), collagen type III (p = 0.531), annexin A5 
(p = 0.534), and phosphatidylcholine-sterol acyltransferase (LCAT, 
p = 0.009). Although many of these proteins have been studied, it re-
mains unclear how our model uses them to predict age. We hypoth-
esize these proteins are informative only under specific circumstances 
or in concert with other proteins. Alternatively, these proteins could be 
false-positives specific to this cohort. Here we discuss what is known 
about several of these proteins and how they may relate to aging.

One protein with prior aging implications is PAI-2. Under normal 
conditions PAI-2 is expressed at low levels; however, it accumulates 
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rapidly in response to inflammatory signals around severely dam-
aged brain tissue (Dietzmann et al., 2000). In a mouse study of corti-
cal brain injury, PAI-2 wild-type mice showed significantly increased 
brain swelling postinjury compared to PAI-2 knockout mice, indicat-
ing PAI-2 levels may be a risk factor for brain edema (Griemert et al., 
2019). PAI-2 does not correlate with aging in our data but is highly 
negatively weighted. We observed that individuals over 85 years old 
did not show high levels of PAI-2. Thus, the model may be inferring 
that people with high PAI-2 levels must be under 85 years old. One 
hypothesis for this is a survivorship bias. It may be that high levels 
of PAI-2 are a response to inflammation or brain injury and may be 
serving as a biomarker. Further investigation should be performed 
to see if individuals with high PAI-2 in CSF are at increased risk of 
death as they age.

Another protein, PDGFRA, forms homodimers with itself 
and heterodimers with PDGFRB (Platelet-derived growth fac-
tor receptor beta) to receive various forms of the mitogen PDGF 
(Platelet-derived growth factor) (Litwack,  2018). PDGF-BB has 
been demonstrated to stimulate neural precursor cell (NPC) pro-
liferation, and PDGF-AA has been shown to be involved in glial 
cell differentiation (Sil et al., 2018). PDGFR-α-mediated signaling 
is required for astrocyte and pericyte migration and maintenance 
of cerebral microvasculature structures (Itoh et  al.,  2011) and 
PDGF-BB and PDGF-CC have been shown to have neuroprotec-
tive effects across a range of diseases (Sil et al., 2018). Thus, loss 
of PDGFRA with age may decrease sensitivity to these neuropro-
tective ligands.

Collagen type III was another interesting negatively weighted 
model protein. Collagens are extracellular matrix proteins well 
known to decline with age (Varani et al., 2006). What makes collagen 
type III so intriguing is how important it became to our 109-protein 
minimal model, rising to the most aging informative protein over-
all (Figure 4c). Future experiments are planned to understand why 
this protein becomes so informative and what other proteins in the 
model it is interacting with.

4.3  |  Pathways enriched in proteins used to 
predict aging

We sought to understand how analyzing pathways significantly 
enriched for proteins in our model could provide insight into the 
relationships between these proteins and the underlying biology 
providing their predictive value for aging. Here we explore several of 
these enriched pathways and propose hypotheses based on domain 
knowledge, literature, and our observations.

4.3.1  |  Glycoprotein hormones

Glycoprotein hormones were the category most highly enriched for 
model weighted proteins. When examining proteins from our model 
enriched in the glycoprotein hormone pathway, our data shows that 

inhibins (INHBA, INHBB, and INHBC) are both positively weighted 
and significantly increase in concentration in CSF with age. Inhibins 
are members of the transforming growth factor-β (TGFβ) superfam-
ily produced by the anterior pituitary gland that block synthesis 
and release of Follicle-stimulating hormone (FSH, follitropin). When 
FSH is released into the bloodstream it stimulates spermatogene-
sis in males and development of ovarian follicles in females (Santi 
et al., 2020). Interestingly, FSH levels tend to increase with age in 
plasma in both men (Araujo & Wittert, 2011) and women (Grisendi 
et al., 2014) counter to what one might expect given increased pro-
duction of inhibin proteins. One hypothesis may be that inhibins are 
acting as a compensatory mechanism to help slow FSH secretion and 
production.

4.3.2  |  The complement system

The complement system was another highly enriched pathway used 
by our model. The complement system is a highly regulated compo-
nent of the innate immune system in the CNS and also plays a role in 
synaptic pruning of synapses by microglia in the adult hippocampus. 
Dysregulation of this system results in increased neuroinflammation, 
neurodegeneration, and cognitive impairment (Fatoba et al., 2022). 
Aberrant overexpression of complement components by micro-
glia has also been linked to Huntington's disease (HD) (Singhrao 
et al., 1999) and shown to play a role in neurodegeneration and AD 
in mouse models (Hong et al., 2016). Plasma levels of components 
C3 and C4 have also been positively associated with metabolic dis-
ease and negatively associated with longevity in centenarians (Fu 
et al., 2018, 2020).

C4a is both highly positively weighted by our model and posi-
tively correlated with age. C4a is a protein released by C4 upon ac-
tivation of the complement system's classical and mannose-binding 
lectin pathways. These pathways lead to upregulation of C3 and 
activation of the innate immune system. C4a was ranked the 25th 
highest weighted protein in our model by absolute value, indicat-
ing its importance in predicting aging in the CSF. This provides ev-
idence that the innate immune system is upregulated as the brain 
ages. Supporting this observation, C7 and C9, components of the 
membrane attack complex, a downstream assembly of complement 
system activation that lyses cells, are also both positively weighted 
by our model and positively correlated with age in CSF.

CFHR2 was another protein of the complement system posi-
tively weighted by our model. Although CFHR2 did not meet the 
significance threshold of p < 0.0001 to state it definitively correlates 
with age, it came very close (Spearman = 0.17, p = 0.0003). CFHR2 
competes with CFH-C3b interaction allowing activation of the 
complement system to proceed unhindered (Goicoechea de Jorge 
et al., 2013). Interestingly CFH was also found to be a positive pre-
dictor of age by our model, although to a lesser extent than CFHR2, 
and also correlated with increased aging. This may indicate that both 
activating and compensatory negatively regulating elements of the 
complement system are upregulated during aging.
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Complement factor D (CFD) was also found to be posi-
tively weighted by our model and highly correlated with age 
(Spearman = 0.5). CFD is the rate limiting enzyme of C3 conver-
tase, the enzyme which cleaves C3 into C3a, a chemoattraction 
molecule that increases inflammation, and C3b the molecule that 
tags cells for the membrane attack complex cell lysis (Barratt & 
Weitz, 2021).

Given the negative effects of complement system activation 
and its inverse correlation with mortality, we believe that inhibi-
tion of C4, a highly upstream component of two complement sys-
tem branches, should be explored as a target for age-related brain 
pathologies. Increased expression of CFH may also have benefits. 
Overall, these observations support the idea that our model uses 
activation of the complement system as a predictor of age, and 
that upregulation of this system in the CSF is positively associated 
with aging.

4.3.3  |  Scavenging by class A receptors

Class A scavenger receptors are membrane bound glycoproteins in-
volved in numerous biological functions including recognizing tar-
gets in the innate immune system, scavenging lipids in macrophages, 
and binding free extracellular ligands to initiate clearance. One such 
ligand is ferritin, which is present in the cytosol of most cells to store 
iron, and is made up of a heavy chain (ferritin heavy chain, FTH) and 
light chain (ferritin light chain, FTL) (Yu et al., 2020). Both FTH and 
FTL were positively weighted by our model and significantly posi-
tively correlated with aging. Notably, FTL was ranked 41st by abso-
lute value in predictive importance by our model. It is hypothesized 
that extracellular ferritin is a leakage product arising from damaged 
cells (Kell & Pretorius, 2014) and elevated ferritin in CSF has been 
associated with proinflammatory neurological diseases (Zandman-
Goddard et al., 1986). This supports our observation that our clock 
detects increased inflammation and cellular damage products as 
proaging signals.

4.3.4  |  Nonintegrin membrane-ECM interactions

This pathway covers protein interactions between nonintegrin 
membrane bound extracellular matrix proteins and their ligands. 
Nearly all proteins in this pathway used by our model are negatively 
weighted indicating higher concentrations are predictive of younger 
ages. However, there are several positively weighted exceptions 
including: Transforming growth factor beta-1 (TGF-b1), collagen 
alpha-1(X) chain (COAA1), platelet-derived growth factor subunit A 
(PDGF-AA), and tenascin. Of these, only TGF-b1 and Tenascin are 
significantly correlated with age (both positive). TGF-b1 is an anti-
inflammatory cytokine (Piras et al., 2012), and PDGF-AA has been 
shown to have neuroprotective effects (Zheng et al., 2010). Tenascin 
in the brain becomes highly upregulated in response to neuronal 
injury (Chelluboina et  al.,  2022). Thus, we observe many of these 

positively weighted proteins are induced in response to neuronal 
stress or insult.

Of particular interest in the negatively weighted model proteins 
is the large representation of collagens. These include Collagen Type 
III, Collagen Type II, Collagen alpha-1(I) chain: C-term propeptide, 
and Collagen alpha-2(XI) chain (COL11A2). Of these, Collagen Type 
III is particularly notable in that it is both one of the highest rank-
ing negatively weighted proteins (Table 1) in the full model, and the 
highest ranking protein in our 109 protein minimal model, but is not 
significantly correlated with age. We propose that Collagen Type 
III and similar proteins may provide nonlinear information on age in 
conjunction with other proteins or are highly predictive under spe-
cific biological circumstances. Further analysis and techniques will 
need to be developed to understand how these non-age-correlative 
proteins are providing predictive information. Although our model 
highlights their importance, it remains unknown what the loss of 
these collagens in CSF can tell us biologically about the aging brain 
environment.

4.3.5  |  TP53 regulates transcription of death 
receptors and ligands

The TP53 (p53) nuclear protein is the central mediator between 
cellular death and survival and governs many biological responses 
to stress including apoptosis and senescence (Kastenhuber & 
Lowe, 2017). One way p53 accomplishes this is upregulating TRAIL 
receptors that bind the TRAIL ligand to induce cell death (Willms 
et  al.,  2019). In our model, TRAIL R4 and tumor necrosis factor 
receptor superfamily member 10B (TRAIL R2) were positively 
correlated with age and positively weighted. Binding to TRAIL 
R2 by TRAIL induces apoptosis in tumor cells and activates pro-
inflammatory pathways, however, binding to TRAIL R4 appears to 
have the opposite effect and protects against TRAIL R2-mediated 
cell death (Degli-Esposti et  al.,  1997). This dichotomy is curious 
as our data shows both receptors are upregulated with age. One 
possible hypothesis is that cells are priming themselves for either 
fate in response to stress.

Another tumor necrosis factor that is both positively weighted 
in our model and positively correlated with age was tumor necrosis 
factor receptor superfamily member 6 (Fas). Fas is another cell death 
surface receptor that triggers apoptotic cell death via activation of 
caspase (Waring & Müllbacher, 1999). This further supports the hy-
pothesis that the aging CSF is experiencing stressful conditions and 
priming cells for apoptotic events.

4.3.6  | Mitochondrial fatty acid beta-oxidation of 
unsaturated fatty acids

While this pathway was enriched for model proteins, we do not have 
a coherent explanation for it at this time. This is due to the large rep-
resentation of non-aging correlative proteins in this pathway making 
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interpretation of the impact on aging unfeasible baring development 
of more advanced analytical techniques.

5  |  DISCUSSION

In this article, we present a novel machine learning-based CSF 
proteomics clock whose predictions had a 0.79 correlation with 
chronological age and MAE of 4.30 years in our validation cohort 
(ADNI) (Figure 2). Further we showed the model was interpretable 
and able to provide biological insight into CSF and brain aging. 
To do so we performed protein feature extraction on our model 
and analyzed both top hits and enriched pathways. We hypoth-
esized that proteins weighted positively by our model would be 
frequently associated with age-related dysfunction and disease 
and that proteins with negative model weights would generally be 
neuroprotective and enhance cell growth, and progenitor cell and 
tissue maintenance.

We found that top positively weighted proteins fell into two main 
categories: Markers of neuronal damage and signals of neuroinflam-
mation and disease. Analysis of pathways enriched for proteins in our 
model supported this view with proteins of the complement system 
being both highly correlated with age and positively weighted, indi-
cating an increase in innate immune system activity. Upregulation of 
proteins such as FTH, typically only found extracellularly upon cellu-
lar lysis, further support the observation of ongoing cellular damage 
with age. Additionally, upregulation of TRAIL receptors was ob-
served with age, possibly indicating priming for proapoptotic events. 
An exception to this trend was SLPI, a positively weighted anti-
inflammatory, neuroprotective protein which localizes to sites of 
neuronal damage. We interpret this as a compensatory mechanism 
to combat age-associated inflammation. Another potential novel 
compensatory mechanism we found was upregulation of ALT, which 
may be a way for the aging brain to combat glutamate excitotoxicity. 
We also identified several novel proteins previously unknown to be 
associated with CSF aging. These include Lefty-A, SDHF2, prostasin, 
and SDCB2 and warrant further investigation.

We observed that top negatively weighted proteins, predicted 
to associate with more youthful states, were generally of a benefi-
cial nature. Several proteins in this category had anti-inflammatory 
and neuronal protective properties such as C1QT3 and PDGFRA. 
We also found proteins such as GGPPS, vital for post translational 
modifications, whose loss may lead to neuronal vulnerability, and 
deficient memory formation. Other proteins such as collagen type 
III, were of high importance to both the full and minimal models but 
lacked significant correlation with age. We hypothesize such proteins 
provide nonlinear information or become informative only in con-
junction with other model proteins. Additionally, we identified two 
novel proteins, TM87B and CTRB2, both highly negatively weighted 
in our model, with TM87B negatively correlated with age and CTRB2 
nearly meeting the significance threshold. Little is known about the 
biological functions of either protein and follow-up studies should 
be done to understand their role in the aging CNS.

Next, we sought to test the utility of our model in assessing if 
people with age-associated diseases, such as presymptomatic AD, 
experienced accelerated biological aging in CSF. This also served as 
an additional group on which to test our clock. We found our clock 
showed no significant differences in accuracy between people with 
presymptomatic AD versus the healthy control group. While it is well 
known that AD risk increases with age, this observation suggests 
that changes taking place in the earliest stages of Alzheimer's dis-
ease do not accelerate aging in the CNS.

Lastly, we presented a minimal version of our CSF aging clock 
that uses just 109 proteins to predict age, along with a novel 
method to generate such models we call iterative reweighting. Our 
109-protein clock performed nearly as well as the full 1157 pro-
tein clock on our ADRC test data, with a Pearson correlation with 
chronological age of 0.84 versus the original clock's 0.85. The clock 
also performed well on the ADNI validation subcohort that included 
only cognitively normal, amyloid negative individuals (Pearson 0.83) 
(Figure  4d), however, it suffered more performance loss than the 
full clock when predicting the entire ADNI data set which included 
CDR >0 and amyloid positive individuals (Pearson 0.75) (Figure 4c). 
While the assumption might be made that a smaller protein clock 
with similar performance would be preferable to the full protein 
clock, this may not be the case, as it is possible that such condensed 
clocks may not capture the full biological impacts of aging, and may 
be less sensitive to environmental, experimental, and disease state 
perturbations. Further experiments will need to be done to test the 
robustness of each clock under such circumstances.

6  |  CONCLUSIONS

In conclusion, this report presents a new CSF proteomics-based 
clock which may predict biological aging and provides novel insights 
into the biology of aging in the CNS. These findings and tools may 
point to potential therapeutic targets for intervention in aging- and 
age-related diseases. Future research is needed to distinguish be-
tween proteins causative of negative aging phenotypes versus pro-
teins that are compensatory in nature. Therefore, target analysis, 
experimentation, and validation are needed for these potential can-
didate targets of aging interventions.
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