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Abstract
Machine	learning	can	be	used	to	create	“biologic	clocks”	that	predict	age.	However,	
organs, tissues, and biofluids may age at different rates from the organism as a whole. 
We sought to understand how cerebrospinal fluid (CSF) changes with age to inform 
the	 development	 of	 brain	 aging-	related	 disease	mechanisms	 and	 identify	 potential	
anti-	aging	therapeutic	targets.	Several	epigenetic	clocks	exist	based	on	plasma	and	
neuronal	tissues;	however,	plasma	may	not	reflect	brain	aging	specifically	and	tissue-	
based	clocks	require	samples	that	are	difficult	to	obtain	from	living	participants.	To	
address	these	problems,	we	developed	a	machine	learning	clock	that	uses	CSF	prot-
eomics	to	predict	the	chronological	age	of	individuals	with	a	0.79	Pearson	correlation	
and	mean	estimated	error	(MAE)	of	4.30 years	in	our	validation	cohort.	Additionally,	
we	analyzed	proteins	highly	weighted	by	the	algorithm	to	gain	insights	into	changes	in	
CSF and uncover novel insights into brain aging. We also demonstrate a novel method 
to	create	a	minimal	protein	clock	that	uses	just	109	protein	features	from	the	origi-
nal	clock	to	achieve	a	similar	accuracy	(0.75	correlation,	MAE	5.41).	Finally,	we	dem-
onstrate	that	our	clock	 identifies	novel	proteins	that	are	highly	predictive	of	age	 in	
interactions with other proteins, but do not directly correlate with chronological age 
themselves.	In	conclusion,	we	propose	that	our	CSF	protein	aging	clock	can	identify	

This is an open access article under the terms of the Creative	Commons	Attribution License, which permits use, distribution and reproduction in any medium, 
provided	the	original	work	is	properly	cited.
©	2024	The	Author(s).	Aging Cell	published	by	Anatomical	Society	and	John	Wiley	&	Sons	Ltd.

Carlos	Cruchaga	and	Randall	Bateman	have	contributed	equally	to	this	work.		

Abbreviations:	AD,	Alzheimer's	disease;	ADNI,	Alzheimer's	Disease	Neuroimaging	Initiative;	ADRC,	Knight	Alzheimer	Disease	Research	Center;	ALS,	Amyotrophic	Lateral	Sclerosis;	Aβ, 
amyloid	beta;	Aβ+,	amyloid	beta	plaque	positive;	Aβ-,	amyloid	beta	plaque	negative;	CDR,	Clinical	dementia	rating;	CNS,	central	nervous	system;	CSF,	cerebrospinal	fluid;	MAE,	mean	
estimated	error;	PD,	Parkinson's	disease.

https://doi.org/10.1111/acel.14230
www.wileyonlinelibrary.com/journal/acel
https://orcid.org/0000-0003-3629-3274
https://orcid.org/0000-0002-0418-2724
mailto:
mailto:batemanr@wustl.edu
http://creativecommons.org/licenses/by/4.0/


2 of 19  |     MELENDEZ et al.

1  |  INTRODUC TION

As	the	brain	ages,	humans	experience	decreased	mental	process-
ing	speed	(Manard	et	al.,	2014)	and	an	increased	likelihood	of	de-
mentia and neurodegenerative disease (Boyle et al., 2013). The 
composition of cerebrospinal fluid (CSF) also changes with age: 
total protein turnover slows (Chen et al., 2012), the blood–brain 
barrier becomes more permeable to molecules from plasma (Knox 
et al., 2022), and expression in the choroid plexus is altered (Tahira 
et al., 2021). These changes to proteins in the extracellular envi-
ronment of the central nervous system (CNS) may contribute to 
proteostatic dysregulation in brain tissue, accumulation of toxic 
molecules, and impairment of mechanisms preventing neurode-
generation	 (Marques	 et	 al.,	 2013).	 Additionally,	 the	 prevalence	
of	age	associated	diseases	such	as	late	onset	Alzheimer's	disease	
(AD)	changes	over	time,	with	the	incidence	of	AD	doubling	every	
5 years	after	age	65	(Qiu	et	al.,	2009).

Understanding the proteomic changes that occur during aging in 
biological fluids may provide new therapeutics for neurodegenera-
tive	disorders	and	brain	health-	span	extension.	For	example,	admin-
istering CSF (Iram et al., 2022) from young animals into older animals 
has beneficial therapeutic effects on memory, health, and cognition. 
However,	more	work	needs	to	be	done	to	understand	the	mechanis-
tic changes underlying these benefits and effects on aging. In order 
to determine if interventions reverse or delay aging, objective met-
rics,	that	is,	biomarkers,	that	can	measure	the	age	of	an	organism	or	
tissue are needed.

To this end, there has been great interest in developing aging 
“clocks”	 that	can	predict	 the	age	of	an	organism	 from	biomarkers.	
Deviations	 in	 these	 clocks	 from	 expected	 chronological	 age	 can	
be used to determine if interventions are effective at modulating 
aging.	 The	majority	 of	 these	 clocks	 have	 been	 based	 on	 changes	
in	 epigenetic	 methylation	 marks	 on	 DNA	 in	 plasma	 or	 tissues	
(Horvath, 2013),	(Zhang	et	al.,	2019), (Johnson et al., 2020). Brain cell 
and	brain	tissue-	specific	clocks	have	also	been	developed	that	show	
excellent	correlations	with	chronological	age	 (Buckley	et	al.,	2023; 
Horvath, 2013)	 including	epigenetic	plasma	clocks	 that	have	been	
optimized	for	brain	aging	(Cole,	2020).

However, several major challenges remain that limit the util-
ity	of	these	clocks	to	understand	brain	aging	and	 identify	testable	
protein targets for therapeutic intervention. While many robust 
plasma-	based	 epigenetic	 aging	 clocks	 have	 been	 developed,	 they	
have proven insufficient in reflecting neuropathologies associated 

with	brain	aging	(Fransquet	et	al.,	2021).	Brain-		and	tissue-	specific	
clocks	provide	a	more	direct	measurement	of	brain	aging;	however,	
these	clocks	cannot	typically	be	used	in	 living	patients	due	to	lack	
of	access	to	samples.	While	methylation-	based	surrogates	that	cor-
relate with protein concentration have been developed and proven 
valuable in diagnosing disease (Fu et al., 2021), greater predictive 
power might be obtained by measuring protein concentration di-
rectly.	Thus,	there	is	need	for	a	proteomics-	based	clock	that	is	both	
reflective of brain aging and acceptable for use in living individuals.

Recently,	several	novel	minimally	invasive	clocks	have	arisen	that	
do	not	rely	on	epigenetics.	Notably,	MRI	clocks	which	use	imaging	
of brain volumes and other metrics to predict age (Cole, 2020), and a 
proteomics	based	blood	clock	which	uses	blood	circulating	proteins	
to infer the ages of organs throughout the body (Oh et al., 2023). We 
believe	 these	are	 large	steps	 forward	as	 imaging-	based	clocks	can	
be	used	in	live	subjects	and	organ-	age	inference	clocks	provide	in-
formation about multiple regions of the body from easily obtainable 
plasma.	However,	neither	of	these	clocks	directly	measures	the	pro-
teomic changes that occur in the aging brain environment. Proteins 
are the machinery of life; they are the direct drivers of the reactions 
that	make	up	biology	and	the	end	point	for	biological	functionality.	
This	makes	their	impact	on	aging	directly	interpretable	and	hypoth-
eses generated from their study testable. Thus, we believe there is 
great	need	for	a	CSF	proteomics	clock	that	can	measure	CSF	aging,	
provide direct insight into the pathways and proteins that change 
during age, and uncover new targets for brain aging and neurode-
generation interventions.

In	this	study,	we	present	a	machine	learning-	based	aging	clock	that	
uses human CSF proteomics data as an input to predict the chronolog-
ical	age	of	the	CNS.	As	CSF	is	readily	available	via	lumbar	punctures,	it	
provides an opportunity to approximate brain aging in living persons. 
CSF	is	routinely	banked	by	many	cohorts	studying	age-	related	brain	
diseases,	such	as	Parkinson's	disease	(PD)	and	AD	making	it	an	acces-
sible biofluid to understand the impact of diseases and treatments on 
brain	aging.	While	taking	CSF	 is	a	more	 invasive	process	than	blood	
draws,	 it	 is	drawn	regularly	 in	some	parts	of	Europe	and	it's	use	has	
significantly increased in memory and neurology clinics to allow for 
accurate	diagnosis	of	Alzheimer's	disease.	We	selected	CSF	proteomic	
measures	from	cognitively	normal,	non-	AD	controls	to	investigate	age-	
related	changes	in	CSF.	We	then	implemented	a	machine-	learning	al-
gorithm	to	build	a	CSF	proteomics	biologic	clock	to	 identify	specific	
age-	related	proteins,	allowing	a	physiologic	interpretation	of	the	aging	
proteome.	Here	we	demonstrate	that	our	clock	has	high	concordance	

novel proteins that influence the rate of aging of the central nervous system (CNS), 
in a manner that would not be identifiable by examining their individual relationships 
with age.
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with chronological age, identifies an interpretable set of proteins and 
pathways used to estimate biological CNS age, and provides insights 
into	the	biological	processes	of	CNS	aging.	We	hypothesize	that	neg-
atively weighted proteins used by the model to predict age will be as-
sociated	with	protective	effects	on	age-	associated	brain	pathologies	
and	decline	(i.e.,	youth-	associated	mechanisms),	and	that	loss	of	these	
proteins	will	be	associated	with	harmful	aging	phenotypes.	Likewise,	
we	hypothesize	many	proteins	with	positive	weights	will	be	associated	
with	detrimental	CNS	aging-	associated	phenotypes	or	compensatory	
responses to aging. Highly weighted proteins may identify potential tar-
gets or pathways for aging interventions. To explore these hypotheses, 
we	analyzed	the	top	highly	positively	and	highly	negatively	weighted	
proteins	identified	by	our	model	and	found	age-	associated	effects	in	
the literature. We also explored age predictive changes on a systems 
level by examining pathways that are highly enriched for proteins used 
by our model to predict age (Figure 1). In addition to our full model, 
we also showcase a more compact minimal model, that uses an order 
of magnitude fewer proteins, with similar performance and a method 
to	generate	such	compact	models.	Finally,	we	 tested	our	clock	on	a	
second validation cohort and a group of cognitively normal but amyloid 
beta	plaque	positive	(Aβ+)	individuals	to	see	if	this	presymptomatic	AD	
group demonstrated accelerated biological aging in the CNS.

2  |  MATERIAL S AND METHODS

2.1  |  Cohorts

Demographic, diagnostic, and CSF proteomics data for this study 
was	 obtained	 via	 a	 data	 request	 to	 the	Knight	Alzheimer	Disease	
Research	 Center	 (ADRC).	 Proteomics	 data	 was	 generated	 by	 the	
NeuroGenomics	 and	 Informatics	 (NGI)	 Center	 at	 Washington	
University and protein concentrations were measured via the 
SomaLogic proteomics platform. The original cohort consisted of 
857	 participants	 with	 varying	 ranges	 of	 Clincial	 Dementia	 Rating	
(CDR)	and	AD	pathology.	To	remove	bias	from	age	related	disease	
states,	such	as	AD	and	other	forms	of	dementia,	we	narrowed	our	
cohort	down	 to	437	cognitively	normal	participants	with	CDR = 0,	
and	 Aβ42/40	 ratios	 more	 than	 0.0673	 as	 the	 cutoff	 for	 amyloid	
positivity (Barthélemy et al., 2023).	 Aβ42/40 ratios were meas-
ured	via	Lumipulse.	Participant	age	ranged	from	43	to	91 years	old	
with	a	median	age	of	69.	Regarding	sex	at	birth,	249	of	the	partici-
pants	were	female	and	188	were	male.	Participant	years	of	educa-
tion	 ranged	 from	a	minimum	of	9 years	 to	 a	maximum	of	24 years	
with	a	median	of	16 years.	Race	of	the	cohort	was	as	follows:	382	
White	(non-	Hispanic),	52	Black,	two	people	of	mixed	race	and	one	
of	Asian	descent.	A	second	validation	cohort	was	obtained	from	the	
Alzheimer's	Disease	Neuroimaging	Initiative	(ADNI).	The	full	cohort	
included	735	individuals	for	which	there	was	CSF	proteomics	data	
available. The subcohort of cognitively normal amyloid negative in-
dividuals consisted of 44 individuals with CDRs of 0. CSF measure-
ment	on	the	Elecsys	platform	of	pTau/Aß42 < =0.025	was	used	to	
determine amyloid positive status. This threshold was determined 

by ROC analysis that gave the best sensitivity and specificity with 
PET centiloid scores used for amyloid beta status classification.

2.2  |  Machine learning and elastic net model

A	 custom	 python	 program	was	 built	 to	 train	 an	 elastic	 net-	based	
machine learning algorithm to predict participant chronological age 
based	on	7008	protein	measurements	(features)	in	human	CSF.	The	
elastic	net	algorithm	was	implemented	via	the	scikit-	learn	machine	
learning	 library.	Missing	data	points	were	 imputed	using	a	 k	near-
est	neighbor-	based	approach	with	K = 2.	Prior	 to	 training	 the	data	
was	scaled	 from	0	to	1	using	 the	min-	max	feature	scaler	of	scikit-	
learn, which gave the best performance of the data transformation 
approaches	tried.	Additional	scaling	approaches	explored	 included	
log	 transforming	 the	data,	 the	 scikit-	learn	 standard	 scaler	 and	 the	
scikit-	learn	power	transformer	(which	also	normalizes	unit-	variance).	
To generate the model, the data were randomly split into two sets: a 
“training	set”	consisting	of	349	individuals	(80%	of	the	dataset)	and	a	
“test	set”	(20%	of	the	dataset)	consisting	of	88	individuals	held	aside	
to validate the model. The training set was then split again into two 
groups	consisting	of	279	individuals	(80%	of	the	training	set)	and	70	
individuals	(20%	of	the	training	set).	This	first	set,	the	“sub	training	
set,”	was	used	 to	 train	 the	elastic	net	 and	 find	 the	optimal	 tuning	
parameters	(L1	and	Alpha),	while	the	second	set,	the	“sub	validation	
set,”	was	used	as	validation	data	for	this	stage	of	the	training.	The	
tuning	parameters	of	the	final	model	were	an	Alpha	of	0.0012	and	
an	L1	of	0.58.	After	optimal	tuning	parameters	and	feature	weights	
were	 determined,	 a	 third	 order	 polynomial,	 the	 “transformation	
polynomial,”	was	fit	on	the	age	predicted	by	the	model	on	the	sub	
validation set and the real chronological age of the participants. The 
polynomial	used	in	the	final	validation	of	the	model	took	the	form:	
y = 68.5 + 16.7·x	 –	 4.0·x2–0.8·x3, where x is the original prediction 
made	by	the	model	and	y	is	the	adjusted	prediction.	Subsequently	
a linear transformation was trained to shift the data such that a lin-
ear regression fit to the data had an x and y intercept of approxi-
mately	zero.	The	linear	shift	took	the	form	y = ((60.7	–	x)/0.82) + 60.7.	
Weights for both the polynomial and linear transformations were 
trained on the training data only and at no point had access to the 
final	validation	data	used	in	figures.	When	making	final	predictions	
for the validation group, the model was given access only to the 
7008	SomaLogic	measured	protein	concentrations	and	had	no	other	
information about the validation group participants.

2.3  |  Feature extraction

Upon training of the final model each protein feature was given a 
weight based on how much it was used in the final model to predict 
chronological	age.	Features	with	a	weight	of	zero	were	not	used	at	
all by the model. Features with a positive weight contributed to in-
creased estimations of age, whereas features with negative weights 
contributed to decreased estimations of age.
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F I G U R E  1 A	graphical	overview	depicting	development	of	the	CSF	aging	clock,	model	feature	extraction,	and	bioinformatics.	(1)	CSF	
from	437	cognitively	normal,	amyloid	beta	negative	individuals	were	measured	using	the	SomaLogic	system	to	quantify	7008	proteins.	(2)	An	
elastic net was trained on the proteomics profiles to develop a machine learning algorithm that predicts biological CSF age. (3) Proteins used 
to	predict	age	were	extracted	from	the	model,	ranked	and	categorized	into	older	associated	and	younger	associated	groups.	(4)	Pathway	
enrichment	was	performed	via	the	bioinformatics	tool	Metascape	to	look	for	pathways	enriched	in	model	proteins	in	the	Reactome	pathway	
knowledgebase.
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2.4  |  Pathway enrichment

The	bioinformatic	 tool	Metascape	 (Zhou	et	 al.,	 2019) (https:// metas 
cape. org)	 was	 used	 to	 find	 pathways	 in	 the	 Reactome	 knowledge	
base	 (Gillespie	et	al.,	2022) that were enriched for features used by 
the	final	model	to	predict	age.	Metascape	is	a	tool	designed	to	analyze	
and	interpret	OMICs-	based	data,	and	Reactome	is	a	manually	curated	
database that provides molecular details across a broad range of physi-
ological and pathological biological processes in humans. Settings for 
Metascape	included	a	minimum	overlap	of	3,	p value cutoff of 0.01 and 
a	minimum	enrichment	score	of	1.5.	A	total	of	1157	model	weighted	
human protein features were used in the enrichment search and all 
7008	possible	protein	features	were	used	as	a	background.

2.5  |  Statistical analysis

A	 Pearson	 correlation	 between	 model	 predicted	 ages	 and	 chrono-
logical	ages	was	used	as	a	measure	of	model	accuracy.	Models	were	
trained	to	maximize	this	correlation	during	the	training	phase.	R2 val-
ues were generated by fitting a linear regression between model pre-
dicted ages and chronological ages. Correlation with chronological age 
was generated via spearman correlation across the entire cognitively 
normal,	Aβ	plaque	negative	(Aβ-	)	cohort.	A	one	tailed	t-	test	was	used	to	
test	the	hypothesis	that	Aβ	plaque	positive	(Aβ+) status in cognitively 
normal individuals would accelerate biological aging.

2.6  |  Iterative re- weighting and down- sampling

An	elastic	net	machine	learning	algorithm	was	used	to	generate	our	
full	1157	protein	feature	CSF	aging	clock	as	described	above.	These	
protein	features	were	then	ranked	by	absolute	value	of	weights	given	
by the full model. The bottom five least weighted protein features 
were then removed from the dataset, and the model was retrained 
on	the	remaining	proteins	to	generate	a	new	ranking.	This	process	
was then repeated 230 times until only four proteins remained from 
the	original	1157	proteins.	Pearson	correlation	values	were	then	cal-
culated and plotted versus proteins used by each model to generate 
Figure 4a.

3  |  RESULTS

3.1  |  Machine learning model

To create a machine learning algorithm to predict chronological age 
from proteins in human CSF, we trained a modified elastic net on 
the	concentrations	of	7008	proteins	in	human	CSF	as	measured	on	
the	Somalogic	proteomics	system.	Of	the	7008	measured	CSF	pro-
teins,	the	model	made	use	of	1157	proteins	to	predict	age.	Figure 2a 
shows	the	trained	model's	predictions	of	age	in	years	(y-	axis)	versus	
the	actual	chronological	ages	of	the	88	individuals	in	the	validation	

cohort	(x-	axis).	Predictions	made	by	the	model	showed	a	high	level	
of agreement with chronological age at the time of CSF draw, with a 
Pearson	correlation	of	0.85	and	mean	estimated	error	of	3.94 years.	
Additonally,	we	preformed	100-	fold	cross	testing	of	our	model	gen-
eration method and confirmed that our selected model was represe-
natative	of	the	median	Pearson	correlation	and	MAE	performance	of	
these	model	distributions	(Appendix	S2). The trained model was then 
validated	on	 the	CSF	proteomes	of	 an	additional	735	participants	
from	 an	 additional	 cohort,	 the	 Alzheimer's	 Disease	Neuroimaging	
Initiative	(ADNI).	The	model	continued	to	perform	well	on	this	co-
hort	with	a	Pearson	correlation	to	chronological	age	of	0.79	and	an	
MAE	of	4.30	(Figure 2b).	As	the	original	model	was	trained	on	only	
cognitively	normal,	amyloid	beta	negative	individuals,	and	the	ADNI	
cohort included participants with a range of cognitive states and 
amyloid status, we created a subcohort of 44 individuals who we 
confirmed were amyloid beta negative and cognitively normal. We 
then validated our CSF aging model on this subcohort and obtained 
similar	results	to	the	full	cohort,	with	a	Pearson	correlation	of	0.81	
and	MAE	of	4.85	(Figure 2c). This validation confirms the power of 
our model to predict chronological age from CSF proteomics.

3.2  |  Cohort- wide protein correlation with age

An	additional	way	we	sought	to	understand	how	CSF	proteins	in	our	
cohort changed with age was correlation. We performed Spearman 
correlations with chronological age on the concentrations of all pro-
teins in our data using p < 0.0001	as	the	threshold	for	significance.	
We	 observed	 that	 2117	 protein	 features	 (30%)	 of	 the	 7008	 pos-
sible protein features significantly correlated with age (Figure 3a). 
Of these, 340 age correlated proteins were used by our model 
(Figure 3b). Figure 3c shows the top 10 positively weighted and neg-
atively	weighted	proteins	that	significantly	correlated	with	age.	A	full	
list of all proteins that significantly correlated with age is available in 
the	extended	materials	(Appendix	S1).

3.3  |  Model feature extraction

To investigate which proteins in CSF were predictive of aging, we 
extracted	 features	 from	 our	 elastic	 net	 and	 ranked	 them	 by	 the	
model weight, an indication of how much impact each protein had 
on	 the	 final	 prediction.	A	 positive	weight	 indicates	 higher	 protein	
concentrations are predictive of older ages, whereas a negative 
weight indicates higher concentrations predict more youthful states. 
An	advantage	of	elastic	net-	based	models	over	many	other	machine	
learning models is that they are both interpretable and excel at ex-
cluding	 non-	informative	 features,	 while	 retaining	 informative	 but	
redundant features by distributing their predictive weights. Of the 
7008	total	proteins,	1157	were	used	by	the	model	to	predict	aging,	
while	5851	proteins	had	weights	of	zero	indicating	our	model	did	not	
find	 them	 informative.	 Five	hundred	 and	eighty-	nine	proteins	 had	
positive	weights,	while	568	proteins	had	negative	weights.	Table 1 

https://metascape.org
https://metascape.org
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summarizes	the	top	10	positively	and	negatively	weighted	proteins	
extracted	from	the	model.	A	full	list	of	all	proteins	and	weights	used	
by	the	model	can	be	found	in	the	extended	materials	(Appendix	S1).

3.4  |  Pathways enriched for model 
predictive proteins

To gain further insight into the biological impact of age predictive 
protein changes in CSF we searched for biochemical pathways 
enriched for proteins used by our model. To do this we used the 
bioinformatics	platform	Metascape	to	search	the	Reactome	knowl-
edgebase for pathways significantly enriched for model weighted 
proteins.	All	 1157	positively	 and	 negatively	weighted	 protein	 fea-
tures	were	used	in	this	analysis,	and	the	entire	set	of	7008	possible	

proteins	 was	 used	 as	 a	 background.	 Metascape	 found	 a	 total	 of	
seven nonredundant pathways in which proteins in our model were 
significantly enriched (p < = 0.01).	 A	 list	 of	 enriched	pathways	 and	
proteins enriched in each pathway is available in Table 2.

3.5  |  Generation of a minimal protein model for 
age prediction

In	addition	to	the	full	1157	protein	model,	we	set	out	 to	generate	
a model using the fewest proteins possible while maintaining ac-
curacy. Our goal was to create a minimal model that was more ac-
cessible	 to	 use	 due	 to	 requiring	 fewer	 proteomics	 measurements	
and determine the smallest set of proteins with enough informa-
tion content to predict age. To do so we developed a process we 

F I G U R E  2 Age	predicted	via	CSF	proteomics	elastic	net	model	versus	chronological	age.	An	elastic	net	was	trained	to	predict	
chronological	age	from	SomaLogic	CSF	proteomics	profiles,	each	containing	measurements	of	7008	different	proteins.	(a)	The	model	was	
trained	on	349	cognitively	normal,	amyloid	beta	negative,	participants	from	the	Knight	ADRC,	ages	43–91	with	a	median	age	of	69.	The	
trained	model	is	shown	predicting	the	ages	of	an	additional	88	cognitively	normal	participants	not	included	in	the	training	data.	The	model	
made	use	of	1157	protein	features	to	generate	predicted	CSF	age	and	shows	a	0.85	Pearson	correlation	with	chronological	age	(p = 2.79E-	
25)	and	a	mean	average	error	of	3.94 years.	(b)	The	trained	model	was	then	validated	using	CSF	proteomics	from	an	additional	cohort,	the	
Alzheimer's	Disease	Neuroimaging	Initiative	(ADNI)	consisting	of	a	new	set	of	735	individuals.	The	model	validated	on	this	cohort	with	
a	Pearson	correlation	of	0.79	with	chronological	age	(p = 3.57E-	161)	and	MAE	of	4.30 years.	(c)	As	the	ADNI	cohort	included	a	range	of	
individuals	with	varying	clinical	dementia	ratings	(CDR)	and	amyloid	beta	statuses	a	subcohort	was	created	of	44	ADNI	participants	who	
were	verified	to	be	cognitively	normal	and	amyloid	beta	negative.	The	model	was	then	validated	on	this	subcohort	and	had	a	0.81	Pearson	
correlation with chronological age (p = 3.15E-	11)	and	MAE	of	4.85 years.
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called	 iterative	 feature	 down-	sampling,	whereby	we	 progressively	
retrained our elastic net using features in the previous elastic net, 
re-	ranking	by	absolute	value	of	model	weights	and	dropping	the	bot-
tom 10. We then graphed the Pearson correlations of each model 
(Figure 4a).	Model	accuracy	dropped	steeply	around	109	proteins,	
with	our	109-	protein	model	(Pearson	0.84,	p = 1.13E-	24)	(Figure 4b) 
performing	nearly	as	well	as	our	 full	1157	protein	model	 (Pearson	
0.85,	p = 2.79E-	25)	(Figure 2)	on	the	ADRC	test	data.	To	validate	the	
109-	protein	model	 on	 an	 additional	 cohort,	 the	 pretrained	model	
was	run	on	both	the	full	ADNI	cohort	(Pearson	0.75,	p = 6.49E-	132)	
(Figure 4c)	and	the	subset	of	ADNI	participants	verified	to	be	amy-
loid	beta	negative	and	cognitively	normal	(Pearson	0.83,	p = 4.48E-	
12) (Figure 4d). Top protein features were then extracted from the 
model (Figure 4e),	and	the	full	109	protein	features	were	used	for	
pathway analysis. Notably, representatives from all pathways en-
riched for by the full model were present in pathways enriched for 
by	the	109-	protein	model.	It	is	possible	that	these	proteins	contain	
enough age predictive information to represent the missing proteins 
from their respective pathways and may be of further interest bio-
logically.	A	full	list	of	all	proteins	in	the	109-	protein	model,	and	their	
training	weights,	is	available	in	the	Appendix	S1.

3.6  |  Amyloid beta status in cognitively normal 
individuals does not affect the accuracy of our CSF 
aging clock

One	application	of	our	CSF	proteomics	aging	clock	was	to	examine	
if	participants	diagnosed	with	age	associated	diseases	such	as	AD	
deviate significantly in predicted age versus healthy individuals. 

To	do	 this	we	compared	 the	validation	cohort	of	our	clock,	who	
were	all	both	cognitively	normal	(CDR = 0)	and	Aβ-	,	to	a	new	group	
of	cognitively	normal	(CDR = 0)	but	Aβ + individuals,	indicating	pr-
esymptomatic	AD.	Each	group	contained	a	 total	of	65	age,	 race,	
and	gender	matched	participants.	We	then	applied	the	full	1157	
protein	 feature	 clock	 to	 both	 groups	 and	 plotted	 the	 difference	
in	years	between	clock's	predicted	age	and	participant's	chrono-
logical	age	as	a	measure	of	clock	accuracy.	We	hypothesized	that	
Aβ + individuals	 would	 show	 an	 increase	 in	 predicted	 age	 com-
parted	to	Aβ-		participants.	However,	we	found	no	significant	dif-
ferences	in	clock	predicted	age	accuracy	between	the	two	groups.	
Both	Aβ-		and	Aβ + groups	had	an	average	difference	in	age	predic-
tion	of	around	−1 years	(−1.03	and	−0.86,	respectively)	and	a	one	
tailed T-	test	 revealed	a	p	 value	of	0.86	 (Figure 5). This supports 
the null hypothesis that biological CNS age as measured by CSF 
proteins is not affected in cognitively normal people with amyloid 
plaques.

4  |  C SF AGING PROTEIN AND PATHWAY 
ANALYSIS

4.1  |  Proteins predictive of increased age

Proteins with positive model weights are features that our model 
found to be predictive of older chronological ages. The high weights 
given to these proteins (relative to other proteins in the dataset) in-
dicate that increases in their CSF concentrations were highly associ-
ated with increased age in the context of other proteins in the model. 
Here	we	explore	what	is	known	about	these	proteins	and	pathways,	

F I G U R E  3 Proteins	that	vary	
significantly with age via Spearman 
correlation. We ran Spearman 
correlations with chronological age on 
the	concentrations	of	all	7008	proteins	
measured	in	our	cohort	of	CDR = 0,	
Aβ-		individuals.	(a)	30%	(2117)	of	all	CSF	
proteins measured significantly correlated 
with age (p < 0.0001)	while	70%	(4891)	
of measured proteins showed no such 
relationship. (b) Three hundred and forty 
of	the	1157	proteins	used	in	our	elastic	
net model to predict age were found to 
significantly correlate with chronological 
age.	(c)	A	chart	showing	the	full	names,	
Entrez	gene	IDs	and	correlation	values	
of the top 10 significant positively and 
negatively correlated proteins with 
chronological age.
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discuss them in the context of CSF aging and propose hypotheses 
based	on	our	clock	weights	and	correlations	with	age	across	the	en-
tire	CDR = 0,	Aβ-		cohort.

4.1.1  |  Biomarkers	of	neuronal	damage

Our	 top-	ranking	 protein	 was	 alanine	 aminotransferase	 1	 (ALT).	
High	levels	of	ALT	in	plasma	have	been	associated	with	decreased	
cerebral blood flow to several areas of the brain (Chen et al., 2021). 
Plasma	 levels	 of	 ALT	 have	 also	 been	 positively	 associated	 with	

brain	PET	imaging	of	fludeoxyglucose,	a	marker	to	visualize	neu-
ronal injury (Nho et al., 2019).	However,	we	hypothesize	ALT	may	
be playing a neuroprotective role in CSF. Here we observed that 
ALT	is	both	significantly	higher	with	age	in	CSF	(Spearman = 0.50)	
and	was	the	most	important	predictor	of	age	in	our	clock	overall.	
ALT	is	an	enzyme	that	converts	glutamate	into	alpha-	ketoglutarate	
and	 pyruvate	 into	 alanine.	 Molecular	 changes	 that	 occur	 dur-
ing aging, such as impairment of glutamate transporters, render 
neurons	vulnerable	 to	excitotoxicity	 (Mattson	&	Magnus,	2006). 
When	glutamate	reuptake	 is	 inhibited,	cells	experience	oxidative	
stress,	 neurodegeneration,	 and	 death.	 Glutamate	 excitotoxicity	

Protein full name Protein Gene Age correlation

CSF top 10 proteins positively correlated with age

Neurofilament heavy 
polypeptide

NFH NEFH 0.64

Neurofilament light 
polypeptide

NFL NEFL 0.62

Growth/differentiation	factor	
15

MIC-	1 GDF15 0.61

Spermatogenesis-	associated	
protein	9

SPAT9 SPATA9 0.59

Potassium	voltage-	gated	
channel subfamily E regulatory 
beta	subunit	5:Cytoplasmic	
domain

KCE1L:CD KCNE5 0.57

Thrombospondin-	1 Thrombospondin-	1 THBS1 0.57

Myosin,	light	chain	9,	
regulatory

MYL9 MYL9 0.57

Coiled-	coil	domain-	containing	
protein	80

URB CCDC80 0.56

Left–right determination 
factor 2

Lefty-	A LEFTY2 0.55

Activin	A Activin	A INHBA 0.54

CSF top 10 proteins negatively correlated with age

Sialidase-	1 NEUR1 NEU1 −0.43

Testis-	specific	serine/
threonine-	protein	kinase	1

TSSK1 TSSK1B −0.40

Procollagen-	lysine,2-	
oxoglutarate	5-	dioxygenase	2

PLOD2 PLOD2 −0.38

Fibroblast	growth	factor	8	
isoform B

FGF-	8B FGF8 −0.37

RNA-	binding	protein	39 RBM39 RBM39 −0.37

Prostate and testis expressed 
protein 1

PATE PATE1 −0.36

Brain-	derived	neurotrophic	
factor

BDNF BDNF −0.36

Coiled-	coil-	helix-	coiled-	coil-	
helix	domain-	containing	
protein	7

CHCH7 CHCHD7 −0.36

ATPase	family	AAA	domain-	
containing protein 1

ATAD1 ATAD1 −0.36

Glucocorticoid	modulatory	
element-	binding	protein	2

GMEB2 GMEB2 −0.35

TA B L E  1 Top	proteins	used	to	predict	
age by CSF proteomics model. Features 
used by the elastic net to predict age 
were extracted along with their model 
weights. This table shows the full names, 
abbreviations,	Entrez	gene	symbols	
and model weights of both the top 10 
positively weighted (top) and top 10 
negatively weighted (bottom) proteins 
ordered by model weight. The table also 
shows	each	protein's	spearman	correlation	
with age across the entire dataset. Values 
are listed where spearman correlation 
with age significance met a threshold of 
p < 0.0001.	NS	is	listed	if	the	protein	did	
not correlate with age significantly.
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also plays a significant role in the pathogenesis of several acute 
and	 chronic	 neurological	 conditions	 including	 Huntington's	 dis-
ease	 and	 Alzheimer's	 disease.	 ALT	 and	 other	 glutamate	 degrad-
ing	 enzymes	 have	 been	 tested	 in-	vitro	 as	 a	 means	 to	 mitigate	
glutamate	 toxicity,	with	ALT	 being	 the	most	 successful	 of	 these	
enzymes	at	protecting	cells.	 (Matthews	et	al.,	2000). Lastly, glu-
tamate concentrations have been shown to decrease in the brain 
with age (Kaiser et al., 2005).	Here	we	propose	that	ALT	upregula-
tion is a novel compensatory mechanism used in aging brains to 
decrease	glutamate	and	mitigate	age-	related	vulnerability	to	exci-
totoxicity	and	may	be	an	important	CSF	biomarker	for	brain	health	
and	dysfunction.	Since	little	is	known	about	the	presence	of	ALT	
in	the	CNS	at	this	time,	work	should	be	done	to	see	if	CSF	levels	
of	ALT	correlate	with	markers	of	brain	health	and	neurodegenera-
tion	and	if	ALT	could	be	a	therapeutic	target	to	relieve	glutamate	
excitotoxicity with age.

Another	biomarker	used	 in	our	 clock	 to	predict	 advancing	age	
was neurofilament heavy polypeptide (NFH). Neurofilaments are 
important	components	of	the	cytoskeletal	structure	of	neurons	and	
are released into CSF upon axonal injury (Kušnierová et al., 2019). 
In	addition	to	being	highly	weighted	by	our	clock,	NFH	was	one	of	
the	most	positively	correlated	proteins	with	age	 (Spearman:	0.65).	
Recently there has been mounting interest in using neurofilaments 
as	 indicators	 of	 neurodegeneration	 in	 age-	associated	 neurological	
diseases	 such	as	AD,	PD,	 and	Amyotrophic	 Lateral	 Sclerosis	 (ALS)	
(Budelier et al., 2022;	Gordon,	2020; Preische et al., 2019). We in-
terpret higher levels of NFH with age as an increase in neurodegen-
eration. This fits the observation that our CSF aging model relies 

on	markers	 of	 brain	 injury	 and	 dysfunction	 as	 proaging	 signals	 to	
predict age.

4.1.2  |  Increased	markers	of	neuroinflammation

Interleukin-	7	 (IL-	7)	 is	a	homeostatic	cytokine	 that	 is	produced	 in	a	
wide	variety	of	immune	cells	and	is	required	for	their	survival.	IL-	7	
has	 been	 shown	 to	 be	 neuro-	inflammatory,	 promote	 apoptosis	
of neuronal cells and activate microglia drawing them to neuronal 
injury	 sites	 (Carrette	&	Surh,	2012).	We	observed	 IL-	7	 to	 be	both	
positively	correlated	with	age	(Spearman = 0.22)	and	one	of	the	top	
positively	weighted	proteins	in	our	model.	Inhibition	of	IL-	7	at	spinal	
cord injury sites has been shown to improve recovery in mouse mod-
els	(Carrette	&	Surh,	2012).	We	hypothesize	IL-	7	may	have	potential	
as	a	therapeutic	target	for	decreasing	age-	associated	neuroinflam-
mation.	Given	its	important	role	in	immune	cell	survival,	inhibition	of	
IL-	7	in	the	CNS	may	alleviate	age-	associated	activation	of	the	innate	
immune system and mitigate damage caused by such inflammation.

Another	 protein	 potentially	 involved	 in	 increased	 activity	 of	
the	 innate	 immune	 system	with	 age	 is	 adhesion	 G-	protein	 cou-
pled	 receptor	 G1	 (GPR56).	 GPR56	 is	 found	 to	 be	 expressed	 in	
oligodendrocyte precursor cells (OPCs), and disruption leads to a 
decrease in mature oligodendrocytes and OPCs resulting in hypo-
myelination	(Ackerman	et	al.,	2015).	Given	its	role	in	myelination,	
it	is	curious	that	GPR56,	is	both	positively	weighted	by	our	model	
as a predictor of increased age and positively correlated with age 
(Spearman = 0.42).	One	observation	that	might	explain	this	is	that	

Description p Value −log10 (p)
Features in pathway (Entrez gene 
symbol)

Glycoprotein	hormones 0.000008 5.08 CGA,	FSHB,	INHA,	INHBA,	
INHBB, INHBC, LHB, TSHB, 
CES1,	CPB1,	ENPEP,	GZMH,	IGF1,	
P4HB,	REN,	PLA2G7,	and	GHRL

Complement cascade 0.000156 3.81 C1QC,	C2,	C3,	C4A,	C4B,	C7,	
C8A,	C8B,	C8G,	C9,	CPN2,	CR1,	
CR2, CFD, FCN2, CFH, CFHR2, 
CFP, VTN, and FCN3

Scavenging	by	Class	A	
Receptors

0.000164 3.78 APOB,	COL1A1,	COL3A1,	
FTH1,	FTL,	HSP90B1,	MARCO,	
COLEC12,	SCARA5,	SCARB1,	
HPX,	SAA1,	SPARC,	and	APOL1

Non-	integrin	membrane-	
ECM	interactions

0.000953 3.02 COL1A1,	COL2A1,	COL3A1,	
COL10A1,	COL11A2,	DAG1,	TNC,	
ITGA2,	ITGB1,	PDGFA,	TGFB1,	
VTN,	SDC3,	and	TRAPPC4

Mitochondrial	fatty	
acid	beta-	oxidation	of	
unsaturated fatty acids

0.001054 2.98 ACADL,	ACADM,	ECI1,	and	
DECR1

TP53	regulates	
transcription of death 
receptors and ligands

0.002879 2.54 FAS,	IGFBP3,	TP53,	TNFRSF10D,	
TNFRSF10B, BCL6, BID, and 
TP53I3

Terminal pathway of 
complement

0.006540 2.18 C7,	C8A,	C8B,	C8G,	and	C9

TA B L E  2 Pathways	enriched	by	
model proteins. The bioinformatic tool 
Metascape	was	used	to	find	pathways	
in	the	Reactome	knowledgebase	that	
were enriched for features used by our 
full model to predict age. Thousand one 
hundred	and	fifty-	seven	model	weighted	
protein	features	(submitted	as	Entrez	
Gene	IDs)	were	used	in	the	enrichment	
search	and	all	7008	possible	features	
were	used	as	a	background.	Displayed	
are pathways found to be significantly 
enriched for proteins in our model 
(p < 0.01	and	enrichment	score >1.5),	
the name of each Reactome pathway, p 
values,	and	the	Entrez	gene	symbols	of	
model proteins enriched in each pathway.
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F I G U R E  4 Iterative	down-	sampling	of	proteins	to	create	a	minimal	CSF	aging	model.	An	elastic	net	was	trained	on	progressively	fewer	
proteins	to	create	a	minimal	model	for	predicting	chronological	age	from	CSF.	Training	began	with	the	1157	protein	features	identified	in	the	
full	model.	After	each	round	of	retraining,	proteins	were	reordered	by	the	absolute	values	of	their	new	weights,	and	the	bottom	10	proteins	
were	eliminated.	(a)	The	number	of	proteins	used	plotted	against	the	Pearson	correlation	of	the	model's	prediction	of	ages	versus	known	
chronological	ages.	(b)	The	results	of	a	109-	protein	“minimal”	model	predicting	age	versus	known	chronological	age	on	the	validation	cohort.	
This	minimal	model	had	a	0.84	Pearson	correlation	with	chronological	age	of	the	ADRC	validation	group	(p = 1.13E-	24)	and	an	MAE	of	4.0	(c)	
The	ADRC	trained	109-	protein	model	used	to	predict	chronological	ages	of	the	full	ADNI	validation	cohort.	The	109-	protein	model	validated	
on	this	cohort	with	a	Pearson	correlation	of	0.75	with	chronological	age	(p = 6.49E-	132)	and	MAE	of	5.41 years.	(d)	The	ADRC	trained	
109-	protein	model	used	to	predict	chronological	ages	of	participants	from	the	ADNI	cohort	who	were	verified	to	be	amyloid	beta	negative	
and	cognitively	normal.	The	109-	protein	model	validated	on	this	cohort	with	a	Pearson	correlation	of	0.83	with	chronological	age	(p = 4.48E-	
12)	and	MAE	of	5.91 years.	(e)	Top	10	protein	features	weighted	by	absolute	value	in	the	109-	protein	minimal	model.
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GPR56	is	highly	expressed	in	microglia	of	the	CNS	(Ganesh	et	al.,	
2020).	Thus,	it	may	be	that	increased	GPR56	in	the	CSF	is	another	
indicator of an increasingly active innate immune system in the 
aging brain.

4.1.3  |  Compensatory	and	protective	proteins

Antileukoproteinase	(SLPI)	is	a	secreted	protein	that	inhibits	leuko-
cyte serine proteases. It is released from epithelial surfaces to pro-
tect	them	from	attack	by	endogenous	proteolytic	enzymes	(Doumas	
et al., 2005).	Although,	SLPI	is	expressed	in	mucosal	linings	there	is	
increasing evidence that it plays a role in mediation of inflammation 
in the nervous system as well. In one study, SLPI was found to local-
ize	 to	neurons	 and	astrocytes	 in	 ischemic	 tissue	 in	 rats	 following	
occlusion of the middle cerebral artery. In the same model, induced 
SLPI expression via adenovirus significantly reduced ischemic le-
sion	 size	 compared	 to	 controls,	 suggesting	 that	 SLPI	 may	 have	
neuroprotective properties (Wang et al., 2003).	SLPI	also	has	anti-	
inflammatory functions on macrophages by suppressing their abil-
ity	to	release	proinflammatory	cytokines	and	nitric	oxide	(Doumas	
et al., 2005). We found SLPI to be both highly positively model 
weighted, indicating its predictiveness of increased age, as well as 
significantly	 positively	 correlated	with	 age	 (Spearman = 0.48).	We	
hypothesize	this	increased	SLPI	concentration	with	age	in	CSF	may	
be a compensatory mechanism to counteract age associated inflam-
mation and protect tissues from proteolytic damage by endogenous 
enzymes	as	 the	brain	 ages.	 Inducing	SLPI	 expression	 in	 the	brain	
may	be	another	 therapeutic	avenue	 to	 reduce	 the	age-	associated	
neuroinflammation observed in this study.

4.1.4  |  Additional	proteins

Several top positively weighted model proteins do not clearly fit 
into a classifiable category, their roles in brain aging and the CSF are 
relatively	unknown,	or,	in	one	case,	they	were	found	to	be	a	strong	
model predictor but not significantly correlated with age.

Pulmonary	 surfactant-	associated	 protein	 D	 (SP-	D)	 was	 the	
7th	highest	 ranked	positively	weighed	protein	 in	our	model,	 but	
did not significantly correlate with age (p = 0.06).	We	hypothesize	
that proteins with such a disparity provide valuable information 
in predicting the age of individuals in the model, but only under 
specific circumstances and in conjunction with other model pro-
teins.	For	example,	SP-	D	may	become	highly	correlated	with	age	
when a participant has a specific disease or disorder, but is other-
wise	 unhelpful	when	predicting	 age.	Alternatively,	 proteins	with	
high model predictability, but low correlations, may interact with 
other proteins such that the relationships can only be detected 
by	 a	 higher	 structure	model.	High	 levels	 of	 SP-	D	 are	 associated	
with hydrocephalus, enlargement of inner CSF spaces (Schob 
et al., 2016), and dementia (Nybo et al., 2007). While the literature 
clearly	demonstrates	SP-	D	is	connected	with	age-	associated	con-
ditions, understanding the circumstances in which our model uses 
SP-	D	as	a	predictor	of	age	remains	a	challenge.

Finally, we found four proteins on our list to be both strongly 
positively weighted in our model and significantly correlated 
with age (p < 0.0001);	 however,	 little	 else	 is	 known	 about	 their	
relationship with aging or their function in the central nervous 
system.	 Given	 the	 nature	 of	 other,	 better	 studied,	 proteins	 on	
this list, high priority should be placed on understanding the bi-
ology of these proteins in this context. These proteins include: 

F I G U R E  5 CSF	aging	model	run	on	
a	cognitively	normal	(CDR = 0)	group	
with	amyloid	plaques.	We	ran	our	CSF	
aging	model	on	a	CDR = 0	Aβ + group	
of	65	people	previously	unseen	by	our	
pretrained model and compared results 
to	a	group	of	65	CDR = 0,	Aβ-	,	age,	sex,	
and	ethnicity-	matched	participants	from	
the validation dataset (also unseen by 
the model until after weights had been 
determined from the training set). Seen 
above are the differences between 
model predicted age and chronological 
age	for	each	participant	(Y	axis).	The	Aβ-		
averaged	a	deviation	of	−1.03 years	from	
chronological	age,	while	the	Aβ + group	
deviated	by	−0.86 years.	This	difference	
was not found to be significant by a one 
tailed	T-	test	(P = 0.86).
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left–right	determination	factor	2	(Lefty-	A,	Spearman = 0.55),	suc-
cinate dehydrogenase assembly factor 2, mitochondrial (SDHF2, 
Spearman = 0.48),	 prostasin	 (Spearman = 0.3),	 and	 syntenin-	2	
(SDCB2,	Spearman = 0.27).

4.2  |  Proteins predictive of decreased age

Proteins with negative weights are those that our model found to 
be	predictive	of	younger	chronological	ages.	We	hypothesize	that	
these are proteins that are lost with age and may be protective or 
beneficial	if	upregulated	in	the	CNS.	Here	we	discuss	what	is	known	
about several of the top negatively weighted proteins found by the 
model	and	propose	hypotheses	based	on	our	clock	weights	and	cor-
relations	with	age	across	the	entire	CDR = 0,	Aβ-		cohort.	Unlike	the	
previously discussed positively weighted proteins, only four out of 
the top 10 negatively weighted proteins are significantly negatively 
correlated with age, with the remaining six showing no significant 
trend across the cohort. Why this trend is observed so much more 
in	the	negatively	weighted	proteins	is	unknown;	however,	when	an-
alyzing	such	data,	it	is	important	to	note	that	spearman	correlations	
only capture monotonic increases or decreases, and that trends 
such	as	waves	or	peaks	that	may	be	of	significant	biological	interest	
and predictive value are not captured by simple correlations.

4.2.1  |  Loss	of	anti-	inflammatory	and	metabolism	
regulating proteins

Our top negatively weighted protein in the model was complement 
C1q	tumor	necrosis	factor-	related	protein	3	(C1QT3).	C1QT3	levels	
in CSF were also significantly negatively correlated with chronologi-
cal	age	(Spearman = −0.24).	C1QT3	is	a	secreted	protein	expressed	
in	many	tissues	and	is	known	to	have	a	wide	range	of	effects	includ-
ing	anti-	inflammatory	activity,	promotion	of	cellular	differentiation	
and growth (Li et al., 2017),	 and	 is	 a	 known	negative	 regulator	of	
gluconeogenesis (Peterson et al., 2013), a process whose reduc-
tion has been shown to enhance lifespan (Hachinohe et al., 2013). 
Overexpression of C1QT3 in mice was also shown to improve insulin 
sensitivity (Peterson et al., 2013) and administration of C1QT3 in 
a different mouse model was shown to reduce damage following 
heart	attacks	 (Yuasa	et	al.,	2016).	Work	should	be	done	to	under-
stand the effects of C1QT3 on lifespan and its role in the CNS.

4.2.2  |  Loss	of	post-	transcriptional	
modification proteins

We	 found	 geranylgeranyl	 pyrophosphate	 synthase	 (GGPPS)	 to	 be	
both negatively weighted in our model and significantly negatively 
correlated	with	aging	 (Spearman = −0.24).	GGPPS	 is	a	key	 regulator	
for protein prenylation, an important post translational protein modi-
fication	 required	 for	 cell	 survival,	 proliferation,	 differentiation,	 and	

migration	 (Palsuledesai	&	Distefano,	 2015). One such form of pre-
nylation	 is	when	 geranylgeranyl	 pyrophosphate	 (GGPP)	 is	 attached	
to	 the	 cysteine	 at	 the	 c-	terminus	 of	 a	 protein.	 GGPP	 is	 generated	
from	farnesyl	pyrophosphate	(FPP)	via	a	chemical	reaction	catalyzed	
by	GGPPS	(Wang	&	Casey,	2016). Prenylation necessary for proper 
development	of	 the	cerebellum	and	deletion	of	GGPPS	 in	neuronal	
progenitor cells in mice caused depletion of granule cell progenitors 
leading to cerebellar hypoplasia (Cheng et al., 2023). Inhibition of me-
valonate production, a precursor for farnesyl and geranylgeranyl, via 
an inhibitor causes apoptosis and cell death in neurons and this ef-
fect	can	be	rescued	by	addition	of	exogenous	GGPP	preventing	cell	
death	(Tanaka	et	al.,	2000).	Deficiency	in	geranylgeranyltranfersase-	1	
(GGT),	the	protein	that	transfers	geranylgeranyl	groups	from	GGPP	to	
target	proteins,	has	been	shown	to	reduce	long-	term	potentiation	in	
the hippocampus and decrease dendritic spine density in cortical neu-
rons in mice (Hottman et al., 2018).	Thus,	maintenance	of	GGPPS	may	
be	 important	 to	maintain	GGPP	 levels	during	aging	and	 loss	of	 this	
protein may lead to neuronal vulnerability, and deficiency in memory 
formation	through	the	lack	of	precursors	needed	for	prenylation.

4.2.3  |  Proteins	of	unknown	function	that	
negatively correlate with age

Two proteins that were in the top negatively weighted proteins had 
limited information regarding their functions in the CNS. These in-
clude	transmembrane	protein	87B	(TM87B,	Spearman = −0.29)	and	
chymotrypsinogen	 B2	 (CTRB2,	 Spearman = −0.16).	 While	 TM87B	
significantly correlated with age, CTRB2 just barely missed the cut 
at p = 0.0006.	Very	little	is	known	about	the	normal	function	of	ei-
ther	of	these	proteins.	Given	their	strong	weights	in	the	model	and	
negative	associations	with	chronological	age	in	the	CSF,	more	work	
should be done to understand the nature of these proteins and how 
they affect the aging CNS.

4.2.4  |  Negatively	weighted	proteins	that	do	not	
correlate with age

Of the top 10 proteins negatively weighted in our model, six were not 
significantly correlated with age via Spearman correlation (p > 0.0001).	
These	 include:	 Glutamate	 receptor	 ionotropic,	 kainate	 2	 (GRIK2,	
p = 0.109),	 PAI-	2	 (p = 0.045),	 platelet-	derived	 growth	 factor	 receptor	
alpha	 (PDGFRA,	p = 0.002),	 collagen	 type	 III	 (p = 0.531),	 annexin	A5	
(p = 0.534),	 and	 phosphatidylcholine-	sterol	 acyltransferase	 (LCAT,	
p = 0.009).	Although	many	of	these	proteins	have	been	studied,	it	re-
mains unclear how our model uses them to predict age. We hypoth-
esize	these	proteins	are	informative	only	under	specific	circumstances	
or	in	concert	with	other	proteins.	Alternatively,	these	proteins	could	be	
false-	positives	specific	to	this	cohort.	Here	we	discuss	what	is	known	
about several of these proteins and how they may relate to aging.

One	protein	with	prior	aging	implications	is	PAI-	2.	Under	normal	
conditions	PAI-	2	is	expressed	at	low	levels;	however,	it	accumulates	
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rapidly in response to inflammatory signals around severely dam-
aged	brain	tissue	(Dietzmann	et	al.,	2000). In a mouse study of corti-
cal	brain	injury,	PAI-	2	wild-	type	mice	showed	significantly	increased	
brain	swelling	postinjury	compared	to	PAI-	2	knockout	mice,	indicat-
ing	PAI-	2	levels	may	be	a	risk	factor	for	brain	edema	(Griemert	et	al.,	
2019).	PAI-	2	does	not	correlate	with	aging	in	our	data	but	is	highly	
negatively	weighted.	We	observed	that	individuals	over	85 years	old	
did	not	show	high	levels	of	PAI-	2.	Thus,	the	model	may	be	inferring	
that	people	with	high	PAI-	2	levels	must	be	under	85 years	old.	One	
hypothesis for this is a survivorship bias. It may be that high levels 
of	PAI-	2	are	a	response	to	inflammation	or	brain	injury	and	may	be	
serving	as	a	biomarker.	Further	 investigation	should	be	performed	
to	see	if	 individuals	with	high	PAI-	2	in	CSF	are	at	 increased	risk	of	
death as they age.

Another	 protein,	 PDGFRA,	 forms	 homodimers	 with	 itself	
and	 heterodimers	 with	 PDGFRB	 (Platelet-	derived	 growth	 fac-
tor	receptor	beta)	to	receive	various	forms	of	the	mitogen	PDGF	
(Platelet-	derived	 growth	 factor)	 (Litwack,	 2018).	 PDGF-	BB	 has	
been demonstrated to stimulate neural precursor cell (NPC) pro-
liferation,	 and	 PDGF-	AA	 has	 been	 shown	 to	 be	 involved	 in	 glial	
cell differentiation (Sil et al., 2018).	PDGFR-	α-	mediated	signaling	
is	required	for	astrocyte	and	pericyte	migration	and	maintenance	
of cerebral microvasculature structures (Itoh et al., 2011) and 
PDGF-	BB	and	PDGF-	CC	have	been	shown	to	have	neuroprotec-
tive effects across a range of diseases (Sil et al., 2018). Thus, loss 
of	PDGFRA	with	age	may	decrease	sensitivity	to	these	neuropro-
tective ligands.

Collagen type III was another interesting negatively weighted 
model protein. Collagens are extracellular matrix proteins well 
known	to	decline	with	age	(Varani	et	al.,	2006).	What	makes	collagen	
type	III	so	intriguing	is	how	important	it	became	to	our	109-	protein	
minimal model, rising to the most aging informative protein over-
all (Figure 4c). Future experiments are planned to understand why 
this protein becomes so informative and what other proteins in the 
model it is interacting with.

4.3  |  Pathways enriched in proteins used to 
predict aging

We	 sought	 to	 understand	 how	 analyzing	 pathways	 significantly	
enriched for proteins in our model could provide insight into the 
relationships between these proteins and the underlying biology 
providing their predictive value for aging. Here we explore several of 
these enriched pathways and propose hypotheses based on domain 
knowledge,	literature,	and	our	observations.

4.3.1  |  Glycoprotein	hormones

Glycoprotein	hormones	were	the	category	most	highly	enriched	for	
model weighted proteins. When examining proteins from our model 
enriched in the glycoprotein hormone pathway, our data shows that 

inhibins	(INHBA,	INHBB,	and	INHBC)	are	both	positively	weighted	
and significantly increase in concentration in CSF with age. Inhibins 
are	members	of	the	transforming	growth	factor-	β	(TGFβ) superfam-
ily	 produced	 by	 the	 anterior	 pituitary	 gland	 that	 block	 synthesis	
and	release	of	Follicle-	stimulating	hormone	(FSH,	follitropin).	When	
FSH is released into the bloodstream it stimulates spermatogene-
sis in males and development of ovarian follicles in females (Santi 
et al., 2020). Interestingly, FSH levels tend to increase with age in 
plasma	in	both	men	(Araujo	&	Wittert,	2011)	and	women	(Grisendi	
et al., 2014) counter to what one might expect given increased pro-
duction of inhibin proteins. One hypothesis may be that inhibins are 
acting as a compensatory mechanism to help slow FSH secretion and 
production.

4.3.2  |  The	complement	system

The complement system was another highly enriched pathway used 
by our model. The complement system is a highly regulated compo-
nent of the innate immune system in the CNS and also plays a role in 
synaptic pruning of synapses by microglia in the adult hippocampus. 
Dysregulation of this system results in increased neuroinflammation, 
neurodegeneration, and cognitive impairment (Fatoba et al., 2022). 
Aberrant	 overexpression	 of	 complement	 components	 by	 micro-
glia	 has	 also	 been	 linked	 to	 Huntington's	 disease	 (HD)	 (Singhrao	
et al., 1999)	and	shown	to	play	a	role	in	neurodegeneration	and	AD	
in mouse models (Hong et al., 2016). Plasma levels of components 
C3 and C4 have also been positively associated with metabolic dis-
ease and negatively associated with longevity in centenarians (Fu 
et al., 2018, 2020).

C4a is both highly positively weighted by our model and posi-
tively correlated with age. C4a is a protein released by C4 upon ac-
tivation	of	the	complement	system's	classical	and	mannose-	binding	
lectin pathways. These pathways lead to upregulation of C3 and 
activation	of	the	innate	immune	system.	C4a	was	ranked	the	25th	
highest weighted protein in our model by absolute value, indicat-
ing its importance in predicting aging in the CSF. This provides ev-
idence that the innate immune system is upregulated as the brain 
ages.	Supporting	this	observation,	C7	and	C9,	components	of	the	
membrane	attack	complex,	a	downstream	assembly	of	complement	
system activation that lyses cells, are also both positively weighted 
by our model and positively correlated with age in CSF.

CFHR2 was another protein of the complement system posi-
tively	weighted	 by	 our	model.	 Although	CFHR2	did	 not	meet	 the	
significance threshold of p < 0.0001	to	state	it	definitively	correlates	
with	age,	 it	 came	very	close	 (Spearman = 0.17,	p = 0.0003).	CFHR2	
competes	 with	 CFH-	C3b	 interaction	 allowing	 activation	 of	 the	
complement	 system	 to	proceed	unhindered	 (Goicoechea	de	 Jorge	
et al., 2013). Interestingly CFH was also found to be a positive pre-
dictor of age by our model, although to a lesser extent than CFHR2, 
and also correlated with increased aging. This may indicate that both 
activating and compensatory negatively regulating elements of the 
complement system are upregulated during aging.
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Complement factor D (CFD) was also found to be posi-
tively weighted by our model and highly correlated with age 
(Spearman = 0.5).	 CFD	 is	 the	 rate	 limiting	 enzyme	of	C3	 conver-
tase,	 the	enzyme	which	 cleaves	C3	 into	C3a,	 a	 chemoattraction	
molecule that increases inflammation, and C3b the molecule that 
tags	 cells	 for	 the	membrane	 attack	 complex	 cell	 lysis	 (Barratt	&	
Weitz,	2021).

Given	 the	negative	 effects	 of	 complement	 system	activation	
and its inverse correlation with mortality, we believe that inhibi-
tion of C4, a highly upstream component of two complement sys-
tem	branches,	should	be	explored	as	a	target	for	age-	related	brain	
pathologies. Increased expression of CFH may also have benefits. 
Overall, these observations support the idea that our model uses 
activation of the complement system as a predictor of age, and 
that upregulation of this system in the CSF is positively associated 
with aging.

4.3.3  |  Scavenging	by	class	A	receptors

Class	A	scavenger	receptors	are	membrane	bound	glycoproteins	in-
volved	 in	 numerous	 biological	 functions	 including	 recognizing	 tar-
gets in the innate immune system, scavenging lipids in macrophages, 
and binding free extracellular ligands to initiate clearance. One such 
ligand is ferritin, which is present in the cytosol of most cells to store 
iron, and is made up of a heavy chain (ferritin heavy chain, FTH) and 
light	chain	(ferritin	light	chain,	FTL)	(Yu	et	al.,	2020). Both FTH and 
FTL were positively weighted by our model and significantly posi-
tively	correlated	with	aging.	Notably,	FTL	was	ranked	41st	by	abso-
lute	value	in	predictive	importance	by	our	model.	It	is	hypothesized	
that	extracellular	ferritin	is	a	leakage	product	arising	from	damaged	
cells	 (Kell	&	Pretorius,	2014) and elevated ferritin in CSF has been 
associated	with	 proinflammatory	 neurological	 diseases	 (Zandman-	
Goddard	et	al.,	1986).	This	supports	our	observation	that	our	clock	
detects increased inflammation and cellular damage products as 
proaging signals.

4.3.4  |  Nonintegrin	membrane-	ECM	interactions

This pathway covers protein interactions between nonintegrin 
membrane bound extracellular matrix proteins and their ligands. 
Nearly all proteins in this pathway used by our model are negatively 
weighted indicating higher concentrations are predictive of younger 
ages. However, there are several positively weighted exceptions 
including:	 Transforming	 growth	 factor	 beta-	1	 (TGF-	b1),	 collagen	
alpha-	1(X)	chain	(COAA1),	platelet-	derived	growth	factor	subunit	A	
(PDGF-	AA),	and	tenascin.	Of	 these,	only	TGF-	b1	and	Tenascin	are	
significantly	correlated	with	age	 (both	positive).	TGF-	b1	 is	an	anti-	
inflammatory	cytokine	(Piras	et	al.,	2012),	and	PDGF-	AA	has	been	
shown	to	have	neuroprotective	effects	(Zheng	et	al.,	2010). Tenascin 
in the brain becomes highly upregulated in response to neuronal 
injury (Chelluboina et al., 2022). Thus, we observe many of these 

positively weighted proteins are induced in response to neuronal 
stress or insult.

Of particular interest in the negatively weighted model proteins 
is the large representation of collagens. These include Collagen Type 
III,	 Collagen	 Type	 II,	 Collagen	 alpha-	1(I)	 chain:	 C-	term	 propeptide,	
and	Collagen	alpha-	2(XI)	chain	(COL11A2).	Of	these,	Collagen	Type	
III	 is	particularly	notable	 in	that	 it	 is	both	one	of	the	highest	rank-
ing negatively weighted proteins (Table 1) in the full model, and the 
highest	ranking	protein	in	our	109	protein	minimal	model,	but	is	not	
significantly correlated with age. We propose that Collagen Type 
III and similar proteins may provide nonlinear information on age in 
conjunction with other proteins or are highly predictive under spe-
cific	biological	circumstances.	Further	analysis	and	 techniques	will	
need	to	be	developed	to	understand	how	these	non-	age-	correlative	
proteins	are	providing	predictive	 information.	Although	our	model	
highlights	 their	 importance,	 it	 remains	 unknown	what	 the	 loss	 of	
these collagens in CSF can tell us biologically about the aging brain 
environment.

4.3.5  |  TP53	regulates	transcription	of	death	
receptors and ligands

The	TP53	 (p53)	nuclear	protein	 is	 the	central	mediator	between	
cellular death and survival and governs many biological responses 
to	 stress	 including	 apoptosis	 and	 senescence	 (Kastenhuber	 &	
Lowe, 2017).	One	way	p53	accomplishes	this	is	upregulating	TRAIL	
receptors	that	bind	the	TRAIL	ligand	to	induce	cell	death	(Willms	
et al., 2019).	 In	 our	model,	 TRAIL	 R4	 and	 tumor	 necrosis	 factor	
receptor	 superfamily	 member	 10B	 (TRAIL	 R2)	 were	 positively	
correlated	 with	 age	 and	 positively	 weighted.	 Binding	 to	 TRAIL	
R2	by	TRAIL	 induces	apoptosis	 in	 tumor	cells	and	activates	pro-	
inflammatory	pathways,	however,	binding	to	TRAIL	R4	appears	to	
have	the	opposite	effect	and	protects	against	TRAIL	R2-	mediated	
cell	 death	 (Degli-	Esposti	 et	 al.,	 1997). This dichotomy is curious 
as our data shows both receptors are upregulated with age. One 
possible hypothesis is that cells are priming themselves for either 
fate in response to stress.

Another	tumor	necrosis	 factor	that	 is	both	positively	weighted	
in our model and positively correlated with age was tumor necrosis 
factor receptor superfamily member 6 (Fas). Fas is another cell death 
surface receptor that triggers apoptotic cell death via activation of 
caspase	(Waring	&	Müllbacher,	1999). This further supports the hy-
pothesis that the aging CSF is experiencing stressful conditions and 
priming cells for apoptotic events.

4.3.6  | Mitochondrial	fatty	acid	beta-	oxidation	of	
unsaturated fatty acids

While this pathway was enriched for model proteins, we do not have 
a coherent explanation for it at this time. This is due to the large rep-
resentation	of	non-	aging	correlative	proteins	in	this	pathway	making	
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interpretation of the impact on aging unfeasible baring development 
of	more	advanced	analytical	techniques.

5  |  DISCUSSION

In	 this	 article,	 we	 present	 a	 novel	 machine	 learning-	based	 CSF	
proteomics	 clock	whose	 predictions	 had	 a	 0.79	 correlation	with	
chronological	age	and	MAE	of	4.30 years	in	our	validation	cohort	
(ADNI)	(Figure 2). Further we showed the model was interpretable 
and able to provide biological insight into CSF and brain aging. 
To do so we performed protein feature extraction on our model 
and	 analyzed	both	 top	hits	 and	 enriched	pathways.	We	hypoth-
esized	 that	 proteins	weighted	 positively	 by	 our	model	would	 be	
frequently	 associated	 with	 age-	related	 dysfunction	 and	 disease	
and that proteins with negative model weights would generally be 
neuroprotective and enhance cell growth, and progenitor cell and 
tissue maintenance.

We found that top positively weighted proteins fell into two main 
categories:	Markers	of	neuronal	damage	and	signals	of	neuroinflam-
mation	and	disease.	Analysis	of	pathways	enriched	for	proteins	in	our	
model supported this view with proteins of the complement system 
being both highly correlated with age and positively weighted, indi-
cating an increase in innate immune system activity. Upregulation of 
proteins such as FTH, typically only found extracellularly upon cellu-
lar lysis, further support the observation of ongoing cellular damage 
with	 age.	 Additionally,	 upregulation	 of	 TRAIL	 receptors	 was	 ob-
served with age, possibly indicating priming for proapoptotic events. 
An	 exception	 to	 this	 trend	 was	 SLPI,	 a	 positively	 weighted	 anti-	
inflammatory,	 neuroprotective	 protein	 which	 localizes	 to	 sites	 of	
neuronal damage. We interpret this as a compensatory mechanism 
to	 combat	 age-	associated	 inflammation.	 Another	 potential	 novel	
compensatory	mechanism	we	found	was	upregulation	of	ALT,	which	
may be a way for the aging brain to combat glutamate excitotoxicity. 
We	also	identified	several	novel	proteins	previously	unknown	to	be	
associated	with	CSF	aging.	These	include	Lefty-	A,	SDHF2,	prostasin,	
and SDCB2 and warrant further investigation.

We observed that top negatively weighted proteins, predicted 
to associate with more youthful states, were generally of a benefi-
cial	nature.	Several	proteins	in	this	category	had	anti-	inflammatory	
and	 neuronal	 protective	 properties	 such	 as	 C1QT3	 and	 PDGFRA.	
We	also	found	proteins	such	as	GGPPS,	vital	for	post	translational	
modifications, whose loss may lead to neuronal vulnerability, and 
deficient memory formation. Other proteins such as collagen type 
III, were of high importance to both the full and minimal models but 
lacked	significant	correlation	with	age.	We	hypothesize	such	proteins	
provide nonlinear information or become informative only in con-
junction	with	other	model	proteins.	Additionally,	we	identified	two	
novel	proteins,	TM87B	and	CTRB2,	both	highly	negatively	weighted	
in	our	model,	with	TM87B	negatively	correlated	with	age	and	CTRB2	
nearly	meeting	the	significance	threshold.	Little	is	known	about	the	
biological	 functions	of	either	protein	and	follow-	up	studies	should	
be done to understand their role in the aging CNS.

Next, we sought to test the utility of our model in assessing if 
people	with	 age-	associated	diseases,	 such	as	presymptomatic	AD,	
experienced accelerated biological aging in CSF. This also served as 
an	additional	group	on	which	to	test	our	clock.	We	found	our	clock	
showed no significant differences in accuracy between people with 
presymptomatic	AD	versus	the	healthy	control	group.	While	it	is	well	
known	 that	AD	 risk	 increases	with	 age,	 this	 observation	 suggests	
that	changes	taking	place	 in	the	earliest	stages	of	Alzheimer's	dis-
ease do not accelerate aging in the CNS.

Lastly,	we	presented	a	minimal	version	of	our	CSF	aging	clock	
that	 uses	 just	 109	 proteins	 to	 predict	 age,	 along	 with	 a	 novel	
method to generate such models we call iterative reweighting. Our 
109-	protein	 clock	 performed	 nearly	 as	 well	 as	 the	 full	 1157	 pro-
tein	clock	on	our	ADRC	test	data,	with	a	Pearson	correlation	with	
chronological	age	of	0.84	versus	the	original	clock's	0.85.	The	clock	
also	performed	well	on	the	ADNI	validation	subcohort	that	included	
only	cognitively	normal,	amyloid	negative	individuals	(Pearson	0.83)	
(Figure 4d), however, it suffered more performance loss than the 
full	clock	when	predicting	the	entire	ADNI	data	set	which	included	
CDR >0	and	amyloid	positive	individuals	(Pearson	0.75)	(Figure 4c). 
While	 the	 assumption	might	be	made	 that	 a	 smaller	 protein	 clock	
with similar performance would be preferable to the full protein 
clock,	this	may	not	be	the	case,	as	it	is	possible	that	such	condensed	
clocks	may	not	capture	the	full	biological	impacts	of	aging,	and	may	
be less sensitive to environmental, experimental, and disease state 
perturbations. Further experiments will need to be done to test the 
robustness	of	each	clock	under	such	circumstances.

6  |  CONCLUSIONS

In	 conclusion,	 this	 report	 presents	 a	 new	 CSF	 proteomics-	based	
clock	which	may	predict	biological	aging	and	provides	novel	insights	
into the biology of aging in the CNS. These findings and tools may 
point	to	potential	therapeutic	targets	for	intervention	in	aging-		and	
age-	related	diseases.	 Future	 research	 is	 needed	 to	distinguish	be-
tween proteins causative of negative aging phenotypes versus pro-
teins that are compensatory in nature. Therefore, target analysis, 
experimentation, and validation are needed for these potential can-
didate targets of aging interventions.
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