Skip to main content
. 2024 Sep 26;48:100637. doi: 10.1016/j.jbo.2024.100637

Table 2.

Details of model classification performance evaluation parameters.

Architecture Accuracy AUC 95 % CI Sensitivity Specificity F1 Task
Resnet-50 0.853 0.931 0.885–0.977 0.830 0.878 0.854 label-train
0.864 0.859 0.713–1.000 0.846 0.889 0.880 label-test



Convnext-Base 0.892 0.939 0.891–0.986 0.906 0.878 0.897 label-train
0.864 0.925 0.844–1.000 0.846 0.889 0.880 label-test



Resnet-101 0.912 0.976 0.952–0.998 0.868 0.959 0.911 label-train
0.864 0.940 0.876–1.000 0.769 1.000 0.870 label-test



Convnext-V2-Base 0.951 0.991 0.979–1.000 0.925 0.980 0.951 label-train
0.886 0.955 0.901–1.000 0.808 1.000 0.894 label-test



YOLO-V8 0.853 0.929 0.881–0.976 0.736 0.980 0.839 label-train
0.841 0.850 0.706–0.994 0.885 0.778 0.868 label-test