Table 2.
Architecture | Accuracy | AUC | 95 % CI | Sensitivity | Specificity | F1 | Task |
---|---|---|---|---|---|---|---|
Resnet-50 | 0.853 | 0.931 | 0.885–0.977 | 0.830 | 0.878 | 0.854 | label-train |
0.864 | 0.859 | 0.713–1.000 | 0.846 | 0.889 | 0.880 | label-test | |
Convnext-Base | 0.892 | 0.939 | 0.891–0.986 | 0.906 | 0.878 | 0.897 | label-train |
0.864 | 0.925 | 0.844–1.000 | 0.846 | 0.889 | 0.880 | label-test | |
Resnet-101 | 0.912 | 0.976 | 0.952–0.998 | 0.868 | 0.959 | 0.911 | label-train |
0.864 | 0.940 | 0.876–1.000 | 0.769 | 1.000 | 0.870 | label-test | |
Convnext-V2-Base | 0.951 | 0.991 | 0.979–1.000 | 0.925 | 0.980 | 0.951 | label-train |
0.886 | 0.955 | 0.901–1.000 | 0.808 | 1.000 | 0.894 | label-test | |
YOLO-V8 | 0.853 | 0.929 | 0.881–0.976 | 0.736 | 0.980 | 0.839 | label-train |
0.841 | 0.850 | 0.706–0.994 | 0.885 | 0.778 | 0.868 | label-test |