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I. Historical perspective

Two discoveries triggered the rapid growth of interest
in molecular biological studies in the area of the heat
stress response: (i) the finding by F. Ritossa [1] in
1962 of a new pattern of gene activity in polytene
chromosomes of Drosophila salivary glands, and (ii)
the first description of heat stress-inducible proteins
(HSPs) by A. Tissieres and his group in 1974 [2]. A
number of important books and reviews can be con-
sulted to reconstruct the remarkable development of
the field in the following 20 years (see refs 3–57).
In view of the complexity of the hs response, with
major features conserved between bacteria, plants, in-
sects and vertebrates, and the central role of members
of the HSP families in a constantly increasing number
of cellular activities, it is worth recalling the historical
roots of experimental work in this field going back to
the middle of the last century [37]:
In 1864, Julius Sachs [58] reported on an extended
series of experiments defining the upper temperature
limits of plant growth using a specially designed heat
stress chamber for whole plants. The broad interest of
plant physiologists in this topic has continued up to
the present time and has provided insights into devel-
opmental, hormonal, circadian and seasonal influences
on the intrinsic and inducible heat resistance of plants
[59–65].
Another important root of hs research goes back
to the first publication in 1866 by the German physi-
cian W. Busch [66] on the spontaneous regression of
a skin tumour after local infection with Streptococcus
erysipelatis. Following this, W. B. Coley [67] reported
in 1893 on 47 cases of treatment of malignant surface
tumours by Streptococcus infections or by injection
of bacterial extracts (Coley’s toxin). The curative ef-
fect is evidently due to hyperthermic damage to the
tumour tissue and a local stimulation of the im-
mune system. Hyperthermic treatment of cancer as
well as investigations on the basis of cell death
under heat stress conditions and survival of
tumour cells due to induced thermotolerance became
a major part of research in this field and was particu-
larly stimulated after the discovery of induced HSP
synthesis [68–72].

Heat stress-induced developmental defects were first
described by F. M. Alsop in 1919 [73]. But it was
Richard Goldschmidt who elaborated the basis for a
developmental genetics in his report in 1935 [74] on
the hs-induction of phenocopies of Drosophila devel-
opmental mutants. This enormous work was based on
the analysis of about 500,000 individuals. His experi-
mental techniques were later extended by N. Petersen
and H. K. Mitchell [75] to Drosophila, and J. German
[76], summarizing numerous observations in verte-
brates, put forward a hypothesis of embryonic stress
resulting in formation of abnormal organ anlagen.
The brief outline of the early experimental results
may help to understand the remarkable velocity and
broad scope of scientific development initiated by
the discovery of hs-inducible genes and the corre-
sponding proteins [1, 2]. HSPs and the transcription
factors regulating their expression (HSFs) will be the
focus of this review.

II. Heat stress proteins

Survey of heat proteins as part of interacting chaperone
systems
The first description of heat stress-induced proteins
(HSP) in Drosophila [2] initiated a remarkable era of
research on similar proteins in all types of organisms and
on their function in stress tolerance. This led to the
characterization of a rapidly increasing number of iso-
forms as members of, at present, 11 HSP families,
structurally and functionally conserved between pro-
karyotes and eukaryotes. With the ongoing analysis of
the whole system, more and more data on important
minor HSP families emerged, and their number will
certainly continue to increase. It became apparent that in
eukaryotic cells the endomembrane systems [endoplas-
mic reticulum (ER), mitochondria, chloroplasts] harbour
their own sets of proteins related to the HSP families.
Due to the additional compartment in plants (chloro-
plasts), the complexity of the HSP families is particularly
high in this group of organisms [20, 51, 77].
There is no doubt that the dramatic increase in our
knowledge in this field is intimately connected with the
intriguing observation that members of the HSP
families act as key mediators of protein folding and
protein topogenesis (molecular chaperones). The term
was originally coined by Laskey et al. [78] for the
role of an acidic nuclear protein (nucleoplasmin) in* Corresponding author.



CMLS 53 (1997), Birkhäuser Verlag, CH-4010 Basel/Switzerland 81Reviews

nucleosome assembly. The highly suggestive concept,
further developed by R. J. Ellis [13–15], has been ex-
tended to include RNA or RNPs as chaperones, e.g. of
spliceosome assembly, or nuclear proteins (HMG1/2,
HMG17, NAP-1, GAGA factor, SWI/SWF complex)
involved in chromatin assembly and remodelling [26,
79–81]. Within the framework of this review, we will
concentrate on the molecular chaperones sensu stricto,
i.e. on those belonging to one of the HSP families.
Before giving a brief description and general functional
characterization of the individual families, three levels
of complexity are worth consideration: (i) The HSP100,
HSP90, HSP70 and HSP60 systems are composed of
different types of subunits with distinct functions for
the whole system (chaperone machines; see details given
below). (ii) Proteins of the HSP100, HSP60 and HSP20
families form large multimeric structures of 200–
900 kDa. (iii) In many instances several chaperone sys-
tems interact either simultaneously or sequentially in a
given situation of protein folding or organellar protein
import. Three examples may serve to illustrate this type
of cooperation between different proteins of the HSP
families.
New synthesis of proteins. Hartl and coworkers demon-
strated a sequential interaction of the HSP70 and the
HSP60 systems during protein folding in E. coli [82–85]
and provided arguments that similar arrangements may
also exist in eukaryotes [86, 86a]. During ongoing
protein synthesis, the newly forming polypeptides make
initial contacts at the ribosomal exit tunnel with general
chaperones represented by the trigger factor in Es-
cherichia coli [87, 87a] and the nascent polypeptide-as-
sociated complex in mammalian cells respectively (see
review by Rassow and Pfanner [44]). The subsequent
steps of protein folding are evidently connected with the
HSP70/HSP40 system, and the final stages of folding
and assembly may require HSP60 (GroEL, TCP-1)
complexes. Recently, this intricate processing pathway
was enriched by yet another chaperone (HSP90). Using
recombinant HSP70, HSP40 and HSP90, Freeman and
Morimoto [88] demonstrated that refolding of dena-
tured b-galactosidase is brought about by the HSP70/
HSP40 complex; but HSP90 is important to stabilize the
substrate in a folding-competent state.
Protein import into organelles. Basically similar, but
even more complex, are the processing lines built out of
four different chaperone systems which are required for
protein import into organelles, e.g. into yeast mitochon-
dria (see reviews in refs 11, 22, 50, 52). The precursor
proteins in the cytosol are maintained in an import-
competent, partially unfolded state by binding to the
cytosolic HSP/C70 system [89]. The multisubunit im-
port apparatus forms a tunnel through the two mito-
chondrial membranes for the entry of the precursor
protein [34, 43]. There is evidence that the intramito-
chondrial HSP70 system may be involved as a force-

generating system pulling the protein into the inner
space. Generation of the biologically active conforma-
tion of the imported protein in the matrix needs sequen-
tial interaction with the HSP70 and HSP60 systems and
evidently also the help of proteins belonging to the
immunophilin family [90–92].
Activity cycle of hormone receptors. The inactive, cyto-
solic form of the steroid hormone receptors in verte-
brates is part of a multichaperone complex (foldosome)
containing two molecules of HSP90, two proteins of the
immunophilin family (HSP56 and CYP40) and a small
acidic protein, p23 [6, 93–95]. After hormone bind-
ing this complex undergoes extensive conformational
changes liberating the receptor protein together with its
hormone ligand which enters into the nucleus and binds
to the promoters of hormone-responsive genes. In addi-
tion to the components given above, assembly, and
probably also the ligand-triggered transformation
within the ‘foldosome’, needs transient interaction with
the HSP70/HSP40 system and two additional proteins
(p60/STI1 and p48/Hip, see refs 96–99). With respect to
the role of several HSPs for maintenance of the inactive
cytosolic hormone receptor complex, it is an intriguing
observation that hs may cause nuclear import of the
unliganded receptor [100], but the same time reduce its
activity as a transcriptional activator [101]. Meanwhile,
similar multichaperone complexes were also identified
in an in vitro assembly system for the Fes Tyr-kinase,
the human HSF1 and for the AH receptor [101a].

The HSP100 family
The contours of this new family of stress proteins be-
came apparent when the bacterial large subunits of the
ClpP protease system and the yeast HSP104 were se-
quenced and functionally analysed [102–105]. The
HSP100 proteins are characterized by two conserved
boxes each of about 200 amino acid residues harbour-
ing an adenosine triphosphate (ATP) binding site. The
size of the proteins varies between 78 and 100 kDa
according to the size of nonconserved spacers between
the two boxes and additional C- and N-terminal se-
quences. In yeast and plants, there is evidence for the
existence of cytosolic as well as organellar forms of the
HSP100 proteins [103, 106–110].
Proteins of the HSP100 family have chaperone activity
and in some cases were shown to replace the HSP70/
HSP40 system [110–112]. However, experiments by
Parsell et al. [113] demonstrate that there may be an
interesting peculiarity. Unlike other chaperones, the
yeast HSP104 is able to resolubilize heat-inactivated
luciferase, but it has no influence on heat denaturation.
These results are in contrast to those of Wickner et al.
[112] using the same reporter system (luciferase) and the
bacterial ClpA protein as chaperone. The latter is nor-
mally part of a high molecular weight protease machine.
The 84-kDa ClpA protein forms a hexamer with 12
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molecules of ATP bound to it. This complex represents
the substrate recognition and unfolding part of the
protease machine together with a 12-mer of the small
proteolytic subunit (ClpP). Evidently, the ClpA/X hex-
amers can function as chaperones independently of the
ClpP subunit [112, 114]. This is also true for the hs-in-
ducible ClpB form of E. coli and for the eukaryotic
homologues where a protease subunit of the ClpP type
was never found [109, 115].
Extensive genetic studies in yeast demonstrated (i) that
HSP104 is an essential component for recovery after
different stress treatments (hs, ethanol, arsenite but not
heavy metals), (ii) that it is crucial for the high intrinsic
heat resistance of spores and stationary phase cells, and
(iii) that it can be replaced in this function by the
Arabidopsis HSP101 [109, 115, 116]. Particularly inter-
esting and intriguing is the role of HSP104 in creating
the active yeast psi factor, evidently a prion-type self-
modifying particle with a function as omnipotent non-
sense suppressor protein [117].

The HSP90 system
This family of heat stress-inducible proteins was estab-
lished by sequence comparison of representatives from
E. coli (HtpG), Drosophila (HSP83), yeast (HSP90) and
of the mammalian glucose-regulated protein (GRP94)
localized in the ER [118–122]. Proteins of the HSP90
family bind ATP and have autophosphorylating activity
[123]. They interact with the actin and tubulin cy-
toskeletal systems in a Ca2+ calmodulin-dependent pro-
cess, and they were shown to have chaperone activity in
vitro [124].
Despite its high abundance in the cytosol of all organ-
isms, the function of these types of proteins remained
unclear for several years. An early observation of a role
of HSP90 and a 50 kDa phosphoprotein p50 for the
pp60v-src retroviral tyrosine kinase maturation pathway
[125] was much later confirmed by reconstitution in
vitro [126] and functional testing in yeast [98, 99].
Meanwhile, it is evident that the HSP90�p50 system is
essential also for the function of other receptor tyrosine
kinases [101a, 127, 128], of Ser-protein kinases Raf and
CKII [129, 129a, 130], of signal transduction pathways
dependent on trimeric G-proteins [131] and of the hep-
atitis B virus reverse transcriptase complex [132]. Fi-
nally, a new type of HSP90 was identified as part of a
complex with the retinoblastoma (Rb) tumor suppres-
sor protein [132a], and the activity cycle and stability of
the cyclin D kinase (Cdk4) is controlled by the
HSP90�p50 system. In fact, the p50 (Cdc37) may repre-
sent a type of substrate targeting subunit of the HSP90
system [127, 132b].
Other examples of characteristic HSP90-containing
complexes are the inactive cytosolic forms of steroid
hormone receptors (HR). Initially detected in mam-

malian cells [133, 134], such complexes were also found
in insects (Drosophila, ecdysteroid receptor) and water
moulds (antheridiol receptor [135]). In vertebrates, the
inactive HR is bound to two molecules of HSP90 and
one molecule of HSP56. Generation of this hormone
competent state and its activation needs ATP and inter-
action with the HSP70 chaperone system [98, 136]. This
interesting interaction with the HSP90 and the HSP70
systems is evidently also important for the activity con-
trol and targeting of the protein kinases mentioned
above [101a, 127, 129a, 132b].

The HSP70/DnaK chaperone system
Early reports on the HSP70 family and the chaperone-
like functions of its members were based on five types of
evidence: (i) The sequence homology between the E. coli
DnaK and the Drosophila HSP70 was established by
Bardwell and Craig [136a]. (ii) Haas and Wabl [137]
reported on an immunoglobulin H-chain binding
protein (BiP) in the rER which was later identified as
GRP78 by Munro and Pelham [138]. (iii) The clathrin-
uncoating ATPase was characterized as a member of
the HSP70 family [139–141]. (iv) The universal function
as ATP-binding proteins was used by Welch and
Feramisco [142] to affinity-purify members of the
HSP70 family, and Pelham and his group [143, 144]
proposed an ATP-dependent function of HSP70 as a
protein shuttle between cytoplasm and nucleus. (v) Fi-
nally, and most important, the availability of HSP70-
defective yeast mutants led to the first experimental
evidence for a role in intracellular protein translocation
[145, 146].
The number of processes involving participation of the
HSP70 system is constantly increasing. Most important
in the framework of this review are protein folding and
topogenesis as well as the autoregulatory role of chaper-
ones for stress gene transcription in prokaryotes and
eukaryotes (see table 2). Other cellular activities influ-
enced by members of the HSP70 family are protein
degradation, reorganization of cytoskeletal systems
(tubulin, intermediate filaments), translation initiation,
nuclear protein import and export, ribosome assembly,
protection of nucleolar structure and functions under
stress, interaction with DNA-topoisomerase I and
DNA synthesis (for references see 38, 39, 147).
The HSP70 chaperone system is composed of three
proteins: HSP70/DnaK plus HSP40/DnaJ plus HSP35/
GrpE. The HSP70-type proteins contain two well-
defined parts, an N-terminal ATP-binding domain and
a C-terminal domain interacting with a broad range of
partially folded or denatured protein substrates. Un-
folded proteins stimulate the ATPase activity of HSP/
C70 [148]. As evident from the more detailed
characterization of the DnaK cycle of E. coli, substrate
interaction needs cooperation of an activated
DnaK�ADP complex with DnaJ. After release of the
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protein substrate, regeneration of the DnaK�ATP com-
plex requires GrpE as a nucleotide exchange factor [85,
149–151a]. Though comparable details are lacking for
eukaryotic systems, the large number of HSP/C70 iso-
forms characterized in different cellular compartments
is increasingly complemented by HSP40/DnaJ-type
proteins. Moreover, the first GrpE homologue from
yeast was recently described. Functional analysis of the
appropriate mutants indicates a close cooperation of all
three components of the HSP70 system, at least for
protein import into yeast mitochondria [152–155].
Thus, we can assume that the tripartite composition of
the HSP70 chaperone system is also valid for eukaryotic
systems.
Interestingly, the invariant C-terminal tetrapeptide
-EEVD of all eukaryotic cytosolic members of the
HSP70 family is particularly important for the overall-
function of the system [156]. It is not essential for
efficient interaction with unfolded substrates, but dele-
tion or mutation of the C-terminus causes marked con-
formational changes which render the protein more
vulnerable to trypsin cleavage, enhances ATPase activ-
ity and impairs the ability to refold denatured luci-
ferase. It is intriguing to recall that all HSP90 proteins
have the same conserved -EEVD terminus.
The DnaJ-type proteins (HSP40) are evidently the pri-
mary substrate-interaction subunits of the HSP70 ma-
chinery [83, 84, 149, 155, 157]. Members of the HSP40
family contain an N-terminal 70-amino acid motif, the
so-called J-domain [12], which interacts with HSP70/
DnaK. The elucidation of the solution structure of the
J-domain of the E. coli DnaJ by nuclear magnetic res-
onance (NMR) techniques revealed a four-helical bundle
with two long antiparallel helices (H2 and H3) in the
centre. A surface loop between the two helices interacts
with DnaK [158]. C-terminal to the J-domain is a con-
served Cys-rich zinc-finger domain which is essential for
the recognition of denatured protein substrates [159].
Recently, a new cytosolic co-chaperone of the yeast
HSP70 system was identified by two-hybrid screening
[96, 160]. The 41-kDA protein (Hip) is not homologous
to GrpE but may associate with the cytosolic HSP70/
HSP40 complexes, making them independent of a
GrpE-type factor. Hip is part of the chaperone com-
plexes with newly formed proteins and increases the
efficiency of the HSP70/HSP40 complex in protein fold-
ing in vitro. A Hip-type protein is evidently also another
subunit of the inactive steroid receptor complex.
The total complexity of a eukaryotic HSP70 family can
be given in yeast because sequence information of the
total genome is now available. Originally, eight iso-
forms were characterized by the pioneering work of E.
Craig and co-workers [161–164, 170], i.e. the four hs-
inducible proteins, SSA1–4; the two cold stress-
inducible proteins, SSB1 and 2 (all six are cytosolic
proteins); the mitochondrial SSC1 and the ER-localized

KAR2. The list has been enlarged by three new iso-
forms with very low levels of expression. SSC2 and
SSH1 are mitochondrial proteins, SSH1 probably being
involved in DNA replication, and SSI1 represents a
second ER-bound isoform (E. Craig, personal commu-
nication). In addition, a new type of HSP70 subfamily
with two representatives (SSE1 and 2) was identified
[165]. Members of this peculiar subfamily from mam-
malian cells are HSP110 [166], described many years
ago by Subjeck et al. [167] as a major hs-induced
nucleolar protein, an ER-bound protein GRP170 [168],
the HSP70RY protein [169] and possibly also the yeast
protein LHS1 in the lumen of the ER [171].

The HSP60/GroEL chaperone system
The bacterial components of this system were originally
described by Georgopoulos et al. [172] and Hendrix
[173] as part of a multisubunit complex (GroEL/
GroES) with heptameric symmetry, ATPase activity
and a catalytic function in phage head assembly. Inde-
pendently of this, Barraclough and Ellis [174] identified
a protein in plant chloroplasts (p60) associated with
unassembled large subunits of ribulose-biphosphate car-
boxylase. In both cases, situations typical for chaperone
activity were described without using the term. Finally,
the identity of HSP60 with GroEL and the chloroplast
p60 was demonstrated by sequencing [175, 176], and
their function in protein folding and assembly was
established [175, 177, 178].
The prototype of the HSP60 system is the E. coli
GroEL/GroES complex. Fourteen subunits of GroEL
(56 kDa) form a hollow-core structure of two hep-
tameric rings. Seven subunits of the 10-kDa GroES
attach to one site (trans) of the complex, leaving the
other site (cis) open for entrance of the unfolded protein
into the central cavity [84, 180]. To this asymmetric
ternary complex (bullet state), a second GroES hep-
tamer has to bind to the cis site with transient forma-
tion of the symmetrical football state [179]. ATP-
dependent protein folding proceeds in the enlarged
GroEL cavity sealed by the GroES heptamer. About
100 ATP molecules are probably needed for folding of a
monomeric protein of 50 kDa [180–182].
Data pertaining to the crystal structure of the GroES
heptamer [183] allow a better understanding of its role
in the HSP60 machinery. The GroES monomers are
built for a b-barrel with an attached mobile loop in the
N-terminal part which is essential for interaction with
the GroEL subunits. The heptamer forms a domelike
flexible structure with a central 30 A, orifice on top. The
highly dynamic structure has lead to speculation that
the GroES heptamer might directly participate in the
ATP-dependent protein-folding cycle.
GroEL/GroES-type systems were also described and
functionally analysed for mitochondria and chloroplasts
[175, 176, 184–187]. The chloroplast HSP60 complex is



CMLS 53 (1997), Birkhäuser Verlag, CH-4010 Basel/Switzerland84 Reviews

a hetero-oligomer built of up to three forms of an a

subunit and one form of b subunit [175, 188].
The prokaryotic type of HSP60 systems in the or-
ganelles of eukaryotic cells is complemented by a
cytosolic counterpart. The so-called TCP-1 complex
contains several structurally related subunits of 52–
65 kDa. The hetro-oligomeric ringlike structure of
about 970 kDa exhibits in vitro protein-folding activity
which needs Mg-ATP [189]. Six different TCP subunits
were identified from mouse cells [190], and disruption of
genes coding for a given TCP1 subunit in yeast resulted
in defective subunits which could not be rescued by
another subunit [191]. Thus, the striking complexity of
the TCP1 complex is evidently essential for its proper
function. Characterization of mutants in yeast and stud-
ies in mammalian systems indicate that the assembly
and dynamic changes of the actin and tubulin systems
are critically dependent on the TCP system [189, 192–
195a]. Recently, Gao et al. [195b] provided evidence for
a small co-chaperone of 13 kDa modulating ATPase
activity of the cytoplasmic TCP-1 complex. It is not
structurally related to GroES.

The HSP20 family
Among the conserved HSP families, this is the least well
understood (see the summaries in refs 8, 53 and 54). The
complexity is variable, with a single representative in
yeast (HSP26), 3–4 in mammals and about 20 in plants.
In the latter, some of the members of the HSP20 family
become mass proteins under heat stress conditions [196,
196a]. In addition to the abundant cytosolic members,
plants are the only systems where representatives of this
family were also characterized for all other chaperone-
containing compartments, i.e. ER, chloroplasts and
mitochondria [197–202a]. Sequence conservation is
generally low and restricted to a C-terminal region of
about 80 amino acid residues, the so-called a,B-crys-
tallin domain, which indicates an evolutionary link be-
tween the HSP20 family and the numerous forms of
vertebrate eye lens crystallins [8, 203]. In fact, a,B-crys-
tallin is a common protein in many non-lens tissues of
mammals, with enhanced expression under hs condi-
tions [204]. Comparison of 85 HSP20 sequences by
Caspers et al. [8] indicated that the a,B-crystallin do-
main may be composed of two hydrophobic b-sheet
regions connected by a hydrophilic a-helical part.
All members of the HSP20 family, including the
a,B-crystallins, form oligomers of 200–700 kDa [197,
203, 205–207] which exhibit ATP-independent chaper-
one activity [207–210]. They were found to prevent
stress-induced protein aggregation and to improve the
regeneration of proteins denatured by thermal stress.
Jinn et al. [211, 212] described a remarkable stabiliza-
tion of soluble soybean proteins against heat denatura-
tion by the cytosolic complex of class I members of the

HSP20 family. In addition, the mammalian HSP25
monomer has been shown to inhibit actin polymeriza-
tion in vitro [210, 213–215], and it is tempting to
speculate that actin may also be one of the cellular
targets for HSP20 chaperone activities in vivo. A strik-
ing new aspect of HSP20 activity is the observation of
Mehlen et al. [215a] that overexpression of human
HSP27, a,B-crystallin or Drosophila HSP27 can protect
mammalian cells against cell death caused by oxidative
stress after treatment with tumour necrosis factor.
The stress-dependent aggregation of the 500 kDa
oligomers to larger 40 nm complexes visible as electron
dense material in the cytoplasm (heat stress granules,
HSG) is probably a peculiarity of plants. Due to their
extraordinary stability, these HSG can be purified as
the main source of the cytosolic low molecular weight
(lmw) HSPs of plants. They evidently represent RNP
material with nontranslated housekeeping mRNA pro-
tected from degradation by an excess of lmw HSPs
[196a, 215b].

Stress proteins as components of proteolytic systems
Accumulation of defective proteins in aggregated form
is a consequence of many stress conditions [216, 217].
Alternatively, experimental creation of abnormal pro-
teins was repeatedly found to trigger the hs response
[218, 219 and refs in table 2]. Examples are the micro-
injection of denatured proteins into Xenopus oocytes
[218, 365, 366] or the synthesis or abnormal proteins in
E. coli by incorporation of amino acid analogues in the
presence of puromycin or by streptomycin-induced
translational errors [373, 375].
As summarized in table 2, there is an intriguing connec-
tion between the stress-induced imbalance of protein
homeostasis and its subsequent restoration by overpro-
duction of chaperones and components of the proteolytic
pathway. The efficient removal of irreversibly damaged
proteins evidently needs these newly formed proteins and
ATP (for summaries see refs 28, 220, 221).
1. Among the chaperone systems, HSP70/DnaK plays
a key role. E. coli strains with mutations in the dnaK,
dnaJ or grpE genes are defective in the energy-depen-
dent degradation of protein fragments which are found
associated with DnaK, GrpE and the Lon protease
[222]. In mammalian cells, a specific isoform of the
HSP70 family was characterized as a peptide-binding
protein induced 20-fold under conditions of increased
protein turnover [223, 224].
2. Tagging of proteins by ubiquitin is a prerequisite for
proteolytic degradation in eukaryotes [9, 220]. In most
organisms, the polyubiquitin gene is a general stress-
inducible gene (see summary by Nover [38]; and refs
225a and 226) and, at least in yeast, this also extends to
genes encoding enzymes of the ubiquitin conjugation
pathway [221].
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3. Ubiquitin-tagged proteins are mainly degraded in an
ATP-dependent process by the high molecular weight
26S proteasome [9, 28, 221, 227]. The 20S core particle
of the proteasome is an abundant multicatalytic
protease built of two rings with 14 subunits each. It is
combined at the entry site with a 19S ATPase particle
required for unfolding of the proteins to be degraded in
the inner cavity. Probably connected with the 19S com-
plex is a 40- to 50-kDa recognition protein for the
ubiquitin tag [228]. Interestingly, overproduction of a
member of the yeast HSP70 family (SSB1) may sup-
press a defect in a proteasome subunit [229] and, vice
versa, degradation of long-lived proteins is impaired in
yeast strains with a mutant form of DnaJ [230].
4. Another type of stress-inducible multisubunit ATP-
dependent protease, the ClpA/B:ClpP complex, has
only been found in prokaryotes [102]. In eukaryotes
only the chaperone part of the complex (ClpA/B=
HSP100) has been identified so far (see ‘The HSP100
family’ above).
5. Two additional proteases, originally identified as hs-
inducible proteins in E. coli were recently also found in
eukaryotes. These are (i) the Lon protease [220, 231,
232] and its homologues in mammalian and yeast mito-
chondria [233, 234] and (ii) the membrane-bound, Zn-
dependent FtsH protease, which in E. coli is involved in
the turnover of the hs-specific sigma 32 factor [235,
236]. Its eukaryotic homologues are evidently subunits
of a high molecular weight protease complex found in
the inner membrane of yeast mitochondria [225] and
plant chloroplasts [237].

Peptidyl-prolyl cis/trans isomerases (PPIase)
In contrast to the different types of chaperones briefly
discussed in the preceding sections, this rapidly growing
protein family comprises enzymes which increase the
rate of slow steps of protein folding. PPIases were first
described in 1984 by Fischer et al. [238]. Simulta-
neously, Handschumacher et al. [239] reported on the
first binding protein of the immunosuppressive drug
cyclosporin A. The identity of both types of proteins
was later shown by Fischer et al. [240].
Meanwhile, PPIases were found to be a new family of
abundant, ubiquitous, heterogeneously sized proteins
with representatives in all compartments of eukaryotic
cells where protein synthesis proceeds (for summaries
see refs 49, 241–243 and 249). Currently PPIases are
divided into four subfamilies: (i) cyclosporin A-binding
proteins (cyclophilins, CYP), (ii) FK506- or rapamycin-
binding proteins (FKBP), (iii) parvulins and (iv) the
trigger factor (TF) detected so far only in E. coli [87].
Though individual and multiple disruptions of the more
than 10 PPIase-coding genes in yeast [241, 242] gave no
hint of a significantly impaired viability, this may sim-
ply indicate the need for a more detailed investigation

of the effects. At present, there are several examples of
defined functions of these proteins in different organ-
isms:
1. Expression of some CYPs and FKBPs is induced by
heat or protein stress [244–246], including HSP56
(FKBP56), which is found in steroid receptor com-
plexes. In yeast, knock-out of two inducible forms, the
cytosolic CYP1 and the ER-bound CYP2, resulted in
cells with markedly decreased heat resistance [246].
2. Two members of the family (CYP40, FKBP56) are
intimately connected with steroid hormone receptor
complexes, taking part or facilitating the rapid changes
in activity state and intracellular localization of these
transcription factors [247, 248]. In addition, Tai et al.
[248a] observed a potentiation of progesterone receptor-
mediated transcription by FK506 in a heterologous
expression system (yeast), possibly due to the inhibition
of the Ca2+-dependent calcineurin phosphatase.
3. Evidently, CYP20 plays an important role in
mitochondrial protein import in yeast and Neurospora
crassa. Inhibition by cyclosporin A causes a delay of
intramitochondrial protein folding and extended bind-
ing of imported proteins to the HSP70 and HSP60
chaperone systems [90, 91].
4. In Drosophila, the best characterized cyclophilin ho-
mologue, NinaA, is required for the proper folding and
transport of rhodopsin from the endoplasmic reticulum
to the plasma membrane [408].
5. PPIase complexes with cyclosporin A and FK506,
respectively, effectively inhibit a mammalian serine/
threonine protein phosphatase (calcineurin). It is very
likely that the immunosuppressive effect of both types
of drug is mediated by this interaction with calcineurin
and that PPIase activity is not required. Evidently,
other signal transduction pathways involving protein
phosphorlyation/dephosphorylation may be affected as
well [196, 242].
6. Recently, the trigger factor of E. coli, positioned at
the ribosomal exit tunnel of the nascent polypeptide
chain, was identified as a very potent PPIase [87, 87a]
probably representing the first folding catalyst with
access to the newly forming polypeptide chain. It is
unclear whether the ‘nascent polypeptide-associated
complex’ of eukaryotes has similar activities [44].
7. CYP-type proteins were reported to be involved in
the intracellular replication of the parasitic protozoa of
Leishmania major in macrophages [250].

III. Heat stress transcription factors (HSF)

Basic structure of HSFs
After the initial characterization of the promoter recog-
nition site of eukaryotic hs genes by H. R. B. Pelham
and M. Bienz [251, 252; see summaries by Nover in refs
36 and 38] attempts were made to investigate the prop-
erties of the corresponding binding protein (heat stress
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transcription factor, HSF). The initial experiments of
Bonner [253] and Craine and Kornberg [254] defined
cytoplasmic factors of Drosophila cells capable of acti-
vating hs genes in vitro. Following this, Parker and
Topol [255, 256] and Wu [257–259] used footprint and
exonuclease protection assays to demonstrate the specific
binding of crude and partially purified HSF fractions
from Drosophila cells to the hsp70 and hsp83 genes [260].
The ultimate breakthrough came with the cloning of the
yeast HSF1 gene [261, 262], followed by the characteriza-
tion of the homologous genes/cDNAs from Drosophila
[263], tomato [264, 265], Xenopus [359], mammals [266–
268], chicken [269] and two other yeasts [270, 271].
A surprising peculiarity of the plant (tomato) system
was the finding of three HSF clones with different
structural and functional characteristics. Moreover, two
of them are themselves hs-inducible proteins [46, 264,
265, 272]. Meanwhile, similar results were reported for
other plants (see summary by Nover [41]), such as maize
[273], soybean [274] and Arabidopsis [275 and E. Czar-
necka-Verner, unpublished]. In verterbrates at least
three different types of HSFs were found which can be
discriminated by their response to hs and developmen-
tal signals, respectively, as well as by their tissue-specific
expression [269, 276].
All heat stress transcription factors from eukaryotes
have a number of common features, summarized in fig.
1. The DNA-binding domain (DBD) close to the N-ter-
minus is flanked by a region with heptad hydrophobic
repeats (HR-A/B) and a cluster of basic amino acid
residues essential for nuclear import (NLS). Finally, the
C-terminal part contains modules for the activator
function and its regulation (AD), in some cases includ-
ing another heptad hydrophobic repeat region (HR-C).

The DNA-binding domain
In common with the -AGAAnnTTCT- recognition site
characteristic of all eukaryotic hs promoters, the most
conserved part of HSFs is the DNA-binding domain
(DBD) of about 100 amino acid residues. Central to it
is a helix-turn-helix motif (HTH) evidently involved in
specific DNA contacts. The secondary structure ele-
ments and the resulting three-dimensional structure
were elaborated by X-ray diffraction and multidimen-
sional NMR techniques, respectively [277–280]. The
results reported for the DNA-binding domain of yeast,
Drosophila and tomato HSFs are very similar [279]
despite a structural peculiarity of the plant HSFs which
lack a 10-amino acid residue unstructured loop between
b-strands 3 and 4 (fig. 2). The whole tightly packed
globular structure is formed by a three-helical bundle
on one side and a four-stranded antiparallel b-sheet on
the other. It is stabilized by interactions of the bulky
hydrophobic side chains of numerous aromatic and
large aliphatic amino acid residues.

The core of the DBD is tightly packed and well defined.
This contrasts with the conserved 20-amino acid residue
C-terminal to the fourth b-strand which end with a
cluster of three to four basic amino acid residues (K/
R1). Because elements of secondary structure could not
be detected by NMR techniques [279, 280], Flick et al.
[281] discussed a role for this region as a flexible linker
between the DNA-recognition and the HR-A/B do-
mains. This may be important for the correct position-
ing of the HTH motif on the DNA. However, our
investigations with K/R1 mutant forms of tomato HS-
FsA1 and A2 indicate that this unstructured region is
essential for high affinity DNA binding [410]. It is
tempting to speculate that, similar to the winged helix
recognition of DNA by the forkhead type of transcrip-
tion factors [282], this C-terminal part of the DBD
makes direct contacts with the DNA, complementing
those involving the HTH motif.

Heptad hydrophobic repeats
Heptad repeat patterns (HR) of large hydrophobic
amino acid residues (L, I, V, M, F, Q) are frequently
found in transcription factors, but also in other proteins
as domains mediating protein-protein interactions. The
original idea for a three-stranded coiled-coil interaction
of a-helices containing large hydrophobic amino acid
residues in a heptad repeat pattern was put forward by
F. H. C. Crick [283]. Later on S. L. McKnight and
coworkers [282a] defined a similar repeat structure for
DNA-binding proteins as a leucine zipper.
The crystal structure analysis of a 33-residue synthetic
peptide derived from the oligomerization domain of the
yeast GCN4 transcription factor showed a triple-
stranded coiled coil. Interestingly, two helices were in
parallel orientation, the third one antiparallel; but this
may be a peculiarity of the artificial protein fragment
[284]. Though comparable data are lacking, this is evi-
dently also valid for HSF, as indicated by data from
circular dichroism (CD) spectroscopy and chemical
cross-linking of the oligomerization domain derived
from the yeast HSF [284a, 285].
With respect to the oligomerization behaviour, we can
probably discriminate between two basic forms of HR
regions: (i) those forming triple-stranded coiled coils
and (ii) those forming double-stranded zipper-type
structures. Frequently, the specificity of interactions is
determined by charged residues found in defined posi-
tions forming interhelical salt bridges [286–289].
Heptad hydrophobic repeats (HR-A/B) connected by a
variable linker region to the DNA-binding domain are
characteristic of all HSFs (fig. 1). In addition, many
HSFs, including plant HSFs types A1 and A2, contain
a C-terminal HR-C motif whose function will be dis-
cussed below. The HR-A/B regions are of two types
[41]: Type 1, observed for plant HSFsB1 and all non-
plant HSFs, represents a continuous heptad pattern of
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Figure 1. Basic structures of HSFs (from Nover et al. [41], with permission). Structures are exemplified in A by the three HSF types
from wild tomato (Lycopersicon peru6ianum, Lp) and in B by HSFs from baker’s yeast (Saccharomyces cere6isiae, Sc), fruit fly
(Drosophila melanogaster, Dm) and humans (Homo sapiens, Hs), respectively. DBD=DNA-binding domain; HR-A/B, HR-C=heptad
hydrophobic repeats; AD=activation domain; NLS=nuclear localization signal; L1, L2= linker sequences mentioned in the text; bar
at the C-terminus of the DBD marks the position of the K/R1 motif (see text).

large hydrophobic amino acid residues. Type 2 seems to
be unique to plant HSFsA1 and A2. The heptad pattern
is interrupted by insertion of 21 amino acid residues and
may give rise to two overlapping HR motifs. Unfortu-
nately, the three-dimensional structure of this important
part of the HSFs is unkown. Thus, the definition of the
two parts (A vs B) is based on formal arguments only
until more structural information is available. Interest-
ingly, not only the heptad positions, but a number of
other amino acid residues are also highly conserved, or
invariant in the HR-A/B region. Among them are acidic
and basic residues which might contribute to the specifi-
city of interactions mediated by this domain (see refer-
ences given above).
The activation/deactivation cycle for HSFs evidently
involves positive and negative modules of the HSF itself

as well as cofactors, e.g. of the chaperone families (for
details see fig. 3). Though oligomerization is usually an
integral part of stress activation [290–295] it is not a
prerequisite for nuclear import, nor for DNA binding
or function as transcription factor. HSFs with point
mutations or deletions of the HR-A/B domain have-
been repeatedly reported to be active, though unregu-
lated [294, 296, 409]. The existence of a DNA-bound
but transcriptionally inactive state (form 4) of HSF
represents the normal situation in unstressed yeast [261,
262, 295a]. This state can also be generated by treat-
ment of mammalian cells with salicylate, indomethacin
or other inflammatory drugs sensitizing cells to respond
to a lower temperature threshold for full HSF activa-
tion [297–299]. The multistep pathway of HSF activa-
tion involving oligomerization, nuclear transport and
DNA binding may be summarized as follows:

1 2 3 4 5
HSF HSF (HSF)3 (HSF)3×HSE (HSF)3×HSE

Heat stress
(inactive (preactiv. (preactiv. (preactiv. (active DNA-bound
monomer) monomer) trimer) DNA complex) timer)

Cytoplasm Nucleus
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Figure 2. Superposition of the three-dimensional structures of the
DNA-binding domains of HSFs from yeast (yellow), Drosophila
(green) and tomato (red). The figure was created by J. Schultheiss
(Frankfurt) by superposition of MOLSCRIPT files containing the
structural information from Harrison et al. [278], Schultheiss et al.
[279] and Vuister et al. [280]. The sequence of secondary structure
elements is a1, b1, b2, a2, a3, b3 (L), b4. The very close
similarity of all three structures is evident from the position of the
a-helical parts (a1, a2, a3), the turn region between a2 and a3 as
part of the HTH motif and the antiparallel b-sheet formed by
b-strands b1, 2 and 4. In all three HSFs b3 is tilted with respect
to the plane of the b-sheet. The remarkable difference between
plant (red) and nonplant (yellow, green) HSFs is an unstructured
loop (L) with 11–12 additional residues between b3 and b4
containing a conserved glycine residue in the nonplant HSFs.

and vertebrate HSF1, but must be modified for other
systems including HSFs 2 and 3 of vertebrates.

Nuclear localization signal (NLS)
The nuclear import of proteins is dependent on the
presence of NLS motifs formed by clusters of basic amino
acids (arginine, lysine residues, K/R clusters). NLS motifs
interact with cytoplasmic receptors, initiating the assem-
bly of a multiprotein transport-competent complex which
is able to pass through the nuclear pore [301, 302].
Two K/R clusters with potential function as bipartite
NLS motifs [303] are found in the C-terminal flanking
regions of the DNA-binding domain (K/R1) and the
HR-A/B domain (K/R2), respectively (fig. 1). In contrast
to earlier findings on the human HSFs1 and 2 [295, 300],
only K/R2 is reponsible for nuclear import, at least for
tomato HSFsA1 and A2 [410]. Although nuclear local-
ization requires the K/R2 signal, the transport process is
regulated by other parts of the protein. Common to both
human and plant HSFs is the observation that the
C-terminal HR-C region is somehow involved in cyto-
plasmic retention, e.g. by intramolecular or intermolecu-
lar shielding of the NLS motif. Truncated HSFs
generated by HR-C deletions show constitutive nuclear
localization together with a more or less unregulated
activity [267, 269, 291, 410].

The C-terminal activator domain (AD)
Generally, this region of the HSF shows a very low
degree of sequence conservation combined with a re-
markable multiplicity of synergistic and partly redun-
dant elements involved in the activator function and its
regulation. Though details are far from clear, the follow-
ing results may be relevant to elaborate a more general
concept of HSF regulation and to understand the differ-
ences between HSF types and organisms respectively.
1. Disregarding some peculiarities of the stress-
inducible HSF forms in plants, the general basis of
transient activation of hs genes is the stress-dependent
release of HSF from the inactive state and the restora-
tion of this state with ongoing HSP accumulation. Mul-
tiple positive and negative regulatory modules in the
C-terminal domain contribute to the function of HSFs
as stress-regulated activator proteins.
2. The detection of a C-terminal heptad pattern of large
hydrophobic amino acid residues (HR-C, fig. 1) sug-
gested the model of an inactive monomeric form main-
tained by intramolecular interactions between the
HR-A/B and the HR-C regions [267, 269, 291]. Though
direct proof, e.g. by a two-hybrid assay, is lacking, there
is some indirect evidence in support of this concept.
Thus, deletion of the HR-C region of plant, Drosophila
or chicken HSF creates a more active but unregulated
phenotype [269, 291; Lyck et al., cf. ref. 410]. Further-
more, Baler et al. [290] demonstrated extensive confor-

The actual form of wild-type HSF imported into the
nucleus is unclear. Immunofluorescence data so far
have only demonstrated enhanced or exclusive nuclear
localization after stress [292, 300, 410]. Cell fractiona-
tion using extracts from HeLa cells or transfected Xeno-
pus oocytes demonstrated that the nuclear form of
human HSF1 is trimeric, whereas the cytoplasmic form
is mainly monomeric [290, 294, 295]. Our characteriza-
tion of the oligomeric state of tomato HSFs in their
native surrounding (cell cultures) or after expression in
tobacco protoplasts did not give any evidence for
monomeric states or for pronounced changes in the
oligomeric state induced by shift from control to hs
conditions (Scharf et al., unpublished). Thus, the sim-
plified scheme given above reflects essential aspects of
the multistep activation process of the Drosophila HSF
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Figure 3. The HSF cycle (from Mosser et al. [316a], modified by C. Kirchner).
After heat stress, creating a situation with chaperone limitation (left), the inactive HSF monomer (centre) undergoes conformational
changes with subsequent trimerization, nuclear import and DNA binding. Under conditions of chaperone excess (right) the trimer is
removed from the DNA and converted to the inactive monomer by transient interaction with chaperones, e.g. of the HSP70- and
HSP90-type.

mational changes of human HSF1 during hs activation.
But in the present state of our knowledge, it is essential
to note that many effects could also be explained by
intermolecular interactions, e.g. with chaperones or
with other not yet identified coregulators (see below).
3. Activity tests with C-terminal deletion forms of the
tomato HSFs [272] led us to identification of short
peptide motifs with a central tryptophan residue (Trp
elements) as essential elements for the activator func-
tion. They are part of more extended C-terminal regions
with a high density of aromatic (A) and bulky hydro-
phobic (H) as well as acidic (A) amino acid residues (see
also review by Scharf et al. [46]). Similar AHA regions
are common C-terminal markers of yeast and vertebrate
HSFs as well (see table 1). Repeatedly, synergistic sub-
domains were defined by testing fusion constructs with
heterologous DNA-binding domans. In two remarkable
cases, the activator function could be reduced to short
peptide motifs with a characteristic and indispensible
pattern of aromatic and large hydrophobic amino acid
residues (underlined residues of AHA modules). For the
human HSF1, the sequence -FSVDTSALLDLF- fits
this description [304], and for the tomato HSFA2 it is
-VADDIWEELLS- [272 and Treuter and Nover, un-
published].
Though these core modules are integral parts of a much
more complex activator domain, their composition and
function are reminiscent of similar AHA modules in the
centre of the activator domains of other transcription
factors (see table 1 and refs 305 and 306). With the

exception of Sp1, these motifs are negatively charged.
However, the significance of the acidic amino acid
residues is not clear [307]. The aromatic hydrophobic
side chains are essential for protein contacts to other
components of the basal transcription apparatus (see
references given in table 3). Xiao et al. [308] argue that
similar motifs close to the C-terminal part (CTD) of the
largest subunit of RNAP II may compete for these
binding sites in the preactivated state. Thus, release of
the CTD by competition with activator proteins may
help in assembly and/or activation of the transcription
complex [309]. CTD phosphorylation is an important
step for the transition from the initiation state to elonga-
tion by the RNAP II holoenzyme complex [310, 311].
4. A central aspect of the hs response is the mainte-
nance of the inactive state of HSF under nonstress
conditions. Different regions of the C-terminal domain
have been identified as negative regulatory elements.
Clearly, deletion of the HR-A/B region [271, 409] or
HR-B plus flanking regions [304, 312] creates active but
unregulated HSF forms. On the other hand, deletions
or mutations of C-terminal regions that involve the
potential HR-C domain may have similar effects [269,
291, 410]. It seems likely that both parts of the molecule
are involved in intramolecular interactions to stabilize
the inactive monomer [291].
Evidently, HSF phosphorylation/dephosphorylation
plays an important role in this context. Hoj and Jakob-
sen [313] reported on the significance of a Ser-rich
heptapeptide motif in the C-terminal activator domain
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Table 1. AHA modules involved in the activator function and protein contacts of transcription factors. (For reviews see Triezenburg
[306]; Tjian and Maniatis [305].)

Transcr. factora Classb Function Test AHA modulesc Remarksd References
(Source) systema

HSV VP16 — Viral activator M, Y 438-ALDDFDLDM- Bipartite activator region; 308, 389–391
(M) protein 470-MADFEFEQMF- interacts with TBP and

TFIIB

RelA — p65 subunit of M, Y 442-LQFDDEDLGALL- Additive effect of several 392
(M) NF-kB 535-SIADMDFSALL- AHA moduls required

Sp1B ZnF GC box-binding M, Y, 454-QVSWQTLQLQNLQV- Not acidic; interaction with 367
(M) activator D TAFII110 and TAFII40

p53 — Mammalian tumor M 14-LFQETFSDLWKLLPE- Interacts with TBP, 393–395
(H) suppressor protein TAF1140, TAFII60, HSP70

and viral oncogenes,
(Ad5 E1B)

c-Jun bZip Part of Fos/Jun M 107-QEGFAEGFVRAL- Similar module (HOB2) 396
(H) complex, binding found in c-Fos

to AP1 sites

E2A HLH E-box binding M, Y 9-PVGTDKELSDLLDFSMMFP- HLH proteins involved 397
(M) protein in muscle and B-cell

development

C/EBPa bZip CCAAT-binding M 63-IDISAYIDPNDEFLADLF- 398, 399
(M) protein

NRF1 Nuclear factor M, Y 358-QNW- 412
(M) controlling res- 451-LVQIPVSMYQTVV

piratory genes

hRXRa ZnF Human retinoid X M, Y 447-IDTFLMEMLEAPHQMT* Interacts with TBP, 413–415
(M) receptor TAF110 and the RXR

repressor, similar C-term-
inal motifs found in other
RXR, RAR and TR

GCN4 bZip Activator of genes Y 89-LDDAVVESFFSS6M Additive effects between 400, 411
(Y) for aa synthesis 108-FEYENLEDNSKEWTSLFD- both AHA modules

GAL4 ZnF Activator of gal Y, P 861-MDDVYNYLFDDEDT* Interacts with the GAL80 307, 308, 401
(Y) regulon repressor, TBP and two

coactivating proteins

Heat stress transcription factors (HSF)
Hs-HSF1 HTH Human M 401-MLSSHGFSVDTSALLDFSP- 304
(H)

Lp-HSFA1, HTH Tomato P, Y HSFA1: 447-GADIDWQSGLL- 272 and
Lp-HSFA2(P) 466-VGDPFWEKFLQ- unpubl. results

HSFA2: 292-VADDIWEELLS- Additive effects of both
332-VKTPEWGEELQ- modules

Kl-HSF1 HTH Yeast Y 582-FFQDLQNNIDKQEESIQE Similar motif found in 296
(Y) IQDWITKLNPGPGEDGNTPIF- Sc-HSF1 (aa 629–666)

Dm-HSF HTH Drosophila D, P C-terminal activator (aa 402
629–691) contains an
extended AHA motif

aOrganisms are abbreviated as follows: D=Drosophila ; H=human; M=mammals; P=plants; Y=yeast.
bClassification of transcription factors (TF) according to their DNA-binding motifs are indicated with the following abbreviations:
bZip=basic region/leucine-zipper; HTH, HLH=helix-turn-helix and helix-loop-helix motifs; ZnF=zinc finger (for reviews see refs
403, 404).
cThe sequence of the N-terminal or C-terminal AHA motifs are enriched in amino acid residues with aromatic (F=phenylalanine;
Y= tyrosine; W= tryptophan), large hydrophobic (I= isoleucine; L= leucine; M=methionine; V=valine) and acidic (D=aspartic
acid; E=glutamic acid) side chains. The number indicates the position of the first amino acid residue in the whole protein. Residues
underlined were shown to be particularly important for function, e.g. by analysis of mutant proteins.
dProtein contacts which may be essential for the activator function involve several components of the basal transcription complex, e.g.
TBP (TATA-binding protein), TFIIB (transcription initiation factor II B) and TBP-associated proteins (TAFs).

of the Kluy6eromyces HSF. Phosphorylation in this
region observed under hs conditions is evidently a pre-
requisite for inactivation of the HSF in this yeast.
Though many HSFs were shown to be phosphoproteins

and to change the phosphorylation state under stress
conditions [261, 262, 314, 315], this is the first example
of a possible function attributed to this dynamic modifi-
cation. Recently, the role of phosphorylation in the
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reversion of HSF activity was also confirmed for human
HSF1 [297, 299, 316].
5. The intensive characterization of different sequence
motifs of HSF which might explain the stress-regulated
phenotype is parallelled by investigations of specific
chaperones as putative coregulators in the restoration
or maintenance of the inactive state. The intramolecular
interactions discussed for the C-terminal domain are
complemented by intermolecular interactions. There is
genetic and biochemical evidence that stress proteins of
the HSP70 family are key components in this respect,
probably acting by sensing the accumulation of dena-
tured proteins in the stressed cells (table 2). The model
given in figure 3 summarizes our present concept elabo-
rated in various detail for yeast, vertebrate and plant
systems. Probably, the main function of chaperones is
to restore or maintain the inactive state of HSFs. From
functional tests with plant HSFs (Kirchner and Scharf,
in preparation), it is very likely that besides the HSP70
chaperone machinery, HSP90 is also involved. Thus,
the system of coregulators required for control of HSF
activity is evidently very similar to that connected with
steroid hormone receptors in vertebrates. Whether this
similarity also includes mechanistic aspects remains to
be elaborated.

IV. Developmental control of hs gene expression in
plants

After more than 20 years of investigations of hs-induced
proteins, our knowledge is far from complete. In partic-

ular, some of the 11 major HSP families are barely or
not all characterized in plants. As mentioned above, the
remarkable complexity of the HSP pattern in plants
results from two peculiarities: (i) in addition to the
mitochondria and ER, the chloroplasts harbour their
own set of chaperones; (ii) in contrast to most other
organisms, the HSP20 family usually comprises more
than 20 different proteins (see ‘The HSP20 family’
above). Considering this multiplicity of genes, it is not
surprising that genotype and tissue-specific differences
in expression patterns after induction by hs or other
stressors occur [317–321]. The situation simply reflects
the central role of chaperones for protein homeostasis
and the evolution of multivalent promoters controlling
HSP expression under different stress and developmen-
tal conditions. Though hs-induced gene activation and
subsequent HSP synthesis are part of the general hs
response in practically all tissues, there are specific
observations on peculiarities in developing pollen [322–
324], germinating seedlings [317, 325] and during
somatic embryogenesis [320, 326]. In the latter case,
HSP synthesis is evidently controlled primarily at the
translational level.
Investigations of developmental control of hs gene ex-
pression in plants have concentrated on lmw HSPs
(HSP20 family). Three major parts of development are
summarized in table 3: early meiotic stages of pollen
formation, fruit ripening and somatic embryogenesis. In
most cases, only one or a few representatives of the
whole set of hs-induced HSP20 isoforms are observed in
a particular developmental context. The same is true for
the few examples, where other chaperones, e.g. of the
HSP70 family, were included. A particularly convincing
documentation of the variability of hsc70 gene expres-
sion in tomato tissues was presented by Duck et al.
[327] using in situ hybridization data. In addition,
Wang and Lin [328] reported on the complete replace-
ment of a seed-specific HSC70 in germinating mung
bean by a new vegetative isoform, and storage protein
synthesis in ripening seeds is intimately connected with
increased levels of GRP78 (BiP) in the rER [329–331].
Denecke et al. [330] characterized six different cDNA
clones for BiP isoforms in tobacco. But expression
patterns at the protein level and possible functional
differences remain to be investigated. Also, it is not
surprising that light-induced synthesis of small stress
proteins has repeatedly been observed. They are part of
developing chloroplasts [333] of mitochondria [334] or
belong to the cytosolic members of the HSP20 family
[335]. In this context, it is also worth mentioning that
synthesis of hs-regulated mRNAs is under circadian
control in pea seedlings with a maximum at the end of
the night and early in the morning [336]. Finally, there
are several reports indicating developmental as well as
light- and stress-dependent control of synthesis of other
chaperones. Examples are the chloroplast Cpn60 [337],
HSP90 [338], HSP104 [106, 339] and PPIases [340].

Table 2. Autoregulation of the hs response: Evidence for the role
of denatured or malformed proteins in hs signal transduction.

1. Heat and chemical stressors cause protein denaturation/ag-
gregation; newly synthesized proteins are particularly af-
fected [216, 217, 377, 361–364].

2a. Injection of denatured proteins into Xenopus oocytes leads to
HSF activation [218, 365, 366].

2b. Synthesis of recombinant or mutant/defective proteins trig-
gers HSP synthesis [368–375].

3. Unfolded abnormal or denatured proteins interact with the
HSP70/DnaK system [83, 84, 151, 155, 157, 376–378].

4. Genetic and biochemical evidence that the level of free
HSP70 controls the extent of hs response [10, 161, 316, 345,
379–381].

5. ATP depletion of cells results in increased levels of denatured
proteins and hs induction [216, 382].

6. HSFs interact with HSP70 [380, 384, 406]; large complexes of
both proteins are found in cytoplasm of non-stressed NIH-
3T3 cells [383].

7. HSF activity in non-stressed tobacco protoplasts is repressed
by co-expression of HSF with HSP70 and HSP90 (C. Kirch-
ner and K. D. Scharf, unpublished). Overexpression of mam-
malian HSFs in mammalian cells and Xenopus oocytes results
in unregulated activity [290, 292], whereas overexpression of
HSC/P70 in mammalian and Drosophila cells was found to
accelerate the deactivation of HSF [316, 345, 380, 384].

8. Regulation of the E. coli sigma 32 stability and activity cycle
by the DnaK/DnaJ/GrpE system [7, 149, 157, 385–388, 407].
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Table 3. Developmental expression of plant heat stress genes and proteins.
(See summaries by Nover, 1991 [38]; Winter and Sinibaldi, 1991 [360]; Waters et al., 1996 [54], na, not analysed)

Organism; Proteinsa hs mRNAs Remarks References
developmental process

A. Pollen de6elopment
1. Lily, maize na HSP18 Detected as meiosis-related multi- 323, 345–348

(class II) gene family (cDNA); expressed
during meiotic prophase, but not
in mature protein

2. Tobacco, tomato HSP17 na Expression of HSP17 during 341
meiotic stages of pollen
development

B. Flower de6elopment and
seed ripening

3. Pea, ripening pods, lmw HSPs HSPs 70, 20, 17 Coordinate expressions of class I & II 342, 343
seed germination class I & II mRNA and proteins during mid-

and HSP71.2 maturation of seeds; decay during
germination

4. Tomato; fruit ripening, na pTOM56=HSP17 mRNA levels increasing in response 349, 350
leaf senescence to ripening or senescence; not

induced by ethylene

5. Tomato; fruit na HSC70 Detection by in situ hybridization, 327
highest levels in tapetum cells
(ovary), seed integument and
developing embryo

6. Tobacco, tomato, pea, HSP17 na HSP17 accumulates in ripening 341
bean, maize; seed (class I) seeds; degraded during
development and germination; pattern of isoforms
germination different from hs-induced pattern

7. Wheat; germinating HSPs 94, 70, 60 HSPs 70, 60, In vitro translation of mRNAs from 351
seeds 40, 17, 14 40, 17, 14 wheat germs; except for HSP70,

levels of hs mRNAs decrease upon
germination

8. Sunflower, seed ripening HSP17.6 HSP17.6 In seedlings also induced by heat, 352, 353
(classes I & II) osmotic stress or ABA

C. Somatic embryogenesis
9. Arabidopsis ; na na HSP18 promoter×gus construct 354

flower development expressed in sepals, filaments,
styles

10. Arabidopsis ; HSPs17.4 na Class I HSP17.4 is strongly 344
seed ripening and 17.6 expressed in devel. seeds, but only

traces of HSP17.6; rapidly
degraded during germination; only
10% of normal HSP17.4 level
observed in ABA-response mutants
(abi 3-1, abi 5-1)

11. Rice, barley, maize, GRP78 The ER-localized member of the 329–332, 355
tobacco (BiP) HSP70 family is essential for

storage protein synthesis; six
different BiP clones identified in
tobacco; BiP level in germinating
barley aleurone cells enhanced by
GA3 treatment

12. Maize, na Class I lmw HSPs Identification of clones by 323a
mature seeds sequencing of cDNAs from mature

endosperm

13. Sorghum na lmw HSPs In vitro translation of mRNAs from 356
bicolor dry seeds

14. Alfalfa; na HSP18 Highest levels detected in early de- 357
somatic embryogenesis (class I) velopmental stages

15. Tobacco, induced na HSP17 Detected during starvation-induced 358
embryogenesis from (class I) embryogenesis; already present in

pollen

16. Carrot, somatic na HSP17 hs-induced synthesis of HSPs 326, 405
embryogenesis (class I and II) regulated at translational level,

based on preformed mRNA
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The most concise sets of data on developmental expres-
sion of HSP20 proteins in plants were provided by zur
Nieden et al. [341] and the group of E. Vierling [342–
344]. Comparing the lmw HSP (class I) levels in ripen-
ing and germinating seeds of tobacco, tomato, pea,
bean and maize, our group [341] reported on the accu-
mulation of HSP17 (class I) in mid to late phases of
seed ripening and their degradation during germination.
The pattern of lmw HSPs is different from the hs-in-
duced pattern but shows great variability between the
plant species investigated. The same is true for the
tissue-specific and intracellular distribution of the
HSP17 isoforms. Surprisingly, a considerable amount
of the protein is found in the nuclei in different tissues
of embryos from maize, soybean and tomato, as well as
in the storage protein compartments (protein bodies) of
soybean and tomato cotyledons [341]. De Rocher and
Vierling [342, 343] investigated seed maturation in pea
where only cytosolic class I and class II lmw HSPs
accumulate simultaneously with the presence of the
corresponding mRNAs. No ER- or chloroplast-specific
proteins are formed under these conditions. The lmw
HSPs are only found in the developing embryo but not
in the surrounding somatic tissue. The same is true for
a single isoform of the HSP70 family (HSP71.2) whose
expression in nonembryonic tissue is only observed after
hs-induction [343].
With regard to the specific patterns of HSPs expressed
within a particular developmental context (table 3), it is
very unlikely that the normal stress-responsive signal
transduction pathway is operative. The only direct evi-
dence for a long-discussed alternative stems from exper-
iments of Wehmeyer et al. [344] using abscissic acid
(ABA) response mutants of Arabidopsis. In this case a
single lmw HSP (HSP17.4, class I) is the dominant HSP
of developing seeds. The fairly high levels found in
wild-type Arabidopsis seeds are reduced to one-tenth in
two ABA-insenstive mutants (abi-3-1, abi 5-1). The
abi3 locus probably codes for a transcription factor
which affects the accumulation of storage proteins. Un-
fortunately, nothing is known about the nature of the
abi5 gene product and about the mechanism whereby
abi3 and abi5 gene products may influence expression of
lmw HSPs.
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