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Abstract
Background  Chronic Kidney Disease (CKD) impacts over 10% of the global population, and recent advancements 
in high-throughput analytical technologies are uncovering the complex physiology underlying this condition. By 
integrating Genome-Wide Association Studies (GWAS), RNA sequencing (RNA-seq/RNA array), and single-cell RNA 
sequencing (scRNA-seq) data, our study aimed to explore the genes and cell types relevant to CKD traits.

Methods  GWAS summary data for end-stage renal failure (ESRD) and decreased eGFR (CKD) with or without diabetes 
and (micro)proteinuria were obtained from the GWAS Catalog and the UK Biobank (UKB) database. Two gene 
Expression Omnibus (GEO) transcriptome datasets were used to establish glomerular and tubular gene expression 
differences between CKD patients and healthy individuals. Two scRNA-seq datasets were utilized to obtain the 
expression of key genes at the single-cell level. The expression profile, differentially expressed genes (DEGs), gene-
gene interaction, and pathway enrichment were analysed for these CKD risk genes.

Results  A total of 779 distinct SNPs were identified from GWAS across different CKD traits, involving 681 genes. 
While many of these risk genes are specific to the CKD traits of renal failure, decreased eGFR, and (micro)proteinuria, 
they share common pathways, including extracellular matrix (ECM). ECM modeling was enriched in upregulated 
glomerular and tubular DEGs from CKD kidneys compared to healthy controls, with the expression of relevant 
collagen genes, such as COL1A2, prevalent in fibroblasts/myofibroblasts. Additionally, immune responses, including 
T cell differentiation, were dysregulated in CKD kidneys. The late podocyte signature gene THSD7A was enriched in 
podocytes but downregulated in CKD. We also highlighted that the regulated risk genes of CKD are mainly expressed 
in tubular cells and immune cells in the kidney.

Conclusions  Our integrated analysis highlight the genes, pathways, and relevant cell types associational with the 
pathogenesis of kidney traits, as a basis for further mechanistic studies to understand the pathogenesis of CKD.
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Introduction
Chronic Kidney Disease (CKD) is a class of health con-
dition characterized by the gradual loss of kidney func-
tion regardless of its initial cause. Epidemiological studies 
indicate that CKD is not a rare disease, with an inci-
dence rate exceeding 10% among adults and considered 
a leading cause of morbidity and mortality worldwide 
[1]. CKD encompasses of a wide variety of traits, ranging 
from mild dysfunction to severe impairment, and pres-
ents diverse clinical manifestations such as proteinuria, 
electrolyte imbalances, and hypertension [2]. The etiol-
ogy of CKD is multifactorial and genetic, environmental, 
immune and metabolic factors together determine the 
occurrence and development of this condition [3]. Diabe-
tes is often reported as the key factor in exacerbating kid-
ney impairment [4]. In addition, both glomerulonephritis 
and tubular atrophy/interstitial fibrosis contribute to this 
complex disease. While research into the specific genes 
and signaling pathways through which the glomeruli and 
tubulointerstitium contribute to CKD is intensifying, the 
exact mechanisms of disease causation have yet to be 
clearly defined.

Recent advances in genomic technologies have pro-
vided new insights into the genetic underpinnings of 
CKD. Over the past decade, a comprehensive array of 
familial and linkage investigations increasingly emphasise 
the importance of genetics in understanding kidney func-
tion [5]. One powerful tool in this area is Genome-Wide 
Association Studies (GWAS). GWAS examine the entire 
genome of many individuals to identify genetic varia-
tions, often single nucleotide polymorphisms (SNPs), that 
are associated with particular traits or diseases [6]. In last 
few years, datasets and databases from multiple studies 
have been utilized to provide comprehensive information 
on risk genes from large populations [7]. Additionally, 
further research has focused on the in-depth interpre-
tation of these identified trait-associated loci, including 
the use of pathway functional analysis methods to better 
understand the biological mechanisms involved [8].

To further elucidate the genetic landscape of CKD, 
researchers have turned to transcriptional data for more 
detailed insights. A huge amount of transcriptional data 
has been generated, offering a way to observe expres-
sion changes central to CKD development. Bulk RNA 
sequencing (bulk RNA-seq) is one such technology that 
measures the average expression of genes across a sam-
ple of many cells, providing insights into how genes are 
regulated in diseased versus healthy tissues. For exam-
ple, databases like the Gene Expression Omnibus (GEO) 
collect such data, allowing researchers to identify dif-
ferentially expressed genes (DEGs) from diseased kid-
neys compared to controls [9]. Following this, enriched 
pathway analysis is a potent tool to identify the path-
ways involved in CKD development [10]. For instance, 

studies like that of Liu et al. [11] have underscored the 
correlation between glomerular transcription of the 
angiopoietin/Tie (ANG-TIE) pathway and kidney health 
outcomes, providing insights into how specific pathways 
impact kidney disease.

The advancement of single-cell RNA sequencing 
(scRNA-seq) has further revolutionized our under-
standing of the transcriptome by pinpointing genes spe-
cific to individual cell types [12]. Unlike bulk RNA-seq, 
scRNA-seq analyzes the gene expression of individual 
cells, enabling the detailed exploration of disease path-
ways influenced by unique cell receptors or mediators. 
This technique helps overcome limitations posed by the 
averaging effect of bulk RNA-seq and provides a refined 
understanding of molecular pathways at a cellular level. 
This advancement has been particularly significant in 
identifying cell-specific responses in CKD, allowing for 
the identification of biomarkers and potential therapeutic 
targets.

In this study, we amalgamate GWAS findings with 
expansive kidney transcriptomic data from various kid-
ney conditions. Our goal is to uncover shared pathways 
across kidney traits of CKD, and also determine enrich-
ment in specific cell types combined with scRNA-seq 
data. This analysis highlighted extracellular matrix 
(ECM), circadian entrainment, and energy metabolism in 
CKD kidneys as well as podocytes, tubular cells, myofi-
broblasts and immune cells in detail. It gleans potential 
insights to therapeutic targets for subsequent transla-
tional research in CKD.

Method
Ethical compliance
All the raw or processed datasets were available from 
public database. Neither animal experiments nor human 
clinical trials were conducted as part of our investigation. 
The research was carried out in strict accordance with 
the Declaration of Helsinki (2013).

Acquisition, and processing of data
GWAS summary statistics of CKD-related kidney func-
tion traits were downloaded from the National Human 
Genome Research Institute (NHGRI) GWAS Catalogue 
(www.ebi.ac.uk/gwas/ [13]) and the UK Biobank (UKB) 
genotype database (www.ukbiobank.ac.uk/). We first col-
lected the leading SNPs and risk genes reported for three 
traits in CKD derived from GWAS Catalogue and UK 
Biobank database: renal failure (abbreviated as ESRD), 
decreased eGFR (abbreviated as CKD), and (micro)pro-
teinuria. The ESRD and CKD groups were further classi-
fied into diabetic and non-diabetic subgroups. For studies 
that did not report the leading SNPs, we defined the loci 
using genotypes from the 1000 Genomes Project Phase 
for all populations. The linkage disequilibrium (LD) of 

http://www.ebi.ac.uk/gwas/
http://www.ukbiobank.ac.uk/
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the SNPs was determined with an r2 > 0.8, tagging the 
same loci under LD Proxy (https://ldlink.nih.gov). The 
corresponding matched genes in the loci were identified 
accordingly based on UCSC Genome Browser (https://
genome.ucsc.edu/).

Two bulk RNA-seq datasets from kidneys were 
downloaded from GEO database for integrated analy-
sis. GSE180395 comprised glomerular transcriptome 
(GSE180395) and tubular transcriptome (GSE180395) 
[11, 14]. This dataset series matrix files contained Clini-
cal Phenotyping Resource and Biobank Core (C-PROBE) 
cohort with a group of 47 CKD patients and 9 healthy 
controls from micro-dissected human kidney biopsy 
samples. GSE30122 was a human microarray dataset 
that includes glomerular and tubular compartments, 
derived from 12 controls and 10 patients with DN [15, 
16]. The GEO2R tool on the GEO website was used to 
detect differentially expressed genes (DEGs) in glomeruli 
and tubulointerstitium compared to corresponding con-
trols. Genes with adjusted P-value < 0.05 and |log2(Fold 
Change) | > 1.5 were considered DEGs.

Two human kidney scRNA-seq data sets were used. 
Data set A were downloaded at Zenodo (https://zenodo.
org/record/4059315 [17], and data set B at GSE211785 
[18]. The original annotation of cell type provided by 
authors was used for downstream analysis, in detail 
“Annotation.Level.2” in data set A [17] and “Cluster_
Idents” in data set B [18]. The two datasets were inte-
grated and normalized using R package Seurat v5.0.1. 
We curated the final set of cell type names by unifying 
the original annotations from these two sources. Dif-
ferential expression test was performed on data set B 
using FindMarkers function in Seurat. Only genes with 
adjusted p value < 0.05 were regarded as significant dif-
ferential expression genes. The R scripts used for the 
single-cell RNA-seq analysis can be accessed on GitHub 
at the following link of https://github.com/JingG/
RiskGenesForCKD.

Gene set enrichment analysis
Enrichment analyses of the risk genes and DEGs were 
carried out using Enrichr (https://maayanlab.cloud/Enri-
chr/), which provides a wide range of annotations curated 
from other databases and annotation tools for the sub-
mitted genes [19]. A list containing official gene symbols 
of genes was used as the input, and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways annota-
tions were retrieved through Enrichr having an adjusted 
p-value < 0.05 were considered statistically significant. 
KEGG shows the maps of molecular interaction, reac-
tion, and relation networks relevant to cellular metabo-
lism, genetic and environmental information processing, 
cellular processes, organismal systems, human diseases, 
and drug development [20].

The search tool for retrieval of interacting genes 
(STRING) (https://string-db.org/) database was 
employed to seek potential interactions between genes 
[21]. Active interaction sources, including text min-
ing, experiments, databases, and co-expression as well 
as species limited to “Homo sapiens” and an interaction 
score > 0.4 were applied to construct the protein-protein 
interaction (PPI) networks. In the networks, the nodes 
correspond to the proteins and the edges represent the 
interactions.

Statistical analysis
The statistical analyses were carried out utilizing SPSS 
(version: 26) and R (version: 3.5.3). Statistical significance 
was described as a p-value or adjust p-value < 0.05.

Results
CKD Risk gene screening from GWAS
Based on the summary GWAS statistics provided by 
databases of GWAS Catalogue and UK Biobank (UKB), 
928 CKD risk SNPs were included in the analysis (Sup-
plementary Dataset 1). After filtration of the overlapped 
and strongly linked SNPs (r2 > 0.8 in LD analysis), 779 risk 
SNPs were identified to be significantly associated with 
CKD phenotypes (Fig. 1a). Among these SNPs, 681 genes 
were mapped according to these two databases.

Since different kidney complications were explored 
in CKD GWAS studies [22], we primary focused on the 
traits referring kidney function, glomerular function, 
and kidney disorders with diabetes. According to the 
records in databases, the GWAS population is further 
classified into renal failure (shorted as ESRD), decreased 
eGFR (shorted as CKD) and (micro)proteinuria. The 
groups of ESRD and CKD were further classified as 
diabetic and non-diabetic subgroups. Majority of risk 
genes were identified in CKD populations, and an inci-
dence rate exceeding 50% in CKD patients without dia-
betes (Fig.  1b). Among these genes, while 70 risk genes 
(∼ 10%) were identified in two different population stud-
ies (Fig.  1c-d). The CKD without diabetes (non-specific 
CKD) group shared 12 risk genes with non-specific ESRD 
groups, and 35 risk genes with (micro)proteinuria group. 
Meanwhile, only 1–5 risk genes were shared by two 
groups. The genes identified in each group were detailed 
in Supplementary Dataset 2.

In addition, these shared risk genes only slightly inter-
acted within a few models (Fig.  1e), specifically in cell-
cell adhesion model including Cadherins (e.g., CDH 
4, 6 &10), Adhesion G protein-coupled receptor L3 
(ADGRL3) and Collagens (Col4A3 & Col24A1). KEGG 
analysis also showed that cell adhesion (CDH4, NEGR1 
& HLA-DQA1) was enriched in these shared CKD risk 
genes (Fig. 1f ).

https://ldlink.nih.gov
https://genome.ucsc.edu/
https://genome.ucsc.edu/
https://zenodo.org/record/4059315
https://zenodo.org/record/4059315
https://github.com/JingG/RiskGenesForCKD
https://github.com/JingG/RiskGenesForCKD
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://string-db.org/
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Thus, integrated GWAS profiled the risk genes associ-
ated with CKD. Different traits in CKD were associated 
with different gene sets, suggesting different pathological 
factors. Tissue remodelling genes, refereeing to cell adhe-
sion and collagens, were highlighted as common genes 
contributing to kidney diseases.

Functional enrichment of the CKD risk genes
Functional enrichment analysis was further conducted 
on CKD-associated genes identified from GWAS inves-
tigations. Across various CKD traits, analysis of enriched 

KEGG pathways revealed several shared pathways, 
highlighted by representative genes. We identified and 
reported the top seven pathways with the highest enrich-
ment scores (Fig. 2). Notably, pathways such as the extra-
cellular matrix (ECM) pathway, circadian entrainment, 
and energy metabolism were enriched across different 
sets of GWAS-derived studies.

The ECM is recognized as a key factor in the progres-
sion of fibrosis [23], a prevalent mechanism in CKD 
pathogenesis [24], while circadian rhythms have been 
shown to significantly influence cellular metabolic 

Fig. 2  Enrichment analysis of KEGG pathways for CKD-associated risk genes. This analysis was performed using the Enrichr, showcasing pathways on the 
left with an adjust p-value < 0.05. On the right, genes identified as CKD risk factors from various GWAS studies are displayed. The colour represents the 
enrichment score, as detailed in the scale provided

 

Fig. 1  Identification of risk genes for CKD. (a) Flow chart for CKD risk SNPs identification and 779 SNPs in 681 genes are selected. (b) Distribution of risk 
genes across phenotypic traits in CKD. (c) The Venn diagram showing the number of risk genes shared in different CKD traits. d. A total of 66 genes are 
shared while 615 are detected in only in one trait. (e) PPI diagram for these shared genes, including CDH and COL family. (f) the shared genes enriched 
for inflammatory bowel disease and cell adhesion
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processes [25]. Recent studies have also elucidated the 
link between renal fibrosis and metabolic changes [26]. 
Meanwhile, kidneys play a crucial role in the body’s 
endocrine system, secreting hormones such as renin, 
erythropoietin (EPO), and 1,25-dihydroxy-vitamin 
D3, in addition to various autocrine and paracrine fac-
tors [27], and involved genes also showed enrichment 
in distinct GWAS cohorts. Furthermore, genes related 
to the immune network were predominantly identified 
in GWAS groups for non-end-stage renal disease (non-
ESRD), whereas calcium signalling genes were more 
common in non-specific CKD groups, and cell cycle 
genes exhibited a broad but weak association across dif-
ferent cohorts.

These findings highlight the potential common patho-
genic mechanisms underlying various CKD conditions, 
despite differences in specific traits and associated risk 
genes derived from different GWAS studies.

CKD transcriptionally regulate genes in the kidneys
Moreover, we reanalyzed the transcriptome data derived 
from the C-PROBE Investigator group [11, 14]. The 
bulk-RNA seq data were derived from micro-dissected 
human kidney biopsy samples in a group of CKD patients 
(n = 47), and the glomerular and tubular transcriptome 
were analyzed in both typical primary CKD (e.g., FSGS, 
MN and IgAN) and secondary CKD (e.g., LN and DN). 
The transcriptomes from 9 healthy living donors served 
as controls. In our findings, a total of 533 genes were 
identified as downregulated in the glomerular region, and 
269 genes were downregulated in the tubular transcrip-
tome, with an intersection of 131 genes showing down-
regulation in both areas (Fig. 3a). Conversely, the analysis 
identified 339 upregulated genes in the glomerular tran-
scriptome and 222 in the tubular transcriptome, with a 
subset of 86 genes upregulated in both areas (Fig.  3b). 
Since this cohort is a combination of different primary 
and secondary CKDs, it suggests the presence of com-
monly regulated genes in CKD.

To further investigate the transcriptional regulation in 
CKD, we used another dataset of diabetic nephropathy 
(DN) from Suszker’s group, which included 12 controls 
and 10 patients with DN [15, 16]. Gene array analysis 
revealed 454 genes were downregulated in the glomeru-
lar portion, 95 genes in the tubular portion, and 17 genes 
in the intersection; Conversely, 166, 543, and 121 genes 
were upregulated in these respective regions (Fig. 3c-d). 
We also analyzed the overlap between these two datasets, 
finding very few common genes (Fig.  3e). Interestingly, 
despite differences in specific genes, both datasets exhib-
ited a trend of greater downregulation in the glomeru-
lar region, but less upregulation in the tubular region. 
Additionally, the C-PROBE dataset detected very few 
upregulated genes in the tubular area, while Suszker’s 

dataset identified 461 distinctly upregulated genes in the 
same region. We cannot rule out the possibility that these 
upregulated genes in tubular area are specifically related 
to the progression of DN.

Transcriptionally regulated pathways in the kidneys with 
CKD
To understand the function of these regulated genes, we 
performed KEGG pathway analysis using the regulated 
genes in CKD (Fig.  3). For the downregulated genes in 
the C-PROBE dataset, pathways such as steroid hormone 
biosynthesis, collecting duct acid secretion, and mineral 
absorption were enriched in both glomerular and tubu-
lar transcriptomes (Fig. 4a). Interestingly, pathways pre-
viously associated with CKD, such as the complement 
and coagulation pathways [28] and the renin-angiotensin 
system [29], were exclusively downregulated in the tubu-
lar region. Additionally, the FOXO and Apelin signaling 
pathways, along with AMPK signaling — all involved in 
cell proliferation, division, migration, apoptosis, oxidative 
stress resistance, and metabolism [30, 31] — were also 
exclusively downregulated in the tubular region. How-
ever, in the DN dataset from Susztak’s group, the sig-
nificantly enriched pathways were only detected in those 
regulated gene derived in the glomerular region, focus-
ing on cell adhesion and immune-inflammatory pathways 
(Fig. 4b).

In contrast, a greater variety of pathways were enriched 
in the upregulated transcriptomes, indicating a predomi-
nant activation of pathological mechanisms contributing 
to CKD progression. Pathways related to cell adhesion, 
migration, and the extracellular matrix were notably 
upregulated in both the glomerular and tubular areas in 
both datasets. Moreover, in the C-PROBE dataset, simi-
lar upregulated pathways were observed in both regions, 
whereas in the DN dataset from Susztak’s group, upreg-
ulation was mainly concentrated in the tubular region 
(Fig.  4c-d). Most of these upregulated pathways were 
involved in immune responses, including pathways regu-
lated by NK cells, T cells, and B cells, as well as necrop-
tosis and NF-kB signaling. Another group of upregulated 
pathways included those regulating cell status, such 
as proliferation, senescence, and necrosis. Addition-
ally, the circadian entrainment pathway exhibited mixed 
responses, within both CKD upregulated and downreg-
ulated tubular genes in the C-PROBE dataset, while cell 
adhesion pathways were prominent in the DN dataset 
from Susztak’s group. Notably, the AGE-RAGE signaling 
pathway in tubular area was downregulated in the CKD 
cohort of the C-PROBE dataset but upregulated in the 
DN cohort from Susztak’s group, which is directly related 
to diabetes [32].

Our data indicate a complex regulatory landscape of 
gene expression in CKD, showcasing distinct pathways 
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uniquely modulated within the glomerular and tubu-
lar areas. Several pathways are consistently highlighted 
across both regions, underscoring their importance in 
the disease process.

Risk genes and pathways transcriptionally regulated in 
CKD
We further concentrated on the intersecting genes iden-
tified by CKD GWAS studies and those that are tran-
scriptionally regulated in CKD. In total, 72 overlapped 
genes were identified, with 58.4% of these genes showing 

Fig. 3  Gene regulation in glomerular and tubular regions of kidneys affected by CKD. (a-b) The upper section displays Venn diagrams illustrating the 
intersection of downregulated (a) and upregulated (b) genes in CKD from C-PROBE cohort, specifying their activity in either the glomerular or tubular 
regions. (c-d) Similar with a-b, The regulated number were detected in Suszker’s cohort of diabetic nephropathy (DN). (e) The crossing of regulated gene 
number between C-PROBE and Suszker’s cohort. G: glomerular area; T: tubular area
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Fig. 4  Pathways enriched by Enrichr analysis (with an adjusted p-value < 0.05, corresponding to differentially expressed genes (DEGs) in CKD, listed in 
Fig. 3). (a-b) Downregulated pathways in CKD derived from DEGs in the glomerular and tubular areas compared with controls, detected in the C-PROBE 
cohort of CKD (a) and Susztak’s group of DN (b). (c-d) Similar analysis for upregulated pathways
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downregulation in either the glomerular or tubular 
regions (Fig.  5a). Specifically, GWAS gene LUC7L3, 
LONRF1, THSD7A, NTNG1 and FGF9 were downregu-
lated in both glomerular and tubular regions.

while GXYLT2, CDH6, COL1A2, COL6A3, CD53, 
LY86 and RRM2 was upregulated in these areas.

Functionally, the relationship between these overlapped 
genes is highlighted in the Protein-Protein Interaction 
(PPI) network (Fig.  5b) and KEGG enriched pathways 
(adjusted p-value < 0.05; Fig.  5c). Notably, COL1A2 and 
COL6A3, two members of the collagen family, were 
detected as upregulated GWAS genes (Fig. 5a). They were 
connected with other collagen genes, COL4A1, COL4A3, 
and VEGFA, forming a distinct module under PPI analy-
sis (Fig.  5b). KEGG pathway analysis suggests that this 
module is involved in the AGE-RAGE and extracellular 

matrix (ECM) pathways (Fig. 5c). Both AGE-RAGE and 
ECM pathways have been reported to contribute to tis-
sue deposition and fibrosis in CKD [33, 34]. Meanwhile, 
the module of CDH6 and CDH10 belonged to cadherin 
family (Fig. 5b), which are involved in cell adhesion and 
maintaining tissue architecture in CKD [35].

Moreover, FGF9 functionally linked with ERBB4 
and FLRT2 (Fig.  5b) is associated with calcium signal-
ing and the PI3K-Akt pathway (Fig.  5c). Recent studies 
have shown that these two pathways interconnect, link-
ing PI3K pathway activation to Ca2+ signaling, and play 
crucial roles in cell cycle regulation and apoptosis [36], 
which are important in CKD progression. The cell senes-
cence was significantly enriched among the regulated 
GWAS genes (Fig. 5c).

Fig. 5  Intersecting genes identified by CKD GWAS studies and those that are transcriptionally regulated in CKD. (a) The list of up- and down- regulated 
genes in glomerular and tubular area, respectively. The common genes are indicated in different colors. (b) PPI diagram of the regulated GWAS CKD 
genes, highlighting the module of collagen genes. Only the interactions of two genes were approved with experiments, derived from databases, co-
expressed were considered in this analysis, as well the protein homologies. (c) KEGG enriched pathways of these genes showing AGE-RAGE, ECM and cell 
senescence. (d) 62% of the CKD-regulated GWAS genes overlap with kidney-specific eQTL-associated eGenes [41, 42]
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Additionally, CD53 and LY86 (Fig.  5a), although not 
detected in the pathway enrichment analysis (Fig.  5c), 
are functionally related genes that potentially influence 
immune response [37, 38], whereases, the T-cell dif-
ferentiation pathway was enriched among these regu-
lated GWAS genes (Fig. 5c). It is important to note that 
the involvement of HLA genes in this pathway has been 
heavily scrutinized in GWAS studies, which were even 
questioned the relevance of HLA genes due to potential 
confounding factors and population-specific effects [39, 
40].

Specifically, we referenced the eQTL analyses from 
Liu et al. [41] and Sheng et al. [42], which systematically 
profile kidney-specific eQTLs. Liu et al. integrated all 
publicly available kidney eQTL datasets, while Sheng et 
al. showed the eQTL association genes in glomeruli and 
tubules, respectively. Among the 72 regulated GWAS 
genes, 62% genes were identified as kidney-specific 
eQTLs associated-eGenes. This overlap highlights the 
significant association between GWAS-identified genes 
and kidney-specific transcriptional regulation.

Cell type-specific expression of regulated risk genes in the 
kidney
To analyze cell type-specific expression, we employed two 
public scRNA-seq datasets from kidney biopsy samples 
[17, 18], which included 145,202 cells categorized into 
four groups: glomerular compartment (including podo-
cytes), tubular cells, stromal cells (primarily fibroblasts/
myofibroblasts), and immune cells. The 72 CKD-related 
GWAS genes highlighted in Fig.  5 were plotted across 
these cell types. However, the abundance of more than 10 
genes, such as CDH10 and COL8A1, was very low in kid-
ney cells and are not shown due to their absence in these 
kidney cell types (Fig. 6).

Interestingly, fibroblasts and mesangial cells exhibited 
a similar pattern of enriched regulated GWAS genes, 
including COL1A2 and LUC7L3. Mesangial cells, a type 
of glomerular stromal cell, are suggested to be a specific 
type of fibroblast [43]. COL1A2 is a typical collagen gene, 
and LUC7L3 may regulate fibronectin mRNA maturation 
[44], both playing pivotal roles in extracellular matrix 
remodeling. In podocytes, the genes VEGFA, THSD7A 
and MAFB were enriched and reported as late podocyte 
(LP) genes [45]. N4BP2L2 was enriched in glomerular 
podocytes and mesangial cells. It is listed as a predicted 
podocyte essential gene [46] and a hub gene related to 
immune regulation in membranous nephropathy [47], 
though its specific function remains unclear. In tubular 
cells, CCSER1, PKHD1, TFCP2L1, and FGF9 were pre-
dominantly expressed. Notably, PKHD1 is associated 
with polycystic kidney disease and its presence in tubu-
lar cells may be linked to tubular dilation and cyst forma-
tion [48]. RNASET2 and CD53 were primarily expressed 

in the immune cells. CD53, a leukocyte surface antigen, 
plays a significant role in modulating signaling pathways 
in immune cells, indicating its importance in immune 
responses within the kidney [38].

To further understand the regulation of these genes by 
CKD across different cell types, we analyzed their expres-
sion levels using scRNA-seq datasets [18], including 
samples from control subjects and CKD patients (Fig. 7). 
Interestingly, the late podocyte signature gene THSD7A 
was downregulated in podocytes in CKD compared 
to controls, while a group of genes, such as COL6A3, 
were upregulated in fibroblasts. We found enrichment 
for multiple proximal tubule-specific genes, such as 
SLC5A11 and SLC6A13 [49], which were significantly 
downregulated in proximal tubular cells during CKD. 
Conversely, a cluster of genes was upregulated in differ-
ent tubular cell types, although their specific functions 
were not directly linked to tubular genes. Additionally, 
CHST11 was upregulated in the immune cells during 
CKD, which was positively correlated with immune cell 
infiltration [50], while immune relevant HLA-DRB1 gene 
was downregulated.

Discussion
Genome-Wide Association Studies (GWAS) have iden-
tified numerous loci associated with kidney traits [22], 
but translating these findings into meaningful insights 
is challenging due to the complexity of relevant cell 
types and underlying mechanisms [51]. Our integrative 
analysis combined GWAS summary statistics with gene 
expression data to identify risk genes associated with 
kidney function. By leveraging single-cell RNA sequenc-
ing (scRNA-seq) data, we highlighted specific cell types 
and their distribution. This approach revealed that kid-
ney function traits exhibit cell type-specific signatures of 
associated genes, reaffirming existing biological under-
standing of CKD physiology.

We compiled risk genes for CKD traits using GWAS 
summary statistics from the GWAS Catalogue and 
UK Biobank, encompassing nearly all reported GWAS 
genes on CKD. We compiled risk genes for CKD traits 
using GWAS summary statistics from the GWAS Cata-
logue and UK Biobank, encompassing nearly all reported 
GWAS genes on CKD. Recently, another meta-analysis 
of publicly available GWAS information from the CKD-
Gen4, Pan-UK Biobank, MVP5, PAGE20, and SUM-
MIT21 consortia for 1.5  million individuals identified 
878 independent loci, including 126 new loci, associated 
with eGFRcys and/or BUN [41]. Only about 10% of the 
genes showed overlap across different traits, indicating a 
low overlap rate in the GWAS data, and most of the over-
lapping genes were associated with CKD without diabe-
tes (non-specific CKD).
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Fig. 6  Heat diagram of the regulated GWAS genes against the cell types in kidney, with color showing average expression and the size the percentage 
expressed. The percent expression in less than 3% was shown as blank
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Our analysis further focused on mapped genes for 
integration with bulk RNA data analysis. Although some 
genes were identified across different GWAS studies with 
the same CKD trait, few genes were consistently priori-
tized. Notably, risk genes from nonspecific CKD GWAS 
results overlapped with those for proteinuria or ESRD 
GWASs. At last, we identified 72 GWAS-identified risk 
genes overlapped with regulation in CKD-affected kid-
neys. Genes related to the extracellular matrix (ECM), 
especially COL1A2, underscore the importance of tissue 
remodeling in CKD progression, while the AGE-RAGE 
signaling pathway is highlighted for its role in tissue 
fibrosis. Moreover, the immune response is a complex 
process during CKD progression and is prominently fea-
tured among these regulated GWAS genes. Additionally, 

some eGenes in these regulated GWAS genes were listed 
based on two kidney-specific eQTL analyses for further 
study reference.

Finally, our integrative analysis of cell type-specific 
expression using public scRNA-seq datasets from kid-
ney biopsy samples revealed distinct patterns of regu-
lated CKD-related GWAS genes across various cell types. 
This approach highlighted the importance of specific cell 
types, such as fibroblasts, mesangial cells, podocytes, 
tubular cells, and immune cells, in CKD progression. For 
example, genes related to the extracellular matrix (ECM), 
such as COL1A2 and LUC7L3, were enriched in fibro-
blasts and mesangial cells, underscoring their role in tis-
sue remodeling [43, 44]. In podocytes, VEGFA, THSD7A, 
and MAFB were identified as critical late podocyte genes 

Fig. 7  Heat diagram of different express genes (DEGs) across cell types, with color showing log2(fold change) in cells derived from CKD patients versus 
those from controls and the “*” indicating adjust P value < 0.05. The genes were similar expressed in each cell types were not shown in this diagram
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[45]. Tubular cells predominantly expressed genes like 
PKHD1, which is associated with polycystic kidney dis-
ease [46], while immune cells showed significant expres-
sion of RNASET2 and CD53, emphasizing their role in 
immune responses [38].

However, data inconsistencies are common in inte-
grated analyses. In GWAS analyses, inconsistencies can 
arise from various sources, including different trait defi-
nitions, population characteristics, GWAS detection 
strategies, and analysis methods [52]. For bulk RNA-
seq and scRNA-seq data, discrepancies primarily result 
from differences in sampling, cell dissociation protocols, 
library preparation technologies, and sequencing plat-
forms [53]. These variations can lead to batch effects, 
obscuring true biological signals and complicating data 
interpretation. Further validation using snATAC-seq data 
could provide insights into chromatin accessibility and 
gene regulation at the single-cell level [42, 54]. Moreover, 
our study lacks direct experimental validation to confirm 
the functional relevance of the identified genes. These 
multi-faceted approaches will strengthen our findings 
and provide more robust insights into CKD mechanisms, 
potentially leading to the identification of new therapeu-
tic targets. In addition, factors such as age, ethnicity, and 
sex were not adjusted for in this analysis, as the multiple 
dataset meta-analysis approach helps to reduce individ-
ual dataset biases due to such factors.

In conclusion, the strengths of our study lie in the use 
of impartial datasets and multifaceted analysis, combin-
ing robust GWAS summary statistics with bulk and sin-
gle-cell gene expression data. This methodology directs 
experimental studies post-GWAS by pinpointing the 
most pertinent cell type for each gene associated with a 
specific trait and may highlight potential molecular tar-
gets for CKD treatment, crucial for early intervention 
and therapeutic strategies.
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