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Abstract 

Background  DNA methylation profiling may provide a more accurate measure of the smoking status than self-
report and may be useful in guiding clinical interventions and forensic investigations. In the current study, blood DNA 
methylation profiles of nearly 800 Polish individuals were assayed using Illuminia EPIC and the inference of smoking 
from epigenetic data was explored. In addition, we focused on the role of the AHRR gene as a top marker for smoking 
and investigated its responsiveness to other lifestyle behaviors.

Results  We found > 450 significant CpGs associated with cigarette consumption, and overrepresented in various 
biological functions including cell communication, response to stress, blood vessel development, cell death, and ath-
erosclerosis. The model consisting of cg05575921 in AHRR (p = 4.5 × 10–32) and three additional CpGs (cg09594361, 
cg21322436 in CNTNAP2 and cg09842685) was able to predict smoking status with a high accuracy of AUC = 0.8 
in the test set. Importantly, a gradual increase in the probability of smoking was observed, starting from occasional 
smokers to regular heavy smokers. Furthermore, former smokers displayed the intermediate DNA methylation profiles 
compared to current and never smokers, and thus our results indicate the potential reversibility of DNA methylation 
after smoking cessation. The AHRR played a key role in a predictive analysis, explaining 21.5% of the variation in smok-
ing. In addition, the AHRR methylation was analyzed for association with other modifiable lifestyle factors, and showed 
significance for sleep and physical activity. We also showed that the epigenetic score for smoking was significantly 
correlated with most of the epigenetic clocks tested, except for two first-generation clocks.

Conclusions  Our study suggests that a more rapid return to never-smoker methylation levels after smoking cessa-
tion may be achievable in people who change their lifestyle in terms of physical activity and sleep duration. As ciga-
rette smoking has been implicated in the literature as a leading cause of epigenetic aging and AHRR appears to be 
modifiable by multiple exogenous factors, it emerges as a promising target for intervention and investment.
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Background
Cigarette consumption is associated with numerous 
adverse health effects and accounts for more than 8 
million deaths worldwide each year, according to the 
WHO. All forms of tobacco use are known to be harm-
ful, including exposure to second-hand smoke and expo-
sure in fetal life [1]. A growing body of research agrees 
that habitual smoking leaves a significant signature on 
DNA methylation [2, 3], and there is increasing evidence 
that some of the diseases associated with smoking may 
be mediated by smoke-induced changes in DNA meth-
ylation [4–6]. Smoke is also known to be a major cause 
of increased epigenetic aging [7–9]. In our recent study, 
we showed that those who smoke are, on average, four 
years older epigenetically than those who have never 
smoked [10]. The mechanism by which smoking affects 
DNA methylation is still under investigation, but current 
evidence suggests that it involves smoke-induced DNA 
damage and recruitment of DNA methyltransferases that 
methylate adjacent cytosines in CpG dinucleotides, or 
nicotine-induced downregulation of DNA methyltrans-
ferases [3, 11].

Monitoring the dynamics of changes in the DNA meth-
ylation profile with smoking exposure or after smok-
ing cessation may be of great interest in diagnostics or 
clinical interventions to describe a patient’s smoking 
status better than self-report and to estimate the risk of 
smoking-related diseases such as myocardial infarction, 
lung cancer, diabetes, or chronic obstructive pulmonary 
disease (COPD) [12, 13]. DNA methylation is a promis-
ing biomarker of health and biological aging due to the 
potential to revert. However, cigarette-sensitive mark-
ers may differ in their ability to return to the pre-expo-
sure methylation state [14–17]. An association between 
methylation profile and time since smoking cessation 
has also been reported [16–18]. Moreover, inferring an 
individual’s smoking status can also be a useful piece of 
information in a criminal investigation to complement an 
offender’s genetic profile [19–21].

Numerous CpG sites (CpGs) have been associated with 
tobacco smoking in blood, but the strongest smoking-
induced epigenetic response has been reported for the 
AHRR gene [14, 16, 22–24], with cg05575921 included in 
most of predictive models available in the literature [21, 
25–29]. A protein encoded by the AHRR gene partici-
pates in the aryl hydrocarbon receptor (AhR) signaling 
cascade, which mediates the degradation of environ-
mental toxins, and regulates cell growth and differentia-
tion. AHRR was found to be associated with smoking in 
Europeans and Asians, although population differences 
in methylation levels for AHRR and other markers were 
observed and an interaction between smoking status 
and ethnic group was identified at the AHRR locus [25]. 

Importantly, AHRR methylation was found to be inform-
ative for smoking inference in both blood and saliva tis-
sues [27]. AHRR is also a predictor of epigenetic aging, 
included in the pace of aging model [30] and mortality 
risk score models [8], but it is not clear whether its role in 
epigenetic aging is limited to smoking exposure only. In 
the literature, AHRR has been associated with smoking-
related diseases such as COPD incidence, lung function, 
lung cancer [31, 32] and atherosclerosis [33].

In the current study, blood DNA methylation profiles 
of nearly 800 individuals were assayed using Illuminia 
EPIC arrays. By conducting a novel epigenome-wide 
association study, we described epigenetic markers of 
smoking in the Polish population and focused on the role 
of the AHRR gene as a top marker of smoking and other 
lifestyle habits. We compared the methylation profiles 
of smokers, never smokers, and former smokers, which 
allowed us to infer the temporality of DNA methylation 
at smoke-sensitive markers. Furthermore, we developed 
a new compact 4-CpG prediction model for smoking, 
which may be of practical importance for forensic and 
diagnostic purposes.

Methods
Study population and smoking information
The study comprised of a total of 772 participants. 
First, whole blood samples were collected from 737 
Polish unrelated individuals aged ≥ 20 years old (age 
mean ± SD = 46.4 ± 14.8) along with information on ciga-
rette smoking history (Table S1). Participants were asked 
whether they were current or former cigarette smokers. 
Current smokers were asked to define their smoking 
frequency and were categorized as occasional smokers 
(≤ 1–2 times per week), regular light smokers (< 5 ciga-
rettes per day), regular medium smokers (5–20 cigarettes 
per day) or regular heavy smokers (> 20 cigarettes per 
day). Former smokers were asked to define the num-
ber of years since quitting. For the purpose of statistical 
tests, current smokers were all included in one group 
of smokers or in two groups of light smokers or heavy 
smokers, with light smokers including individuals who 
smoke occasionally or regularly in small amounts, while 
the second group included individuals who smoke regu-
larly in medium amounts or regularly in large amounts. 
Blood samples were also collected from a group of N = 35 
children under the age of 13 who were treated as an addi-
tional validation group, although no smoking question-
naire was available at the time of sample collection.

Written informed consent was obtained from all par-
ticipants, and the study was approved by the Bioeth-
ics Committee of the Jagiellonian University in Krakow 
(decision no. 1072.6120.132.2018).
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Description of other lifestyle habits
Information on other lifestyle and socio-demographic 
characteristics was also available in this study (N = 737) 
and included education (university degree, primary 
school, high school, or vocational school); socioeconomic 
status (SES) (high vs. above average vs. average vs. low 
vs. very low); job type (physical/manual, mental work 
partially sedentary (up to 4 h per day; sedentary mental; 
SM), mental work only sedentary (more than 4 h per day; 
long sedentary mental; LSM), or retired/unemployed); 
workplace exposures (low/high workplace temperature, 
exposure to pesticides/chemicals, toxins/heavy metals/
air pollution, ionizing radiation, sun, and stress); physi-
cal activity (e.g., exercise, jogging, cycling, yoga, etc.); fre-
quency of alcohol consumption (non-drinkers, occasional 
drinkers (drinking once a week), and frequent drinkers 
(drinking at least three times a week)); number of meals 
per day; servings of fruits and vegetables; frequency of 
fish and meat consumption; cups of coffee per day; and 
hours of sleep. Frequencies of lifestyle-related character-
istics in the study population are shown in Table S2.

DNA methylation data analysis
DNA was extracted from blood samples using an auto-
mated method and the Maxwell RSC Blood DNA Kit 
(Promega Corporation), and its quantity and quality 
were evaluated using NanoDrop (Thermo Scientific, 
MA, USA) and the Qubit dsDNA HS Assay Kit (Thermo 
Fisher Scientific). The amount of 500 ng DNA per sam-
ple was subjected to bisulfite conversion using the EZ-96 
DNA Methylation Kit (Zymo Research Corp., CA, USA) 
according to the manufacturer’s instructions for Infinium 
assays. DNA methylation profiles were then generated 
using the Illumina Infinium Methylation EPIC microar-
ray (Illumina, San Diego, CA, USA) [34]. To minimize 
batch effects, samples were analyzed at similar times 
and randomized on microarray plates prior to analysis 
using the web-based RANDOMIZE application [35]. In 
addition, at the data analysis stage, principal component 
analysis was used to detect potential batch effects, and 
the associated scatter plot of the top PCs did not indicate 
a high source of variation. Primary quality control of raw 
array data, filtering of low-quality samples and probes 
was performed as described in our previous study [10]. 
Functional normalization (FunNorm) on filtered data 
(750 821 probes) was performed using the minfi package 
in R version 4.3.1 [36].

Statistical data analysis strategy
Using specific sample sets and methylation data, a series 
of statistical analyses were performed, including an epi-
genome-wide association study (EWAS) for categorical 

outcomes and associated functional annotation analy-
sis, followed by model building using logistic regression, 
again for categorical outcomes and model validation, 
and finally an association analysis of lifestyle factors with 
DNA methylation at the AHRR cg05575921 and since 
DNA methylation was considered the dependent variable 
in this type of analysis, linear regression was used. In the 
EWAS analysis, all current smokers (N = 171) were com-
pared to all never smokers (N = 404). In turn, a subset of 
the EWAS sample was used for prediction model training 
(70%, N = 238) and testing (30%, N = 100), and samples 
within each group were matched for age and sex. For-
mer smokers (N = 162) and children (N = 35) were used 
as external validation groups. The association of sociode-
mographic and lifestyle characteristics with DNA meth-
ylation at the AHRR was assessed in the dataset of blood 
samples from N = 737 individuals, including the EWAS 
sample set and former smokers. Summary statistics of 
the study samples are shown in Table S1.

Epigenome‑wide association study
Differentially methylated positions (DMPs) for smok-
ing, defined in a binary manner as smoking (N = 171) 
vs. nonsmoking (N = 404), were identified by a EWAS 
study using the limma package [37]. The results of the 
EWAS analysis were adjusted for age, sex, and blood cell 
counts (T-cells: CD8 + , CD4 + , CD8 naive, CD4 naïve; 
NK, B-cells; monocytes; granulocytes) predicted with 
a Houseman method [38]. Associations between differ-
entially methylated CpGs and Gene Ontology (GO) and 
KEGG terms were investigated using the missMethyl R 
package [39]. The Benjamini–Hochberg false discovery 
rate (FDR) method was used to correct for multiple com-
parisons, and results with FDR p < 0.05 were considered 
significant.

Development and validation of predictive model
Predictive model training was performed on 238 sam-
ples, including 119 non-smokers and 119 current smok-
ers, matched for age and sex. No significant differences in 
sex (Pearson’s chi-square p = 1.0) and age (Mann–Whit-
ney U p = 0.999) between the groups were confirmed 
with appropriate statistical tests (Table  S1). Variable 
selection was performed on the DMPs identified in the 
EWAS study by stepwise logistic regression, using the 
significance of the score statistic as the criterion for 
predictor entry and the probability of a likelihood ratio 
statistic based on maximum partial likelihood estimates 
as the test of exclusion. Nagelkerke’s R2 statistic was cal-
culated, which is an approximation of the R2 statistic for 
linear regression. The R2 statistic measures the good-
ness of fit of a model and summarizes the proportion of 
variance explained by each predictor. Bootstrap analysis 
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with n = 10,000 permutation tests was applied to evalu-
ate the robustness of the model. Two types of models 
were developed, the binomial model for comparing two 
categories (current smokers vs. never smokers) and the 
multinomial model, where three categories were consid-
ered (never smokers vs. light smokers vs. heavy smokers). 
The performance of the developed models was tested on 
an independent set of 100 blood samples from 50 smok-
ers and 50 never smokers and the accuracy was described 
by AUC (the area under the ROC curve), sensitivity (true 
positive rate, for the binomial model it is the percentage 
of smokers correctly identified as smokers), specificity 
(true negative rate, for the binomial model it is the per-
centage of never smokers correctly identified as never 
smokers), and total number of correct predictions (the 
percentage of correct scores calculated for the combined 
group of smokers and never smokers). The newly devel-
oped biomarker for smoking was further validated using 
two additional sample sets, former smokers (N = 162) and 
children (N = 35). The epigenetic score for smoking, i.e. 
the probability of smoking and its distribution in differ-
ent groups, was analyzed. Prediction modelling was done 
using IBM SPSS Statistics 29.

Analysis of the correlation between epigenetic score 
for smoking and epigenetic age
In our previous study, we showed that in our database of 
Polish samples, epigenetic clocks correlate strongly with 
lifestyle habits, including self-reported smoking [10]. 
Here, we tested whether the epigenetic score for smoking 
correlates with different measures of epigenetic age accel-
eration (EAA) as determined by different clocks, includ-
ing Horvath 2013 [40], Hannum 2013 [41], Horvath 
Skin&Blood [42], PhenoAge [43], GrimAge [7], FitAge 
[44], Mortality Risk Score (MRS) [8] and DunedinPACE 
[45]. For all clocks except the latter two, epigenetic age 
acceleration (EAA) was calculated as described in our 
previous study [10]. The pairwise correlation between the 
epigenetic score for smoking measured by our new bino-
mial model and different EAAs, MRS or PACE was ana-
lyzed by Pearson’s correlation test.

Association tests for AHRR and lifestyle
We tested for association between DNA methylation 
at cg05575921 in AHRR and lifestyle data. DNA meth-
ylation at cg05575921 was treated as the outcome, while 
each socio-demographic and lifestyle characteristic was 
independently entered into the linear regression model as 
an independent variable. The strength of association was 
interpreted using standardized beta coefficients, and the 
R2 statistic was used to calculate the proportion of vari-
ation in DNA methylation at AHRR explained by lifestyle 
factors. Results were always adjusted for age and sex, 

smoking status, blood cell components, and DNA meth-
ylation pack-years calculated with the Horvath online 
tool (https://​dnama​ge.​clock​found​ation.​org/); and results 
p < 0.05 were considered statistically significant.

Results
Epigenome‑wide association study for smokers vs. never 
smokers
The EWAS analysis for smoking yielded 459 age- and sex-
adjusted CpG associations in a group of 575 individuals 
(Fig. 1). The top 12 CpGs (FDR p < 1 × 10–7) are shown in 
Table 1, while the full list of FDR-significant CpGs (FDR 
p < 0.05; raw p < 5 × 10–5) is shown in Table  S3. When 
the results were additionally corrected for several life-
style factors, including socioeconomic status, educa-
tion, coffee consumption, and sleep duration, 99 CpGs 
remained significant (Table S4). The highest ranking hit 
was cg05575921 AHRR (p = 4.5 × 10–32 adjusted for sex 
and age; p = 8.7 × 10–27 adjusted for age, sex and lifestyle 
factors), and 6 other CpGs in AHRR also reached EWAS 
significance (Table  S3). Downstream pathway analy-
sis revealed enrichment in multiple biological functions 
(FDR p < 0.05), including among others organism devel-
opment, cell communication, regulation of signaling, 
response to stress, blood vessel development, and cell 
death (Table S5). When KEGG pathways were tested in 
the overrepresentation analysis, although no significant 
groups of genes were revealed after FDR correction, the 
top significant (raw p < 0.05) terms included pathways 
in cancer, lipid and atherosclerosis, purine metabolism, 
and axon guidance (Table S6). When all 459 EWAS-sig-
nificant CpG markers were analyzed in an independent 
group of former smokers, 117 of them were found to be 
statistically significantly (nominal p < 0.05) associated 
with time since quitting, with 21 reaching p < 0.0001 
(Table S7).

Predictive analysis of smoking status
Prediction models were developed using logistic regres-
sion and stepwise marker selection. Two types of data 
categorization were used, including a simple binary defi-
nition of smoking and including 3 smoking categories 
defined as non-smokers, occasional smokers, and regular 
smokers. Four CpGs (cg05575921 in AHRR, cg09594361 
at chr1: 54905423, cg21322436 in CNTNAP2 and 
cg09842685 at chr12: 4492769) were selected to explain 
a total of Nagelkerke R2 = 38.9% of the observed variation 
in smoking. The analysis of multicollinearity showed low 
values of variance inflation factor (VIF) for the predictors 
in the model (between 1.1 and 1.4). The characteristics of 
a binomial regression model are shown in Table 2.

The binomial model predicted smoking with high 
accuracy described by the AUC parameter at the level 

https://dnamage.clockfoundation.org/
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Fig. 1  Manhattan plot of EWAS for smoking adjusted for age, sex and blood cell count. Red horizontal line corresponds to FDR p < 0.05, 
with the top annotated markers meeting this threshold

Table 1  Top 12 (FDR p < 10–7) independent EWAS-based CpGs associated with smoking

CpG ID Chr hg19 Gene name Gene group p FDR p

cg05575921 chr5 373378 AHRR Body 5.95E–38 4.47E–32

cg21566642 chr2 233284661 NA NA 1.08E–27 4.05E–22

cg17739917 chr17 38477572 RARA​ 5’UTR​ 1.77E–24 4.44E–19

cg03636183 chr19 17000585 F2RL3 Body 1.53E–23 2.86E–18

cg14391737 chr11 86513429 PRSS23 5’UTR;Body 7.14E–18 5.96E–13

cg05086879 chr22 39861490 MGAT3 5’UTR​ 1.04E–14 6.02E–10

cg18110140 chr15 75350380 NA NA 6.18E–14 3.09E–09

cg19859270 chr3 98251294 GPR15 1stExon 7.33E–14 3.44E–09

cg02657160 chr3 98311063 CPOX Body 7.32E–13 3.23E–08

cg04182427 chr7 32315577 PDE1C Body 1.14E–12 4.75E–08

cg09935388 chr1 92947588 GFI1 Body 1.28E–12 5.08E–08

cg02978227 chr3 98292027 NA NA 2.67E–12 9.56E–08

Table 2  Variables in the binomial logistic regression model and bootstrap analysis (n permutation tests = 10,000)

SE Standard error, CI Confidence interval
* cg21322436 was retained in a model because it improved prediction accuracy in both, training and test sets, as shown in Table S8

CpG in a model B Bias SE p Bootstrap 95% CI

Lower Upper

cg05575921  − 12.947  − 0.482 2.540  < 0.001  − 18.918  − 8.891

cg09594361  − 19.051  − 0.473 7.173 0.004  − 34.293  − 6.033

cg21322436  − 8.577  − 0.465 5.250 0.086*  − 19.659 0.768

cg09842685  − 14.905  − 0.632 6.869 0.022  − 29.346  − 2.082

Constant 35.634 1.228 7.302  < 0.001 24.072 52.685
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of 0.80, in both training (N = 238) and test (N = 100) 
sets (Table  3). The sensitivity and specificity were 66% 
and 82%, respectively. The final number of correct clas-
sifications was 74% in the test set. The epigenetic score 
for smoking in the smoker and never smoker categories 
was compared and shown in Fig.  2. When the distribu-
tion of probabilities was analyzed in a larger number of 
categories, taking into account the frequency of smok-
ing, a gradual increase in the probability of smoking was 
observed, starting from occasional smokers to regular 
smokers who smoke in large quantities. Importantly, 
the mean score (probability) of smoking was higher for 
former smokers than for never smokers, but lower than 
for current smokers (Fig.  3). In addition, the specific-
ity of the model was tested in children aged < 13 years 
and, as expected, very low probabilities of smoking were 
achieved in this group. Notably, the mean score for smok-
ing was higher in the never smokers’ group (0.37 ± 0.19) 
than in the children (0.20 ± 0.15).

In the next step, the categories of occasional smok-
ers and regular light smokers were combined into one 

category of light smokers, while regular medium smokers 
and regular heavy smokers were combined into another 
category of heavy smokers. In the multinomial model, the 
AUC values were very high for never smokers and heavy 
smokers (0.8 and 0.88, respectively), and lower, but close 
to 0.7 level of prediction accuracy was achieved for the 
light smoker category, intermediate between never smok-
ers and heavy smokers. High sensitivity was obtained for 
the never smoker category (84%), which was significantly 
lower for light smokers (44%), while high specificity of 
prediction was achieved for the light smoker and heavy 
smoker categories (80% and 97%, respectively).

All four CpGs selected in the models were signifi-
cantly correlated with smoking status in both types of 
EWAS analyses (Table  S3 and S4), and positively influ-
enced the AUC value in both the training and test sets 
(Table  S8). The single AHRR cg05575921 was found 
to explain 21.5% of the variation in smoking and, when 
used alone, predicted smoking at the AUC level of 0.76 
in the test set (Table 3). The AHRR gene was also found 
to have the highest observed change in DNA methylation 

Table 3  Predictive performance for binomial and multinomial models for smoking status

Model type Smoking category Training set Test set

AUC​ Sensitivity Specificity AUC​ Sensitivity Specificity

AHRR cg05575921 Smoker vs. never smoker 0.75 0.56 0.82 0.76 0.60 0.82

Binomial 4-CpG Smoker vs. never smoker 0.80 0.64 0.82 0.80 0.66 0.82

Multinomial 4-CpG Cat. 1 Never smoker 0.80 0.84 0.57 0.80 0.84 0.66

Cat. 2 Light smoker 0.68 0.39 0.82 0.69 0.44 0.80

Cat. 3 Heavy smoker 0.89 0.56 0.97 0.88 0.52 0.97

Fig. 2  Epigenetic score (probability) for smoking for never smokers and current smokers within training and test sets, as determined by a binomial 
regression model
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when comparing current smokers to never smokers with 
a mean difference in DNA methylation beta of 0.13 ± 0.01 
(Fig.  4). Importantly, the AHRR cg05575921 and the 
other three DMPs included in the prediction models 
were all hypomethylated in smokers.

To analyze the dynamics of DNA methylation in smoke 
associated CpGs, we also compared non-smokers and 

current smokers with former smokers and found that 
there were no significant differences in DNA methylation 
beta levels between never smokers and former smokers 
for all CpGs in the model except cg05575921 in AHRR 
(Fig.  4). However, the methylation profile of former 
smokers at cg05575921 was more different from current 
smokers (p < 0.001) than from never smokers (p = 0.006). 

Fig. 3  Epigenetic score (probability) for smoking for different sample groups as determined by a binomial regression model. Smokers were divided 
into four groups based on frequency of smoking: occasional smokers, regular light smokers, regular medium smokers and regular heavy smokers

Fig. 4  Boxplots of methylation levels for 4 CpGs included in the predictive model for smoking and comparison between current smokers, former 
smokers and never smokers. Groups were matched for age and mean age of each group was 46.3
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This finding may indicate the potential recovery of DNA 
methylation after smoking cessation and suggests that 
the rate of these changes may differ for different loci in 
the genome.

Epigenetic score for smoking correlates with epigenetic 
age acceleration
Analysis of the correlation between the epigenetic score 
for smoking (the probability of smoking) and various 
measures of epigenetic age acceleration (EAA) showed 
a significant effect for most clocks, except Horvath 2013 
and Horvath Skin&Blood, which belong to the first gen-
eration of epigenetic clocks trained solely on chronologi-
cal age. The strongest correlation and highest significance 
was observed for the GrimAge clock (Pearson’s R = 0.665, 
p = 1.25E-63) and the Mortality Risk Score (Pearson’s 
R = 0.525, p = 6.30E-36). Results are shown in Table S9.

Associations between AHHR and various lifestyle factors
Methylation of AHRR cg05575921 decreases slightly with 
age (p = 1.89 × 10–5) and is lower in males (p = 1.67 × 10–6). 
Of all habits examined, cigarette smoking was the most 
strongly correlated with methylation at cg05575921 
(p = 4.71 × 10–41). Higher methylation was observed in 
physically active individuals who exercised daily, but not 
less than once a week, and the results were significant 
after adjustment for age, sex, smoking status, blood cell 
count and DNA methylation pack-years (p = 0.028). Peo-
ple who slept at least 8 h per night also showed a more 
favorable methylation profile in cg05575921 compared 
to people with a sleep deficit (p = 0.027, Table  4). The 

full association tests for all lifestyle factors are shown in 
Table S10.

Discussion
To address the problem of the aging population and as 
a prevention strategy for age-related diseases, epige-
netic reprogramming is a promising solution [46, 47]. As 
cigarette smoking has been implicated as a major cause 
of epigenetic aging [9, 10, 48], and literature data show 
that smoke-induced changes in DNA methylation pat-
terns may mediate disease development [4–6], smoking-
responsive markers appear to be promising targets for 
intervention and investment. DNA methylation-based 
smoking inference is also of interest in the field of foren-
sic DNA phenotyping, which aims to describe the physi-
cal appearance, biogeographic ancestry, age, and lifestyle 
information of a perpetrator or human remains subject 
to identification [49, 50].

DNA methylation at a number of genomic loci has 
been associated with smoking exposure, and a clear 
trend towards hypomethylation of the genome has been 
observed in smokers [22]. This phenomenon was also 
observed for four markers included in our new smok-
ing prediction model. The largest magnitude of effect 
was observed for the aryl hydrocarbon receptor repres-
sor gene (AHRR), which has an established role in the 
response to smoking [23–25, 33, 51]. Reduced meth-
ylation at AHRR cg05575921 (chr5: 373378) results in 
increased expression of an AHRR-encoded protein 
[52] that represses the AhR receptor, thereby nega-
tively impacting toxic clearance processes [53]. AhRR 

Table 4  List of lifestyle behaviors significantly associated with DNA methylation at AHRR cg05575921 in a group of N = 737 individuals

Table shows the results of univariate linear regression analysis with DNA methylation at AHRR as dependent variable and each lifestyle factor introduced in separate models 
as independent variable, adjusted for age, sex, smoking status and blood cell count

Reference categories are provided for each lifestyle/demographic factors tested

Lifestyle/demographic factor AHRR cg05575921 association test

B Std. error Std. B R2 p

Age  − 0.001 0.0002  − 0.155 0.020 1.89E–05

Sex male (ref. female)  − 0.031 0.006  − 0.174 0.026 1.67E–06

Smoking

Current smoker (ref. never smoker)  − 0.104 0.007  − 0.516 0.252 4.71E–41

Current smoker (ref. former smoker)  − 0.092 0.011  − 0.424 0.100 6.24E–15

Former smoker (ref. never smoker)  − 0.028 0.005  − 0.221 0.065 6.65E–08

Lifestyle risk factors

Sleep hours ≥ 8 h (ref. < 8 h.) 0.021 0.010 0.045 0.012 0.027

Physical activity (PA) (ref. no PA) 0.009 0.004 0.040 0.027 0.028

PA freq. (ref. none)

Once a month  − 0.001 0.008  − 0.003 0.007 0.930

Once a week 0.011 0.005 0.053 0.038 0.037

Every day 0.012 0.005 0.058 0.034 0.028
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protein can also affect other signaling pathways and 
regulates inflammatory responses [54]. We noted the 
potential reversibility of DNA methylation following 
smoking cessation, although the DNA methylation pat-
tern in AHRR in former smokers was still significantly 
different from that in never smokers, unlike the other 
three markers in the model for which we observed 
that methylation profiles did not differ significantly 
between never-smokers and ex-smokers. Different 
markers may require different times to return to levels 
seen in never smokers, and the literature suggests that 
methylation at AHRR returns to normal after 5 years of 
abstinence [22]. Our study suggests that this time may 
be longer or population dependent, as the mean time 
since quitting smoking in our group of former smok-
ers was 14.6 ± 10.5 years. The obtained data also suggest 
that a faster return to methylation levels characteristic 
of never-smokers after quitting could potentially be 
achieved in people who change their lifestyle in terms 
of physical activity, sleep hours and diet. This shows the 
potential of interactions in shaping the final profile of 
DNA methylation.
AHRR is recognized as a strong marker of smoking in 

Europeans and Asians [55], but also as a biomarker of 
epigenetic aging [30], mortality [8], smoking-associated 
diseases and lung cancer [31, 32, 56]. In our study, we 
demonstrated that AHRR is also sensitive to lifestyle fac-
tors other than cigarette smoking. Favorable effect and 
increased DNA methylation was observed for enough 
sleep hours and physical activity (at least once a week). 
However, the significance of the association and the mag-
nitude of the effect were smaller than for smoking. These 
results suggest the role of AHRR in epigenetic aging via 
mechanisms independent of smoking consumption 
and its power as a general biomarker of health and fit-
ness. Importantly, members of the AhR-signaling path-
way have been linked in the literature to the circadian 
rhythms [57, 58], and SNP polymorphisms in the AHRR 
gene associated with insomnia and early awakening [59]. 
These findings fit in well with our results showing that 
DNA methylation at AHRR is sensitive to sleep duration. 
The beneficial effects of physical activity on epigenetic 
aging have been widely described [60, 61] and confirmed 
in our recent study [10]. Daily exercise was associated 
with reduced epigenetic aging as measured by most 
of the known epigenetic clocks. Studies showed that 
exercises can lead to mobilization of natural killer cells 
involved in cell cytotoxicity via AhR/IDO pathway [62]. 
A recent study showed that acute exercise can affect AhR 
signaling, which in turn can influence the expression of 
the programmed cell death protein (PD-1), a promising 
target in cancer therapy [63]. Physical activity is therefore 
emerging as an important factor in immune regulation.

We showed that the AHRR cg05575921 was the main 
predictor of smoking in our study population, allow-
ing high accuracy of smoking prediction described by 
the AUC parameter at the level of 0.76 when used alone. 
The value of AUC considered acceptable for implemen-
tation is 0.7 [64, 65]. To augment the performance and 
accuracy of the model, larger number of predictors is 
needed. In our study, three additional methylation mark-
ers were selected that independently contributed to the 
accuracy of the smoking inference. Two of them have a 
well-established role in smoking, CNTNAP2 cg21322436 
(chr7:145812842) [16, 66–68] and cg09842685 (chr12: 
4492769) [69], and their association with the risk of 
COPD and lung cancer has also been described [70]. 
CNTNAP2 is one of the largest genes in the human 
genome and encodes a contactin-associated protein-
like 2a, which is a type of neurexin protein involved in 
cell adhesion and nervous system development. CNT-
NAP2 has been implicated in many neurodevelopmen-
tal diseases. Maternal smoking during pregnancy was 
found out to impact DNA methylation at CNTNAP2 and 
decreased level of methylation was suggested as a pro-
tective mechanism against adverse effects of smoking 
[71]. CpG cg09594361 (chr1:54905423) is a novel marker 
whose role in smoking has not been described so far. 
Importantly, this CpG was not covered by an older Infin-
ium 450K array.

The developed 4-CpG model is characterized by high 
prediction accuracy with AUC = 0.8 and number of cor-
rect classifications at 74% in the test set. This result is 
more or less comparable to other published prediction 
models, using from 1 to 13 CpG markers for model train-
ing [21, 26, 29], although it should be noted that AUCs 
reaching 0.9 which is higher than in our study were also 
reported [21]. Our model allows to balance predictive 
accuracy and compactness of the marker panel, avoid-
ing the overfitting often discussed in the literature [21, 
29] and fulfilling the criteria often set in forensic genet-
ics when dealing with difficult and degraded DNA mate-
rial. The small number of markers also allows the use of 
alternative, less expensive and more available methods 
of DNA methylation analysis, such as pyrosequencing 
or high-throughput targeted DNA sequencing [72]. Fur-
thermore, in our study we provided sufficiently accurate 
smoking inference at a higher prediction resolution by 
considering three possible categories of smoking status 
(never smoker vs. light smoker vs. heavy smoker), with 
former smokers showing similar methylation profiles 
to light smokers. Lower predictive accuracy for former 
smokers category and misclassification of former smok-
ers as never smokers have been observed in previously 
published prediction models [21, 29, 74]. Furthermore, 
as we have shown in our study that AHRR is modifiable 
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by other lifestyle factors, this may also have an impact 
on the accuracy of smoking prediction. Importantly, 
high predictive accuracy was observed in our study for a 
group of children used as an additional set for model vali-
dation. The probabilities of smoking were lower for chil-
dren compared to never-smokers, suggesting that passive 
smoking and the cumulative effects of other exogenous 
agents may affect DNA methylation at smoke-associated 
CpGs over time. However, although second-hand smoke 
exposure is a known risk factor for diseases, passive 
smoking was shown to be much less pronounced in the 
DNA methylation pattern than active smoking [74].

Our study does not come without its limitations. 
The sample groups used to train and test the predictive 
models were part of the sample set used to perform the 
EWAS analysis. Therefore, the results should be validated 
in the future. On the other hand, the use of two addi-
tional independent groups, i.e. former smokers and chil-
dren, strengthens the conclusions of the study. Another 
weakness of the study is the lack of questionnaire data on 
smoking among those under 13 years of age. Therefore, 
the assumption of non-smoking in this group is biased. In 
addition, given the large number of smoking-associated 
markers known in the literature and discovered in our 
project, alternative methods of variable selection could 
be applied in the future [75, 76] to improve the selection 
of the most relevant variants, facilitate the detection of 
epistatic effects [77], and ultimately further improve the 
accuracy of prediction.

Conclusions
We confirmed that DNA methylation is highly predic-
tive of smoking status and revealed the role of > 400 
CpGs, including novel loci involved in smoking. We 
confirmed AHRR as the top locus associated with 
smoking and provided novel data showing that changes 
in DNA methylation at the AHRR can be achieved by 
multiple lifestyle factors. Although there are reports 
in the literature suggesting the role of AHRR poly-
morphism in insomnia, this is the first study to link 
DNA methylation at AHRR with sleep duration. We 
developed a competitive model for smoking inference 
from blood consisting of only 4 CpGs. High predic-
tive accuracy was obtained for the binomial model, but 
importantly, the multinomial model was able to predict 
three categories of smoking with reasonable accuracy. 
We also demonstrated a high correlation between the 
epigenetic score for smoking and epigenetic age accel-
eration. We provided novel evidence for DNA meth-
ylation reversion after smoking cessation, which is of 
utmost importance given that DNA methylation at the 
AHRR and other loci has been associated with the risk 

of developing lung cancer and other diseases in the 
literature.
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