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Abstract
Background Clear cell renal cell carcinoma (ccRCC) arises from the renal parenchymal epithelium and is the 
predominant malignant entity of renal cancer, exhibiting increasing incidence and mortality rates over time. SEC14-
like 3 (SEC14L3) has emerged as a compelling target for cancer intervention; nevertheless, the precise clinical 
implications and molecular underpinnings of SEC14L3 in ccRCC remain elusive.

Methods By leveraging clinical data and data from the TCGA-ccRCC and GEO datasets, we investigated the 
association between SEC14L3 expression levels and overall survival rates in ccRCC patients. The biological role and 
mechanism of SEC14L3 in ccRCC were investigated via in vivo and in vitro experiments. Moreover, siRNA-SEC14L3@
PDA@MUC12 nanoparticles (SSPM-NPs) were synthesized and assessed for their therapeutic potential against 
SEC14L3 through in vivo and in vitro assays.

Results Our investigation revealed upregulated SEC14L3 expression in ccRCC tissues, and exogenous 
downregulation of SEC14L3 robustly suppressed the malignant traits of ccRCC cells. Mechanistically, knocking 
down SEC14L3 facilitated the ubiquitination-mediated degradation of ribosomal protein S3 (RPS3) and augmented 
IκBα accumulation in ccRCC. This concerted action thwarted the nuclear translocation of P65, thereby abrogating 
the activation of the nuclear factor kappa B (NFκB) signaling pathway and impeding ccRCC cell proliferation and 
metastasis. Furthermore, diminished SEC14L3 levels exerted a suppressive effect on NFKB1 expression within the 
NFκB signaling cascade. NFKB1 functions as a transcriptional regulator capable of binding to the SEC14L3 enhancer 
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Introduction
Renal cell carcinoma (RCC) constitutes more than 90% of 
kidney cancer cases, with clear cell renal cell carcinoma 
(ccRCC) representing approximately 80% of RCC cases 
[1, 2]. Global 2020 statistics reveal over 430,000 new RCC 
cases across 185 countries, culminating in nearly 180,000 
fatalities [3]. Radical surgery remains the primary treat-
ment for early-stage ccRCC patients [4]. However, 
approximately 35% of patients present with metastatic 
disease at diagnosis [5], with approximately half develop-
ing metastatic lesions postoperatively [6]. The 5-year sur-
vival rate for advanced or metastatic disease is only 12% 
[7], highlighting the need to explore molecular mecha-
nisms and therapeutic targets.

The SEC14-like 3 (SEC14L3) protein, part of the 
SEC14-like protein family, primarily acts as a phospha-
tidylinositol transfer protein, facilitating phosphati-
dylinositol and phosphatidylcholine exchange between 
membranes [8]. Structurally, it contains an SEC14 
domain at its N-terminus and a Golgi dynamics (GOLD) 
domain at its C-terminus [9]. The GOLD domain shares 
sequence homology with the luminal domain of the p24 
family protein KE8E4.6 in Caenorhabditis elegans, sug-
gesting its involvement in protein-protein interactions 
[10]. SEC14L3 regulates lipid metabolism and phos-
phoinositide signaling pathways, responding to extra-
cellular cues and modulating intracellular signaling 
[11–14]. Notably, current research reveals the involve-
ment of SEC14L3, in conjunction with vascular endothe-
lial growth factor, in regulating the migration of vascular 
endothelial and vein progenitor cells, thereby contribut-
ing to angiogenesis [15]. Additionally, emerging evidence 
implicates SEC14L3 in the progression of lung and breast 
cancers [16, 17], underscoring its potential significance in 
malignancy. However, further investigation is warranted 
to elucidate its role in RCC.

Nuclear factor kappa B (NFκB) is a multifaceted regula-
tory factor and a pivotal transcription factor involved in 
inflammation, immune responses, and carcinogenesis, 
impacting human cancer initiation and progression [18, 
19]. Its aberrant activation in tumor cells promotes prolif-
eration, inhibits apoptosis, modulates angiogenesis, alters 
metabolism, and engenders resistance to therapeutic 

agents [20, 21]. Ribosomal protein S3 (RPS3) is a com-
ponent of the eukaryotic ribosomal 40  S subunit and is 
crucial for ribosome translation initiation [22]. RPS3, 
which acts as a non-Rel subunit in the NFκB complex, 
RPS3 directly interacts with NFκB P65, the facilitating 
transcriptional activation of NFκB-driven genes [23, 24]. 
In quiescent cells, RPS3 engages with the cytoplasmic 
NFκB P65-P50-IκBα complex [23, 24]. Under stimulation 
by factors such as tumor necrosis factor-alpha or lipo-
polysaccharide, the canonical NFκB pathway is activated, 
leading to NFκB Rel complex translocation alongside 
RPS3 to the nucleus [25]. RPS3 enhances NFκB activa-
tion, participating in physiological processes includ-
ing DNA repair, apoptosis, and radioresistance [25–28]. 
Despite the understanding of the role of RPS3, its role in 
kidney cancer progression remains largely unexplored.

In this study, we found that elevated SEC14L3 in ccRCC 
correlates with poor prognosis. SEC14L3 knockdown 
inhibited ccRCC cell proliferation and metastasis by pro-
moting RPS3 ubiquitination-mediated degradation and 
IκBα accumulation, blocking P65 nuclear translocation 
and NFκB pathway activation. Reduced NFKB1 in NFκB 
impedes SEC14L3 promoter and enhancer activation, 
forming a positive feedback loop that enhances tumor 
suppression. Finally, given the role of NFκB in enhancing 
sunitinib resistance [29, 30], we found that downregula-
tion of SEC14L3 enhances the sensitivity of ccRCC cells 
to sunitinib treatment.

Materials and methods
Human specimens and cell cultures
All samples were obtained with informed consent from 
patients at the Department of Urology, Shanghai Tenth 
People’s Hospital. Fresh tissues obtained postoperatively 
were immediately preserved in liquid nitrogen. None 
of the patients received neoadjuvant chemotherapy or 
radiotherapy. The human ccRCC cell lines, OSRC-2 
(RRID: CVCL_1626), ACHN (RRID: CVCL_1067), 786-O 
(RRID: CVCL_1051) and A498 (RRID: CVCL_1056) 
and the normal renal tubular epithelial cell line (HK-2) 
(RRID: CVCL_0302), were purchased from the Cell Bank 
of the Chinese Academy of Sciences (Shanghai, China). 
ACHN cells cultured in MEM medium (Gibco, Waltham, 

and promoter, thereby promoting SEC14L3 expression. Consequently, the inhibition of SEC14L3 expression was 
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Conclusion Our findings not only underscore the promise of SEC14L3 as a therapeutic target but also unveil an 
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MA, USA), other cell lines were cultured in 1640 medium 
(Cytiva, Marlborough, MA, USA) in a humidified incu-
bator with 5% CO2 at 37  °C. All culture medium sup-
plemented with 10% fetal bovine serum (PAN Biotech, 
Aidenbach, Germany), 100 IU/mL penicillin, and 100 µg/
mL streptomycin (Gibco, Waltham, MA, USA). The 
above cell lines were stored at -80  °C using CELL SAV-
ING reagent (NCM, Suzhou, China).

Quantitative real-time PCR (qRT‒PCR)
Total RNA was extracted using TRIzol reagent (Invitro-
gen, USA) according to the manufacturer’s instructions. 
Total RNA was reverse transcribed into cDNA using 
Prime Script RT Master Mix (RR036A; Takara). Subse-
quently, qRT‒PCR was performed using SYBR Green 
PCR Master Mix (Application Takara, Otsu, Japan) on 
a QuantStudio Dx/1 (Thermofishe, USA). The relative 
expression levels of each gene were calculated using the 
2−ΔΔCt method, with GAPDH serving as the internal ref-
erence control. The sequences of primers used in this 
study are listed in Table S1.

Cell transfection
A small interfering RNA (siRNA) targeting SEC14L3 was 
synthesized by RiboBio Co., Ltd. (Guangzhou, China). 
SEC14L3 and NFKB1 knockdown lentiviruses were 
synthesized by Genechem Co., Ltd. (Shanghai, China). 
Transfection was performed using transfection reagent 
A (Genechem, Shanghai, China). The transfection effi-
ciency was validated using qRT‒PCR and immunoblot-
ting. The sequences of the siRNAs and lentiviruses used 
are listed in Table S2.

Cell counting Kit-8 (CCK-8)
Pre-treated or transfected cells were seeded at a density 
of 1,000 cells per well in a 96-well plate (Corning, USA). 
Following incubation for 1, 2, 3, 4 or 5 days, the culture 
medium was discarded, and fresh CCK-8 working solu-
tion was prepared by diluting CCK-8 reagent (40203ES60, 
Yeasen, Shanghai, China) in complete culture medium at 
a ratio of 1:10. Then, 100 µl of the working solution was 
added to each well, and the plate was incubated at 37 °C 
in the dark for 1 h. Finally, the absorbance at 450 nm was 
measured by a SpectraMax iD5(Molecular Devices, CA, 
USA).

5-Ethynyl-2′-deoxyuridine (EdU) assay
Pre-treated or transfected cells were seeded in a 6-well 
plate (Corning, USA) and cultured overnight. The cells 
were then treated with a Cell-Light EdU Apollo567 In 
Vitro Kit (Ribobio, Guangzhou, China), supplemented 
with 10 µM EdU reagent for 2  h. The cells were then 
fixed with 4% paraformaldehyde, permeabilized with 
0.5% Triton X-100, and washed with PBS. Subsequently, 

the cells were incubated in the dark at room temperature 
with Alexa Fluor-488 for 30 min. After washing with PBS 
again, the cell nuclei were stained with DAPI. Finally, 
images were captured using an Olympus microscope 
(Tokyo, Japan).

Wound healing assay
Pre-treated or transfected cells were seeded in a 6-well 
plate (Corning, USA) and cultured until they reached 
80–90% confluency. The culture medium was then dis-
carded, and the cells were gently washed with 100 µl of 
PBS to moisten the cell monolayer. Then, a scratch was 
made on the cell monolayer using a 200 µl pipette tip. The 
plate was washed with PBS buffer, and 2 mL of serum-
free culture medium was added to each well before the 
plate was returned to the incubator for further culture. 
Finally, images of the wounds at 0 h and 24 h were cap-
tured using an Olympus microscope (Tokyo, Japan).

Transwell assay
Cell migration and invasion assays were performed using 
Transwell chambers (8  μm pore size, Corning, USA). 
The upper chamber was either left uncoated for migra-
tion assays or coated with 100 µl of Matrigel (BD Biosci-
ences, USA) for invasion assays. Approximately 100,000 
pretreated or transfected cells were suspended in 100 µl 
of serum-free culture medium and seeded into the upper 
chamber of the Transwell insert, while 500 µl of complete 
culture medium was added to the lower chamber. After 
incubation for 24 h, the cells on the lower surface of the 
membrane were fixed with 4% paraformaldehyde and 
stained with 0.1% crystal violet (Vicmed, China).The cells 
on the upper surface of the membrane were removed 
using a cotton swab, and images were captured with a 
Leica Microsystems microscope (Mannheim, Germany) 
for cell counting.

Colony forming assay
Approximately 200 pretreated or transfected cells were 
seeded into a 6-well plate (Corning, USA). After 14 days 
of incubation, the medium was aspirated, and the cells 
were fixed in 4% paraformaldehyde for 30  min. Subse-
quently, the cells were stained with 0.1% crystal violet 
and thoroughly washed with PBS. The plate was then 
placed on a light board for image capture, followed by 
colony counting.

Hematoxylin-Eosin (HE) staining and 
immunohistochemistry (IHC)
Tissue samples were fixed at room temperature in 4% 
paraformaldehyde solution, dehydrated in ethanol solu-
tion, and embedded in paraffin. Tissue specimens were 
sectioned into 4  μm-thick slices, deparaffinized, stained 
with hematoxylin and eosin, and then dehydrated for 



Page 4 of 18Jiang et al. Journal of Experimental & Clinical Cancer Research          (2024) 43:288 

mounting. Alternatively, after deparaffinization, antigen 
retrieval was performed, and nonspecific binding was 
blocked. Subsequently, primary antibodies were applied 
and incubated overnight at 4  °C, followed by incubation 
with the corresponding horseradish peroxidase-coupled 
anti-rabbit polymer (CST, USA) for 10 min at room tem-
perature, and counterstaining with hematoxylin solu-
tion, Finally, representative images were captured and 
presented.

RNA sequencing (RNA-seq)
To determine the gene expression profile of 786-O cells, 
total RNA was extracted and preserved using TRIzol 
(Invitrogen, USA). Subsequently, according to the manu-
facturer’s instructions, cDNA libraries were constructed 
using the TruSeq™ RNA Sample Prep Kit (Illumina, USA). 
Next, sequencing reads were aligned using HISAT2 soft-
ware. Data analysis was performed using EdgeR software.

Protein isolation of nuclear and cytoplasmic fractions
Cellular nuclear and cytoplasmic proteins were separated 
using a Nuclear and Cytoplasmic Protein Extraction Kit 
(P0028, Beyotime, Shanghai, China) according to the 
manufacturer’s instructions, and 786-O and A-498 cells 
were isolated from the nuclear and cytoplasmic fractions. 
The separated nuclear and cytoplasmic proteins were 
prepared for subsequent western blotting experiments, 
with GAPDH and Lamin B1 serving as internal controls.

Western blotting
The obtained tissues or cells were lysed on ice for 30 min 
using lysis buffer (PC102, Epizyme, Shanghai, China). 
The protein concentration was determined using a BCA 
protein assay kit (ZJ101, Epizyme, Shanghai, China). Pro-
teins (20 µg) were separated by SDS‒PAGE on 10% poly-
acrylamide gels and transferred onto NC membranes 
(WJ004, EpiZyme, Shanghai, China). The membranes 
were blocked with 5% skim milk at room temperature for 
1 h, followed by overnight incubation with primary anti-
bodies at 4  °C. After thorough washing, the membranes 
were incubated with secondary antibodies conjugated to 
horseradish peroxidase at room temperature for 1 h, and 
then subjected to membrane blotting using enhanced 
chemiluminescence detection reagents (NCM, Suzhou, 
China). Chemiluminescence signals were detected using 
an imaging system (AI600, GE, USA). The intensity of 
individual protein bands was measured using ImageJ 
software (NIH, Rasband, WS, USA). Detailed informa-
tion about all antibodies used in this study is provided in 
Table S3.

Coimmunoprecipitation (Co-IP) assay
An IP/Co-IP Kit (P2179S, Beyotime, Shanghai, China) 
was used to explore the physical interaction between 

SEC14L3 and RPS3. After cell lysis, the proteins were 
incubated with A/G magnetic beads prebound to the 
primary antibody at 4  °C overnight with gentle shak-
ing. After incubation, the beads were separated using a 
magnetic rack, and the supernatant was discarded. The 
immunocomplexes were washed with prechilled lysis 
buffer (without protease inhibitors) to remove unbound 
proteins. The immunocomplexes were then eluted from 
the beads by heating at 100 °C for 10 min in 1× SDS load-
ing buffer. Western blot analysis was performed on the 
eluted samples.

GST pull-down assay
GST-SEC14L3 and His-RPS3 plasmids were transfected 
into E. coli separately to express the fusion proteins. 
Approximately 100  µg of GST or GST-SEC14L3 fusion 
proteins were immobilized in 50 µL of glutathione aga-
rose and incubated together at 4  °C for 60  min. After 
three washes with PBST, around 100  µg of His-RPS3 
fusion protein was added to the immobilized GST and 
GST-SEC14L3. The fusion proteins were gently rotated 
and incubated overnight at 4  °C. Bound proteins were 
eluted using an elution buffer (PBS containing 10 mM 
glutathione, pH 8.0) and analyzed by immunoblotting. 
The sequences of His-RPS3 and GST-SEC14L3 are listed 
in Table S4.

In vivo ubiquitination assay
For endogenous ubiquitination, cell lysates from cells 
transfected with the designated plasmids were added to 
protein A/G agarose beads preadsorbed with an RPS3 
antibody. Immunoprecipitation was performed, followed 
by the detection of ubiquitinated RPS3 protein through 
immunoblotting.

Chromatin immunoprecipitation (ChIP) assay
The cells were treated with 1% formaldehyde at room 
temperature for 10  min to cross-link DNA. After soni-
cation, the chromatin was precleared with A/G agarose 
beads to remove cross-linked chromatin. Subsequently, 
immunoprecipitation was carried out overnight at 4  °C 
using anti-NFKB1 antibody. IgG was used as a negative 
control, while RNA polymerase II was used as a positive 
control. Specific primers targeting the human SEC14L3 
promoter and enhancer sequences were used for amplifi-
cation (details provided in Table S1). PCR products were 
identified by agarose gel electrophoresis.

Synthesis of siRNA-SEC14L3@PDA@MUC12 nanoparticles 
(SSPM-NPs, referred to as NPs)
siRNA-SEC14L3 (2 µmol) dissolved in RNase-free 
water was mixed with 100  µl of commercial liposomes 
(40802ES01, Yeasen, China) and vortexed for 30  s to 
form siRNA-SEC14L3@liposome (SS). The resulting 
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suspension was poured into 10 mL of Tris-HCl (pH 8.8; 
10 mM) solution, followed by the addition of dopamine 
hydrochloride (5  mg), to form polydopamine (PDA) 
(Adamas-beta, China) modified liposomes. The mixture 
was stirred at room temperature for 3 h to obtain PDA-
modified liposomes (siRNA-SEC14L3@PDA, SSP). After 
centrifugation at 8,000 rpm for 10 min, the pellets were 
washed with distilled water. Subsequently, the obtained 
mixture was added to 1 ml of streptavidin solution (2 mg/
mL) and shaken at 4  °C in the dark for 24  h to synthe-
size siRNA-SEC14L3@PDA@Streptavidin (SSPs). Finally, 
the obtained SSPs were mixed with 1 ml of biotinylated 
MUC12 antibody solution (50  µg/ml; Bioss, China) and 
shaken at 4 °C for 1 h. After centrifugation at 8,000 rpm 
for 10 min, the pellets were dispersed in 2 mL of distilled 
water and stored at 4 °C for further use.

Characterization, particle size and zeta potential of NPs
The NPs were characterized using transmission electron 
microscopy (TEM) (HT7700, Hitachi, Japan) and energy-
dispersive X-ray spectroscopy (EDS) elemental mapping.

For determining the particle size and zeta potential, 
10 µl of SSP and NPs were dispersed in 1 mL of distilled 
water separately, and the samples were measured using a 
particle size analyzer (Nano ZS90, Worcestershire, UK) 
for zeta potential and particle size.

Determination of MUC12 incorporation
Separately, 16  µl of SSP and NPs samples were mixed 
with 4 µl of 5× protein loading buffer and boiled at 100 °C 
for 10 min. Subsequently, the samples were loaded onto 
a 10% sodium dodecyl ulfate‒polyacrylamide gel for 
electrophoresis, with PDA serving as the negative con-
trol. After electrophoresis, the gel was stained with Coo-
massie Brilliant Blue staining solution until clear bands 
appeared, followed by rinsing with distilled water and 
gel imaging. The MUC12 band was observed at approxi-
mately 62 kDa.

Cytophagy of the NPs
786-O cells were cultured in a 6-well plate until they 
reached 70–80% confluence. NPs were added to the cells 
in 2 mL of 1640 medium and cultured overnight. The fol-
lowing day, after washing with PBS, the cells were tryp-
sinized and then collected by centrifugation in a 1.5 mL 
Eppendorf tube to allow the cell aggregates to settle at 
the bottom of the tube. The cell aggregates were fixed 
with 2.5% glutaraldehyde fixative and stored overnight 
at 4  °C. Subsequently, the cell aggregates were washed 
and dehydrated in Spurr’s low-viscosity resin at 60 °C for 
2 days. Finally, ultrathin sections were cut, stained with 
lead citrate, and imaged using transmission electron 
microscopy.

Animal models
Subcutaneous tumor and lung metastasis models were 
established in 5-week-old female BALB/c nude mice 
(Charles River, China). To establish a subcutaneous 
tumor model, 1,000,000 stable SEC14L3-knockdown 
A-498 cells and 1,000,000  A-498 cells transfected with 
negative control virus were separately injected into 
the left inguinal region of the mice. Tumor volumes 
were measured every 3 days using the formula: Vol-
ume (mm3) = 0.5 × width2 × length. At the endpoint, the 
weight of each tumor in all mice was recorded. For the 
lung metastasis model, 100,000 cells mentioned above 
were injected into the bloodstream via the tail vein. After 
3 weeks, the mice were intraperitoneally injected with 
100 mg/kg D-luciferin (Goldbio, USA), and images were 
captured using the AniView100 imaging system (Guang-
zhou, China). In the sunitinib treatment model, mice 
were intravenously injected with PBS, sunitinib, NPs, or 
NPs + sunitinib (10 nmol) every three days (200  µl). All 
animal experiments were conducted following protocols 
approved by the Animal Research Ethics Committee of 
the Tenth People’s Hospital of Shanghai.

Statistical analysis
Statistical analysis was performed with GraphPad Prism 
9.0 (La Jolla, CA, USA) and SPSS 13.0 (Chicago, IL, 
USA). Student’s t-test, analysis of variance (ANOVA), the 
chi-square test, and Kaplan‒Meier analysis were used for 
statistical comparisons. Each experiment was repeated at 
least three times. The data are presented as mean ± stan-
dard deviation (SD). A p-value < 0.05 was considered to 
indicate statistical significance.

Results
SEC14L3 is overexpressed in ccRCC and is a 
clinicopathological predictor
To explore the potential involvement of SEC14L3 in the 
clinical progression of ccRCC, we initially conducted a 
comprehensive analysis of SEC14L3 expression utiliz-
ing the TCGA database. Our findings revealed a notable 
upregulation of SEC14L3 expression in ccRCC tissues in 
both paired and unpaired samples (Fig.  1a, b). Then we 
analyzed SEC14L3 expression in GSE53757 dataset from 
GEO database and discovered that SEC14L3 was signifi-
cantly upregulated in tumor tissues compared to adjacent 
non-tumor kidney tissues (Figure S1a). Next, we investi-
gated the TCGA-ccRCC dataset to gain further insights 
into the dynamics of SEC14L3 expression across different 
stages of ccRCC progression. Intriguingly, our analysis 
revealed a significant increase in SEC14L3 expression in 
the T3&4 tumor grade group relative to that in the T1&2 
group (Fig. 1c). Similarly, SEC14L3 expression exhibited 
a discernible increase in the pathological stage III&IV 
group compared to that in the I&II group (Fig.  1d). 
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Fig. 1 SEC14L3 is highly expressed in ccRCC and serves as an independent risk factor for the prognosis of ccRCC patients. a, b. TCGA cohort analyses of 
the SEC14L3 expression in ccRCC tumor samples and unpaired (a) or paired (b) normal tissues. c, d. The expression of SEC14L3 in different stages: tumor 
stage(c), pathological stage(d). e-g. Overall survival (e), Progress free interval (f) and disease specific survival (g) curve of ccRCC patients with low and 
high SEC14L3 expression. h. ROC curve of SEC14L3 between ccRCC and normal tissues. i, j. nomogram (i) and calibration curve analyses (j) of SEC14L3 
in ccRCC patients. k. Western blot analysis of SEC14L3 expression levels in 12 ccRCC tissues and paired adjacent tissues. l. IHC staining image showing 
SEC14L3 expression in ccRCC. m-o. Western blot (m, n) and qRT-PCR (o) analyses of SEC14L3 expression levels in HK-2, OSRC-2, ACHN, 786-O, A-498 cells. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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These findings collectively suggest a potential associa-
tion between elevated SEC14L3 expression and clinical 
advancement in ccRCC patients.

Moreover, Kaplan‒Meier survival analysis of the TCGA 
cohort revealed a compelling association between ele-
vated SEC14L3 expression in ccRCC patients and mark-
edly shorter overall survival (OS), progression-free 
interval (PFI), and disease-specific survival (DSS) dura-
tions (Fig.  1e–g). Similarly, high expression of SEC14L3 
was associated with reduced survival rates in GSE29609 
dataset from GEO database (Figure S1b). Subsequent 
ROC analysis underscored the potential utility of 
SEC14L3 as a robust prognostic marker for predicting 
ccRCC progression (Fig.  1h). Furthermore, the nomo-
gram (Fig. 1i), calibration curve analysis (Fig. 1j) and Cox 
regression analysis (Table 1) provided additional evidence 
confirming the independent prognostic significance of 
elevated SEC14L3 expression in ccRCC patients, solidify-
ing its status as an independent risk factor for prognosis.

In summary, our analysis of the TCGA database 
revealed a significant correlation between elevated 
SEC14L3 expression and tumor grade and pathological 
stage in ccRCC patients. Importantly, our findings under-
score the pivotal role of SEC14L3 as an independent 
prognostic indicator for ccRCC patients, highlighting 
its potential utility in the prognostic assessment of this 
malignancy.

Knockdown of SEC14L3 suppresses the proliferation and 
metastasis of ccRCC both in vitro and in vivo
Prior to investigating the impact of SEC14L3 on the cel-
lular phenotype of ccRCC, we assessed SEC14L3 protein 
expression levels in 12 pairs of clinically matched tumor 
and adjacent tissue samples (Fig. 1k). The results showed 
a significant increase in SEC14L3 expression in ccRCC 
tissues (Figure S1c). These findings were corroborated 
through IHC staining (Fig. 1l). Furthermore, we evaluated 

SEC14L3 protein and mRNA expression levels in normal 
renal tubular epithelial cells (HK-2) and four ccRCC cell 
lines (OSRC-2, ACHN, 786-O and A-498) (Fig.  1m-o). 
Our analyses revealed an analogous increase in SEC14L3 
protein and mRNA levels in ccRCC cells, indicating a 
potential tumorigenic role for SEC14L3 in ccRCC.

Given that SEC14L3 expression is relatively high 
in 786-O and A-498 cell lines, we selected these two 
cell lines for subsequent experiments. We knocked 
down SEC14L3 expression in 786-O cells through 
siRNA-SEC14L3-1 (SI1) and siRNA-SEC14L3-2 (SI2) 
transfection (Fig. 2a, S2a, b). Next, we synthesized lenti-
viral vectors harboring the most effective SI1 sequence to 
establish stable SEC14L3 knockdown 786-O and A-498 
cells (Fig.  2a, S3a, b). Subsequently, we investigated the 
phenotypes of 786-O and A-498 cells transfected with 
si-SEC14L3 or SEC14L3 knockdown (KD) lentivirus. 
Cell proliferation was assessed via CCK-8 assays, colony 
formation assays, and EdU staining (Fig.  2b-d, S2c-g 
and S3c, d). Notably, diminished SEC14L3 expression 
resulted in slower growth, reduced colony formation, and 
a diminished proportion of EdU-positive cells in both 
the 786-O and A-498 cell lines. Furthermore, Transwell 
and wound healing assays were employed to evaluate cell 
migration and invasion capabilities (Fig. 2e, f, S2h-l and 
S3e-g). Remarkably, knockdown of SEC14L3 significantly 
attenuated the invasive and migratory capacities of 786-O 
and A-498 cells. Collectively, these findings provide com-
pelling evidence implicating SEC14L3 in the inhibition of 
proliferation and metastasis in ccRCC cells in vitro.

To validate the impact of SEC14L3 on ccRCC cell pro-
liferation in vivo, we subcutaneously injected SEC14L3 
KD A-498 cells and corresponding negative control 
(NC) cells into BALB/c nude mice. Xenograft tumor 
models revealed discernible tumor growth inhibition in 
cells with diminished SEC14L3 expression, as evidenced 
by reduced tumor volumes and weights compared to 

Table 1 The results of Cox regression analysis
Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value
T stage 539
T1 278 Reference
T2 71 1.517 (0.909–2.530) 0.111 0.799 (0.389–1.642) 0.542
T3&T4 190 3.594 (2.557–5.052) < 0.001 2.215 (1.308–3.749) 0.003
N stage 257
N0 241 Reference
N1 16 3.453 (1.832–6.508) < 0.001 1.786 (0.913–3.496) 0.090
M stage 506
M0 428 Reference
M1 78 4.389 (3.212–5.999) < 0.001 2.865 (1.754–4.679) < 0.001
SEC14L3 539
Low 269 Reference
High 270 1.498 (1.105–2.031) 0.009 1.603 (1.042–2.465) 0.032
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Fig. 2 Knockdown of SEC14L3 suppresses the proliferation and metastasis of ccRCC both in vitro and in vivo. a. Western blot analysis for SEC14L3 ex-
pression in 786-O cells by siRNA (a top), or in 786-O and A-498 cells by lentiviral vectors (a bottom). b-d. CCK-8 assay (b), Colony formation assay (c) and 
EdU assay (d) were performed to evaluate the proliferation capacity of 786-O KD and A-498 KD cells. e, f. Transwell assay (e) and wound healing assay (f) 
were performed to evaluate cell migration and invasion capabilities of 786-O KD and A-498 KD cells. g. Image of xenograft tumors were taken 3 weeks 
after injection. h, i. Analyses of xenograft tumor volume (h) and weight (i). j. IHC was conducted to assess protein levels of Ki-67, SEC14L3, and p-P65 in 
xenograft tumors. k. Metastasis images were captured by an in vivo bioluminescence imaging system. l. H&E staining of lung metastatic tumors. Data are 
presented as mean ± SD of three independent experiments. **p < 0.01, ***p < 0.001
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those in the NC group (Fig. 2g-i). IHC staining revealed 
decreased levels of Ki-67 (a proliferation marker) and 
p-P65 (a downstream effector of SEC14L3) in the KD 
group (Fig.  2j). Subsequently, to explore the impact of 
SEC14L3 on metastasis in vivo, we established a lung 
metastasis model utilizing the aforementioned cells. 
Strikingly, SEC14L3 knockdown led to decreased lung 
bioluminescence intensity and fewer metastatic nodules 
(Fig.  2k, l). These results underscore the inhibitory role 
of SEC14L3 in ccRCC cell proliferation and metastasis in 
vivo. Hence, targeting SEC14L3 represents a promising 
strategy for impeding the progression of ccRCC, both in 
vitro and in vivo.

Knockdown of SEC14L3 inhibits NFκB nuclear translocation 
and inactivates the NF-κB signaling pathway in ccRCC
To elucidate the specific molecular mechanisms under-
lying SEC14L3-mediated modulation of ccRCC pro-
gression, we conducted RNA-seq analysis on SEC14L3 
NC and KD 786-O cells (Fig.  3a). KEGG annotations 
revealed that SEC14L3 knockdown leads to increased 
alterations in cancer and is closely associated with sig-
nal transduction (Fig.  3b). Subsequent KEGG enrich-
ment analysis revealed that genes altered following 
SEC14L3 knockdown were enriched in the NFκB signal-
ing pathway(Fig. 3c, Fig. S4a). Gene set enrichment anal-
ysis (GSEA) further confirmed that the genes associated 
with the NFκB signaling pathway were downregulated 
in the SEC14L3 KD group (Fig. 3d, e). Collectively, these 
findings suggest that SEC14L3 may participate in ccRCC 
progression by modulating NFκB signaling pathway 
activation.

Furthermore, we assessed the expression of NFκB 
markers at the overall protein level in 786-O and A-498 
cells (Fig.  3f-h). Compared to the NC group, the KD 
group exhibited diminished expression levels of P65, 
p-P65, and p-IκBα, accompanied by a significant increase 
in IκBα expression, indicating significant inhibition of the 
NFκB signaling pathway following SEC14L3 knockdown. 
Additionally, the precursor of P50, NFKB1, was also 
downregulated in the KD group (Figure S4b, c). Subse-
quently, we investigated the expression of these proteins 
in the cytoplasm and nucleus, revealing NFκB translo-
cation to the cell nucleus (Fig.  3i-k). Intriguingly, com-
pared to those in the NC group, no significant alterations 
in the expression of P65 or p-P65 in the cytoplasm were 
observed; however, their expression levels in the nucleus 
were markedly reduced. Moreover, the expression levels 
of p-IκBα were attenuated, while IκBα expression was 
increased, both in the cytoplasm and nucleus.

In summary, our findings indicate that knocking down 
SEC14L3 in ccRCC cells reduces the phosphorylation of 
IκBα, enhancing its accumulation and interaction with 
the P50/P65 heterodimer. This interaction hinders the 

heterodimer’s nuclear localization signal, inhibiting its 
translocation. Consequently, there is reduced nuclear 
P65 accumulation and attenuated DNA binding activity, 
leading to NFκB signaling pathway inhibition.

SEC14L3 interacts with RPS3 and negatively regulates its 
protein level through ubiquitination
To elucidate the molecular mechanism underlying 
SEC14L3-mediated inhibition of the NFκB signaling 
pathway, we utilized immunoprecipitation coupled with 
shotgun proteomic analysis to identify SEC14L3-inter-
acting proteins. Silver staining of the immunoprecipi-
tated samples revealed several discernible protein bands 
in the SEC14L3 group compared to the IgG control group 
(Fig. 4a). Among these bands, the specific expression of 
RPS3 was particularly pronounced. Previous studies have 
highlighted RPS3’s crucial role as a non-Rel subunit of 
NFκB, promoting its interaction with the NFκB p65 sub-
unit in the nucleus, thereby stabilizing the activated state 
of NFκB [23, 24]. Furthermore, RPS3 has been implicated 
in NFκB pathway activation by mediating IκBα ubiqui-
tination [31]. Therefore, our subsequent investigations 
aimed to elucidate the role of RPS3 in SEC14L3-mediated 
the regulation of the NFκB signaling pathway.

Following the identification of RPS3 as a potential 
interacting partner of SEC14L3, we conducted coim-
munoprecipitation (co-IP) experiments to validate the 
physical interaction between these proteins. The results 
unequivocally confirmed the endogenous binding of 
SEC14L3 with RPS3 (Fig.  4b). Subsequently, we per-
formed protein-protein docking analysis to elucidate 
the structural basis of the SEC14L3-RPS3 interaction 
(Fig.  4c). Next, to investigate whether SEC14L3 directly 
binds to RPS3, we performed a GST pull-down assay in 
an E. coli system using GST-SEC14L3 and HIS-RPS3. 
Purified proteins were confirmed by SDS-PAGE (Fig-
ures S5a, b). The results demonstrated that RPS3 directly 
binds to GST-SEC14L3, but not to GST alone (Fig.  4d). 
Collectively, these findings underscore a robust asso-
ciation between the SEC14L3 and RPS3 proteins at the 
molecular level.

Subsequently, we validated the expression of RPS3 
in SEC14L3 KD 786-O and A-498 cells. Remarkably, 
the results demonstrated a significant decrease in RPS3 
expression at the protein level following SEC14L3 
knockdown (Fig.  4e, f ), while no significant change was 
observed in RPS3 expression at the mRNA level (Fig. 4g). 
This finding implies that SEC14L3 is involved in regu-
lating the stability of RPS3 through posttranscriptional 
mechanisms. Ubiquitin-modified lysine residues remain 
consistent throughout eukaryotes, with multiple particu-
lar lysine sites identified as monoubiquitination sites on 
human RPS3 [32], and residues K75R, K202R, and K214R 
are potential ubiquitination sites on RPS3 ((Fig.  4h). 
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Fig. 3 SEC14L3 knockdown inhibits NFκB nuclear translocation and inactivates the NF-κB signaling pathway in ccRCC. a. Schematic diagram of the 
RNA-seq experiment. b. KEGG annotations indicated that SEC14L3 was closely associated with cancer: overview and signal transduction. c. KEGG analysis 
revealed a close association between SEC14L3 and the NFκB signaling pathway. d. GSEA plot showed SEC14L3 KD level was negatively correlated with 
TNFα signaling via NFκB pathway. e. Heat maps of expression fold-change for the genes in TNFα signaling via NFκB pathway. Red signifies a higher fold-
change, while blue signifies a lower fold-change. f-h. Western blot analysis of P65, p-P65, IκBα and p-IκBα expression levels in 786-O and A-498 KD cells. 
i-k. Western blot analyses of P65, p-P65, IκBα and p-IκBα expression levels in the cytoplasm and nucleus of 786-O and A-498 KD cells. Data are presented 
as mean ± SD of three independent experiments. NS not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Fig. 4 (See legend on next page.)
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Therefore, we sought to explore whether SEC14L3 mod-
ulates the stability of RPS3 via ubiquitination. Initially, 
we investigated alterations in endogenous ubiquitina-
tion. Encouragingly, the results revealed an increase in 
the endogenous ubiquitination level of RPS3 following 
SEC14L3 knockdown (Fig.  4i). Additionally, cyclohexi-
mide (CHX) was added to both the NC and KD group to 
inhibit protein synthesis in 786-O and A-498 cells. Con-
sistent with these findings, SEC14L3 KD led to a short-
ened half-life of endogenous RPS3 compared to the NC 
group (Fig. 4j, k). In subsequent rescue experiments, we 
found that MG132, instead of Chloroquine (CQ), elimi-
nated the down-regulation of RPS3 expression in KD 
group (Figure S5c-f ). In conclusion, our results substanti-
ate the notion that SEC14L3 interacts with RPS3, thereby 
regulating its ubiquitination and subsequent degradation. 
Consequently, SEC14L3 could exert its regulatory influ-
ence on NFκB activation by modulating the ubiquitina-
tion of RPS3.

Inactivation of the NFκB signaling pathway can 
reciprocally suppress the expression of SEC14L3
Due to the role of NFκB as a protein complex that con-
trols DNA transcription [33, 34] and its involvement 
in the expression of various proteins, we hypothesized 
that inactivation of the NFκB signaling pathway might 
influence the transcription of SEC14L3 and subse-
quent protein expression (https://genome.ucsc.edu/). 
To validate this hypothesis, we identified four putative 
NFKB1 response elements (SEC14L3 Promoter1, 2, and 
Enhancer1, 2). ChIP experiments demonstrated that 
NFKB1 can bind to these putative response elements 
(Fig.  5a-c), indicating that NFKB1 regulates SEC14L3 
expression by binding to its promoter and enhancer 
regions.

To corroborate the aforementioned findings, we treated 
786-O cells with varying concentrations of the NFκB sig-
naling pathway inhibitor BAY11. The results revealed a 
dose-dependent reduction in SEC14L3 protein expres-
sion with increasing concentrations of BAY11 (Fig.  5d, 
e), concomitant with a significant decrease in SEC14L3 
mRNA levels following BAY11 treatment (Fig. 5f ). Sub-
sequently, we stably knocked down NFKB1 expression 
in 786-O and A-498 cells via lentiviral vectors (Fig. 5g). 

Notably, upon NFKB1 knockdown, both cell lines exhib-
ited a substantial decrease in SEC14L3 expression at both 
the protein and mRNA levels (Fig.  5g-i). These findings 
collectively underscore the pivotal role of NFKB1 as a 
transcription factor in modulating SEC14L3 expression, 
whereby its inactivation results in significant suppression 
of SEC14L3 expression.

Knockdown of SEC14L3 enhances the sensitivity of ccRCC 
cells to sunitinib treatment
NFκB pathway activation contributes to chemoresistance 
in various tumors [35–37], including sunitinib resistance 
in RCC [29, 30]. Since sunitinib is the standard first-line 
therapy for RCC [30], exploring strategies to enhance 
its efficacy is crucial. Given the therapeutic effects of 
SEC14L3 knockdown on ccRCC and its inhibition of 
the NFκB pathway, we investigated whether combining 
SEC14L3 downregulation with sunitinib treatment could 
improve outcomes. We first evaluated whether SEC14L3 
downregulation could increase ccRCC cell sensitivity to 
sunitinib. Drug sensitivity assays revealed reduced IC50 
values of sunitinib in SEC14L3 KD 786-O and A-498 
cells (Fig. 6a, b), indicating enhanced sensitivity to suni-
tinib with SEC14L3 knockdown. Xenograft models using 
A-498 NC and KD cells treated with a combination of 
sunitinib revealed a synergistic effect of SEC14L3 knock-
down on sunitinib efficacy. Tumors treated with this 
combination exhibited the smallest volume and weight 
(Fig.  6c-f ), demonstrating the superior therapeutic effi-
cacy of this regimen.

Subsequently, we attempted to construct therapeutic 
nanocomplexes encapsulating siRNA-SEC14L3 within 
lipid nanoparticles externally bound to the targeted anti-
body MUC12 [38] for treating ccRCC, as illustrated in 
Fig.  6g. TEM imaging and EDS mapping demonstrated 
that, after successful PDA modification, the synthesized 
NPs exhibited nearly spherical shapes (Fig.  6h, i). Fur-
thermore, due to the external attachment of MUC12, 
the surface zeta potential of the NPs decreased while the 
diameter increased, indicating improved stability, as an 
average diameter of approximately 120  nm (Fig.  6j, k). 
Colloidal Coomassie blue staining revealed the presence 
of MUC12 on the surface of the NPs (Fig. 6l). Cytophagy 
experiments demonstrated successful internalization of 

(See figure on previous page.)
Fig. 4 SEC14L3 interacts with RPS3 and negatively regulates its protein level through ubiquitination. a. Silver staining of SEC14L3 immunoprecipitation 
lysates. Arrows denote distinct bands observed in immunoprecipitation assays between the SEC14L3 and IgG groups. b. 786-O and A-498 cells were 
exposed to MG132 (10µM) for 8 h and subsequently harvested. Cell lysates underwent co-immunoprecipitation followed by western blot analysis. c. 
PyMOL software illustrates the interaction between SEC14L3 and RPS3 within their respective 3D protein structures. d. Detection of His-RPS3 bound to 
GST-SEC14L3 or GST in a GST pull-down assay. (top). The expression of GST and GST-SEC14L3 were verified through Colloidal Coomassie staining (bottom). 
e-g. Western blot (e, f) and qRT-PCR (g) analyses of RPS3 expression levels in 786-O, A-498 KD cells. h. Alignment of amino acid sequences for K75, K202, 
and K214 in RPS3 across various species. i. HEK-293T cells were transfected with sh-SEC14L3 plasmids for 24 h, then treated with MG132 (10µM) for 8 h 
before harvesting. Cell lysates underwent co-immunoprecipitation using an anti-RPS3 antibody, followed by western blot analysis. j, k. NC and KD cells 
were collected for western blot analysis after being treated with 100 µg/mL cycloheximide (CHX) for 0.5, 1, 2, and 4 h (j). The intensity of RPS3 bands was 
measured by ImageJ software (k). Data are given as the means ± SD of three independent experiments. NS not significant, **P < 0.01

https://genome.ucsc.edu/
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the NPs into 786-O cells (Figure S6a), leading to effective 
downregulation of SEC14L3 and inhibition of malignant 
cell phenotypes in 786-O cells (Figure S6b-n). Subse-
quently, we evaluated the in vivo biocompatibility of the 
NPs in normal mice. There were showed no significant 
differences in blood urea nitrogen (BUN), creatinine, 
alanine transaminase (ALT) or aspartate transaminase 

(AST) levels between NPs group and the NC group (Fig-
ure S7a), and there were no apparent changes in organ 
morphology (Figure S7b).

After confirming the efficacy and biosafety of the NPs, 
we combined in vivo therapy utilizing NPs with sunitinib 
(Fig. 6m). In xenograft models, our results showed that, 
compared to the PBS group, both the sunitinib group and 

Fig. 5 Inactivation of the NFκB signaling pathway can reciprocally suppress the expression of SEC14L3. a. ChIP assays reveal the binding of NFKB1 to po-
tential binding sites within the SEC14L3 promoter and enhancer regions. b, c. qRT-PCR analysis of RNA polymerase II (positive control) and IgG (negative 
control) (b) along with SEC14L3 promoter and enhancer (c) in ChIP assays. d-f. 786-O cells were treated with BAY 11 in different concentrations for 24 h, 
followed by Western blot (d, e) and qRT-PCR (f) analyses. g-i. 786-O and A-498 cells were infected with NFKB1 knockdown lentiviral vectors for 78 h. Cells 
were collected for Western blot (g, h) and qRT-PCR (i) analyses. Data are presented as mean ± SD of three independent experiments. NS not significant, 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Fig. 6 Knockdown of SEC14L3 enhances the sensitivity of ccRCC cells to sunitinib treatment. a, b. 786-O (a) and A-498 (b) NC&KD cells were treated with 
different concentrations of sunitinib for 24 h. CCK-8 assay was utilized to evaluate the impact of SEC14L3 downregulation on the cytotoxicity induced by 
sunitinib. c. Schematic model of subcutaneous xenograft model with intravenous injection of PBS and sunitinib. d. Image of xenograft tumors were taken 
18 days after injection. e, f. Analyses of xenograft tumor weight (e) and volume (f). g. Approaches to synthesize MUC12-targeted NPs. h, i. TEM (h) and EDS 
(i) imaging of NPs. j, k. Zeta potentials (j) and elevated diameters (k) of SSP and NPs. l. Colloidal Coomassie images of SSP and NPs. m. Schematic model 
of subcutaneous xenograft model with intravenous injection of PBS, sunitinib, NPs and sunitinib + NPs. n. Image of xenograft tumors were taken 3 weeks 
after injection. o, p. Analyses of xenograft tumor weight (o) and volume (p). **p < 0.01, ***p < 0.001, ****p < 0.0001
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the NPs group exhibited decreased tumor weight and 
volume. However, the combination of NPs and sunitinib 
resulted in a remarkable reduction in tumor weight and 
volume (Fig.  6n-p). Thus, we successfully demonstrated 
that SEC14L3 could serve as a promising therapeutic tar-
get for combined treatment with sunitinib in ccRCC.

Discussion
RCC is a prevalent solid tumor among adults, ranking 
among the top ten malignancies, with an incidence of 
5% in men and 3% in women according to the latest can-
cer statistics [39]. ccRCC is the most common subtype 
of RCC and poses a significant threat to human health. 
However, the mechanisms underlying its initiation and 
progression remain largely elusive. Emerging evidence 
suggests that SEC14L3 may play a pivotal role in the 
development and progression of human cancers [16, 17]. 

However, the precise biological functions and molecu-
lar mechanisms of SEC14L3 in ccRCC remain poorly 
understood.

In this study, SEC14L3 was identified as a promising 
prognostic biomarker in clinical specimens of patients 
with ccRCC. Our analysis revealed a significant increase 
in SEC14L3 expression in ccRCC tissues compared to 
adjacent normal tissues. Further clinicopathological 
analysis revealed a correlation between high SEC14L3 
expression and advanced tumor grade and pathologi-
cal stage. Moreover, Kaplan‒Meier survival curves dem-
onstrated poorer OS, PFI, and DSS in ccRCC patients 
exhibiting higher SEC14L3 expression levels. The area 
under the ROC curve (AUC) for SEC14L3 expression 
was 0.818, indicating its high accuracy in distinguish-
ing ccRCC from normal tissues. Collectively, these find-
ings underscore the potential of SEC14L3 as an effective 
tumor biomarker in ccRCC, and offer valuable insights 
for prognostic assessment and clinical management.

Aberrant activation of the NFκB signaling pathway has 
been implicated in processes such as cell proliferation 
and metastasis [40–42]. Previous studies have implicated 
phosphatidylinositol transfer proteins in the regula-
tion of the NFκB signaling pathway [43]. However, there 
is a paucity of research regarding the involvement of 
SEC14L3 in the activation of the NFκB signaling pathway. 
In this study, our findings revealed that the downregula-
tion of SEC14L3 augmented the accumulation of IκBα in 
cells, consequently inhibiting the nuclear translocation of 
P65, thereby transcriptionally inactivating downstream 
target genes of the NFκB signaling pathway and inhibit-
ing the progression and metastasis of ccRCC. However, 
upon inactivation of NFκB, the expression of NFKB1 was 
suppressed, consequently leading to a further reduction 
in SEC14L3 expression. These findings shed light on the 
intricate regulatory interplay between SEC14L3 and the 
NFκB signaling pathway in the context of ccRCC pro-
gression and metastasis.

In recent years, accumulating evidence has under-
scored the regulatory role of RPS3 in NFκB activity 
[44–46]. RPS3 interacts with IκBα in resting cells and 
maintains the RPS3 pool in the NFκB signaling pathway 
[46]. Notably, in colorectal cancer, the RPS3-IκBα inter-
action modulates IκBα ubiquitination, thereby influenc-
ing NFκB pathway activation [31]. Moreover, RPS3 itself 
acts as a substrate for ubiquitination, contributing to 
NFκB regulation. For instance, circPLCE1-411 facilitates 
the ubiquitination and degradation of RPS3 through the 
HSP90α/RPS3 complex, resulting in NFκB pathway inac-
tivation [47]. Additionally, the E2-E3 complex composed 
of UBE2J1/TRIM25 targets RPS3 for ubiquitination 
and degradation at the K214 residue, further leading to 
NFκB pathway inactivation [48]. In our study, we identi-
fied SEC14L3 as an upstream protein that interacts with 

Fig. 7 A schematic model delineating the mechanisms of SEC14L3 in 
ccRCC. In summary, knocking down SEC14L3 facilitated the ubiquitina-
tion-mediated degradation of RPS3, and augmented IκBα accumulation 
in ccRCC. These events collectively impede the nuclear translocation of 
P65, thereby inhibiting the activation of the NFκB signaling pathway and 
consequently restraining the proliferation and metastasis of ccRCC cells. 
Furthermore, diminished SEC14L3 levels exerted a suppressive effect on 
NFKB1 expression within the NFκB signaling cascade. the inhibited NFKB1, 
acting as a transcription factor in the SEC14L3 promoter and enhancer 
regions, further suppresses SEC14L3 expression, establishing a positive 
feedback loop of SEC14L3/RPS3/NFκB that collectively exerts inhibitory 
effects on ccRCC progression
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RPS3. Knocking down SEC14L3 facilitated the ubiqui-
tination and subsequent degradation of RPS3 through 
posttranscriptional mechanisms, ultimately resulting in 
NFκB pathway inactivation. Thus, our study revealed a 
novel SEC14L3-RPS3-NFκB loop, in which the downreg-
ulation of SEC14L3 expression activates this loop, sup-
pressing ccRCC proliferation and metastasis. However, 
further investigation is needed to elucidate the specific 
residues involved in SEC14L3-induced ubiquitination 
and degradation of RPS3, as well as the interaction of 
RPS3 with IκBα in ccRCC.

Sunitinib is a molecular targeted therapeutic drug used 
as a first-line chemotherapy for metastatic RCC [49]. 
However, despite initial response rates of up to 47% to 
sunitinib [50, 51], resistance and tumor progression fre-
quently develop after 9 to 12 months of treatment [52, 
53]. Our study revealed that knockdown of SEC14L3 
significantly enhances the sensitivity of ccRCC cells to 
sunitinib, with the most pronounced therapeutic effect 
observed when SEC14L3 knockdown is combined with 
sunitinib treatment. The emergence of nanotechnol-
ogy has provided possibilities for gene therapy in tumor 
diseases [54–56]. Liposomes and PDA nanoparticles 
are considered ideal carriers for gene transfer therapy 
due to their excellent biocompatibility and biodegrad-
ability [57, 58]. In our study, we utilized liposomes and 
PDA nanoparticles encapsulating SEC14L3 siRNA for 
the treatment of ccRCC. Our results demonstrated that 
the NPs effectively knocked down SEC14L3 expression 
in ccRCC and further inhibited the growth of subcutane-
ous tumors in mice when combined with sunitinib treat-
ment. This novel treatment modality holds promise as a 
new approach for ccRCC therapy, potentially overcoming 
resistance to sunitinib and improving patient outcomes.

Conclusions
In summary, our research revealed that SEC14L3 is 
markedly upregulated in ccRCC and is correlated with 
poor prognosis in ccRCC patients. Mechanistically 
(Fig. 7), knocking down SEC14L3 facilitated the ubiqui-
tination-mediated degradation of RPS3, and augmented 
IκBα accumulation in ccRCC cells. These events collec-
tively impede the nuclear translocation of P65, thereby 
inhibiting the activation of the NFκB signaling path-
way and consequently restraining the proliferation and 
metastasis of ccRCC cells. Furthermore, diminished 
SEC14L3 levels exerted a suppressive effect on NFKB1 
expression within the NFκB signaling cascade. The inhi-
bition of NFKB1, which acts as a transcription factor in 
the SEC14L3 promoter and enhancer regions, further 
suppresses SEC14L3 expression, establishing a positive 
feedback loop of SEC14L3/RPS3/NFκB that collectively 
inhibits ccRCC progression.
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