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Abstract
Long non‐coding RNAs (lncRNAs) have emerged as significant contributors to the
regulation of various biological processes, and their dysregulation has been linked to a
variety of human disorders. Accurate prediction of potential correlations between
lncRNAs and diseases is crucial for advancing disease diagnostics and treatment pro-
cedures. The authors introduced a novel computational method, iGATTLDA, for the
prediction of lncRNA‐disease associations. The model utilised lncRNA and disease
similarity matrices, with known associations represented in an adjacency matrix. A het-
erogeneous network was constructed, dissecting lncRNAs and diseases as nodes and their
associations as edges. The Graph Attention Network (GAT) is employed to process initial
features and corresponding adjacency information. GAT identified significant neigh-
bouring nodes in the network, capturing intricate relationships between lncRNAs and
diseases, and generating new feature representations. Subsequently, the transformer
captures global dependencies and interactions across the entire sequence of features
produced by the GAT. Consequently, iGATTLDA successfully captures complex re-
lationships and interactions that conventional approaches may overlook. In evaluating
iGATTLDA, it attained an area under the receiver operating characteristic (ROC) curve
(AUC) of 0.95 and an area under the precision recall curve (AUPRC) of 0.96 with a two‐
layer multilayer perceptron (MLP) classifier. These results were notably higher compared
to the majority of previously proposed models, further substantiating the model’s effi-
ciency in predicting potential lncRNA‐disease associations by incorporating both local
and global interactions. The implementation details can be obtained from https://github.
com/momanyibiffon/iGATTLDA.
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1 | INTRODUCTION

Long non‐coding RNAs (lncRNAs) refers to a class of non‐
coding RNAs with a length exceeding 200 nucleotides [1].
Extensive research has unveiled the pivotal role played by
lncRNAs in the progression and development of various human
diseases. For instance, the expression of lncRNA EGOT in
breast cancer significantly diminishes compared to non‐
cancerous tissues [2]. In prostate cancer cells, lncRNA NEAT1

exhibits a marked upregulation relative to healthy prostate cells
[3]. The upregulation of lncRNA MALAT1 in lung cancer cor-
relates with an escalation in metastatic activity [4]. Due to the
costly, time‐consuming, and labour‐intensive nature of tradi-
tional biological experiments, the demand for advanced
computational models to accurately and efficiently predict as-
sociations between lncRNAs and diseases is increasingly evident.
These models play a pivotal role in enhancing our understanding
of disease mechanisms and expediting the discovery of disease
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biomarkers, thereby facilitating accurate and timely diagnosis,
treatment, and therapeutic response [5–7].

In recent years, various computational models have been
proposed for predicting the associations between lncRNAs
and diseases [8, 9]. For instance, based on the random walk
techniques, Sun et al. [10] proposed a computational model to
predict potential lncRNA‐disease associations by implementing
a random walk with restart on a lncRNA functional similarity
network. The model was evaluated using leave‐one‐out cross
validation (LOOCV) method, and achieved an AUC of 0.822.
However, the model faced limitations in predicting lncRNAs
related to new diseases without prior known associations. Chen
et al. [11] introduced an improved random walk with restart
model, named IRWRLDA, which integrates known associa-
tions with disease and lncRNA similarity information to pre-
dict lncRNA‐disease associations. With the ability to predict
disease‐related lncRNAs without previously known associa-
tions, IRWRLDA achieved AUCs of 0.7242 and 0.7872 on two
different datasets from the lncRNADisease database. Addi-
tionally, Hu et al. [12] proposed a bi‐random walk algorithm,
called BiWalkLDA, which predicts lncRNA‐disease associa-
tions through the integration of similarity interaction profiles
and gene ontology details. The algorithm obtained two scores
by applying a random walk technique on the disease and
lncRNA similarity networks, with their mean serving as the
prediction score. The BiWalkLDA algorithm obtained AUCs
of 0.8268, 0.8510 and 0.8473 for the three datasets,
respectively.

Also, some methodologies have been proposed based on
inductive matrix completion and bipartite graph for efficient
prediction of lncRNA‐disease associations. For instance, Lu
et al. [13] proposed an inductive matrix completion‐based
method known as SIMCLDA to identify potential lncRNA‐
disease associations. The model utilised the lncRNA
Gaussian interaction profile (GIP) kernel and disease func-
tional similarities, from which significant features were
extracted through the principal component analysis (PCA)
technique. As a result, they attained AUCs of 0.8237, 0.8526
and 0.8578 on three datasets, respectively. On the other hand,
Ping et al. [14] proposed a bipartite network‐based prediction
model utilising three publicly available datasets from
LncRNADisease, Lnc2Cancer and MNDR databases. The
model was evaluated with the LOOCV and obtained AUCs of
0.8825, 0.9004, and 0.9292 for the three datasets, respectively.

With the rapid advancement of computing technology and
the availability of big data [15], advanced machine learning and
deep learning‐based models have been proposed based on
both classical and advanced deep learning frameworks [16–21].
For instance, Wang et al. [22] introduced a deep forest‐based
model, known as MLCDForest, for the prediction of poten-
tial lncRNA‐disease interactions. This model employed multi‐
label classification and integrates multi‐grained scanning
(MGS) and cascade forest (CS) techniques. In the MGS stage,
transformed feature representations were categorised based on
different forest models, while in the CS stage, a layer‐wise
random forest approach was applied to generate more
distinctive features. The CNNLDA model proposed by Xuan

et al. [23] utilised a double convolution neural network (CNN)
combined with attention mechanism for predicting lncRNA‐
disease associations. The model integrated the diverse simi-
larities between lncRNAs, miRNAs and diseases to construct
feature matrices for learning the global and attention repre-
sentations of lncRNA‐disease associations.

While the CNNLDA achieved an AUC of 0.952, Xuan
et al. [24] further proposed a relatively advanced model called
GCNLDA, based on graph convolutional network (GCN) to
identify potential disease‐related lncRNAs. GCNLDA also
generated a heterogeneous network with the help of known
interactions between lncRNAs, diseases, and miRNAs. Topo-
logical information were then integrated using a graph
convolution‐based autoencoder and an attention mechanism
useful for identifying the most significant node features [25].
Additionally, CNN was utilised to focus on specific in-
teractions for given lncRNA‐disease pairs. GCNLDA achieved
an AUC of 0.959 on 450 diseases, which is relatively higher
compared to other similar methods.

Another GNN‐based model proposed by Lan et al. [26]
called GANLDA, was used to predict disease‐related lncRNAs.
The model utilisedGraph Attention Network (GAT) for feature
embeddings on the heterogeneous network, followed by PCA
for noise‐reduction, resulting in an AUC of 0.8834 in 10‐fold
cross‐validation [27] and 0.8581 in denovo test. In another
study, Shi et al. [28] introduced a model based on a heteroge-
neous network for predicting lncRNA‐disease associations by
integrating lncRNA similarity, lncRNA‐disease and lncRNA‐
miRNA associations. Restart random walk technique was
employed to sample strong correlation neighbours of a fixed size
for every node before applying type‐based neighbour aggrega-
tion and heterogeneous graph neural networks to capture each
pair’s embedding information. An attention mechanism was
equally integrated to identify neighbours’ contribution to spe-
cific nodes, resulting in a high AUC of 0.9786. However, the
model was notably limited by disregarding significant features
within the global network perspective.

On the other hand, Liang et al. [29] proposed a model
based on graph autoencoder, named GraLTR‐LDA. This
model generates both homogeneous and heterogeneous graphs
using lncRNAs and disease similarity features. An attention
mechanism was integrated to extract embedded features from
their respective graphs before employing a learning‐to‐rank
approach to predict the diseases order corresponding to the
subject lncRNAs.

Despite the significant success and discoveries achieved by
previous techniques, predicting lncRNA‐disease associations
remain challenging due to the complexity of the respective
biological interactions. Many classical methods rely on basic
similarity measures, overlooking the complex inter‐
dependencies and interactions within the molecular domain.
Therefore, this study proposed the iGATTLDA model to
predict disease‐related lncRNAs. The model utilised lncRNA
and disease similarity matrices to generate a heterogeneous
network, leveraging GAT and transformer techniques with a
double attention mechanism to handle local and global atten-
tion, respectively, to extract new node representations. The

MOMANYI ET AL. - 173



integration of these techniques is especially significant as it
captures significant features across the entire network. GAT
captures substantial features within the local network
perspective, while the transformer contributes by capturing
long‐range dependencies, thus ensuring the global network
perspective is incorporated. Mini‐batches were employed to
generate sub‐graphs in three heterogeneous networks for
model training, facilitating feature learning from multiple per-
spectives within the network. Finally, a multilayer perceptron
(MLP) classifier was implemented to predict lncRNA‐disease
associations based on the low‐dimensional data. In this
context, the iGATTLDA emerges as an innovative and
promising methodology, effectively utilising both local and
global feature similarities.

2 | MATERIALS AND METHODS

2.1 | Datasets

The datasets utilised in this study were sourced from the
research conducted by Shi et al. [30], comprising lncRNA
functional similarity, disease similarity and lncRNA‐disease
associations. The dataset includes 240 lncRNAs and 412 dis-
eases, covering 2697 experimentally confirmed associations
derived from three widely recognised and extensively used
databases that is, LncRNADisease [31] Lnc2Cancer [32] and
GeneRIF [33]. For clarity of representation, details regarding
the association between lncRNAs and diseases were organised
into an adjacency matrix A∈ Rðln�dnÞ, where ln and dn refers
to the number of lncRNAs and diseases, respectively.

2.2 | LncRNA and disease similarities

The lncRNA functional similarity was calculated using the
approach outlined by Chen et al. [34]. In this method, the
similarities between LncRNAs were represented by the simi-
larity of lncRNA‐related diseases. For instance, considering
two lncRNAs Li and Lj, associated with sets of diseases
Di = {di1,di2,⋯dim} and Dj = {dj1,dj2,⋯djn}, respectively,
their functional similarity can be computed as shown in Eq. 1

where FS is the functional similarity of lncRNAs Li and Lj, DS is
the disease semantic similarity for two given diseases, d(ix) ∈Di
and d(jy) ∈ Dj, calculated based on the method proposed by
Wang et al. [35]. The denominatorsm and n refer to the number
diseases in groups Di and Dj, respectively.

In the end, we obtained a 240 � 240 matrix representing
the functional similarity of lncRNAs and a 412 � 412 matrix
representing disease similarity. Figure 1 provides insights into
the existing relationships between different lncRNAs and
diseases based on their respective similarity profiles. These
matrices served as the initial feature representations used for
training the iGATTLDA model.

2.3 | The heterogeneous network

Heterogeneous networks are intricate network architectures
that encompass a diverse range of nodes and edges, making
them significant for depicting and scrutinising complex asso-
ciations [36–40]. They are capable of capturing both direct and
indirect relationships between different types of nodes, hence
facilitating identification of potential associations, which may
otherwise be disregarded by classical techniques [30]. In the
context of lncRNA‐disease associations, they can reveal un-
derlying biological mechanisms and pathways, leading to the
discovery of novel biomarkers and therapeutic targets [41, 42].
As a result, this study utilised a heterogeneous network to
represent lncRNA‐disease associations given the presence of
two node types; lncRNAs L = {l1,l2,⋯,lm} and diseases
D = {d1,d2,⋯,dn}. The network was generated with the
integration of confirmed lncRNA‐disease associations,
lncRNA functional similarity (LS) and disease similarity (DS)
matrices. Known associations were initially presented in an
adjacency matrix A∈Rðln�dnÞ in which Aij = 1 when an asso-
ciation exists between lncRNA i and disease j, and 0 otherwise.
The heterogeneous network G = (V,E) was generated based
on A and can be represented as shown in Eq. 2.

G ðV ;EÞ ¼
�
LS AT

A DS

�

ð2Þ

where V and E are the nodes and edges, respectively, LS and
DS are the initial features through which new node embed-
dings are obtained by the GAT, AT specifically captures a
different perspective of A for a comprehensive view of the
known associations.

In the given set of 240 lncRNAs and 412 diseases, G
contained a total of 652 nodes and 2697 edges. During data
processing, the graph edges were split into training, validation
and testing sets by the PyTorch geometrics’ RandomLinkSplit
function, where 80% of the edges were allocated for training,
10% for validation, and 10% for testing, while negative edges

FS ¼

P
1<x<m

max
1<y<n ðDSðdðixÞ; dðjyÞÞ þ

P
1<y<m

max
1<x<n ðDSðdðjyÞ; dðixÞÞÞÞ

mþ n
ð1Þ
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were generated at a rate of 0.1, meaning for every 10 positive
edges, approximately 1 negative edge was generated. After-
wards, a batch size of 96 samples represented as 3 � 32 for
flexibility was used for training. The mini batches consisting of
20 neighbours for every two entities, that is, lncRNA and
disease entities, were generated for model training at a negative
sampling ratio of 0.2 at each training batch. The model was
eventually validated with the validation data in the training
phase and later tested on the testing data.

2.4 | Deep learning model

Based on the Graph Attention Network (GAT) and the
transformer architecture, a novel deep learning model for the
prediction of lncRNA‐disease associations has been proposed
in this study, named the iGATTLDA as illustrated in Figure 2.
By combining the strengths of local and global attention
mechanisms, these two cutting‐edge approaches aim to
improve the prediction of lncRNA‐disease associations by
enriching the node features. GAT captures local interactions,
while the transformer takes care of the global dependencies by
comparing a given node to non‐neighbouring nodes. The
approach enhances the model’s capacity in capturing short and
long‐range dependencies, leading to improved identification of
feature significance, as illustrated in Eq. 3, where Trm(.) refers
to the transformer operation on the GAT output to capture
global features for a given node i.

HTrm
i ¼ Trm

�
HGAT
i

�
ð3Þ

GAT is a GNN framework with an attention mechanism
for learning feature embeddings on graph structured data sets

through feature aggregation [43]. Based on GAT, iGATTLDA
assigns an attention coefficient to each neighbouring node for
indication of the neighbour’s feature significance before
updating the subject node features. Therefore, an attention
score for neighbouring node j to node i can be calculated as
shown in Eq. 4.

eij ¼ LeakyReLU
�
aT
�
Whi ∥Whj

��
ð4Þ

where eij is the attention score for the neighbouring node j to
node i, a is the learnable weight vector,W and h are the weight
matrix and feature embeddings, respectively, while k denotes
the feature vectors concatenation operation. The attention
coefficients for a given set of neighbouring nodes j ∈ Ni are
then normalised with a SoftMax function to obtain a nor-
malised attention coefficient, as shown in Eq. 5 for simplified
node comparison [43].

αij ¼ softmaxj
�
eij
�
¼

exp
�
eij
�

P

k∈Ni
expðeikÞ

¼
exp
�
a
�
Whi;Whj

��

P

k∈Ni
exp
�
a
�
Whi;Whj

��

ð5Þ

To generate new node embeddings for node i, a corre-
sponding attention coefficient is multiplied to its neighbour
state, essentially incorporating a linear combination of the node
feature vectors weighted with each node importance. This
process enhances the significant features while suppressing the
least significant ones, and can be represented as shown in
Eq. 6, where h0i is the new representation of node i, σ is the
non‐linear activation function, while αij is the attention coef-
ficient incorporated to the new node embeddings.

F I GURE 1 Heatmaps illustrating lncRNAs and diseases similarity matrices. The colour intensity represents the degree of similarity, with darker shades
indicating higher similarity values and vice versa.
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h0i ¼ σ

0

@
X

j∈Ni

αijWhj

1

A ð6Þ

GAT was implemented in three layers with multi‐head
attention (4 heads) incorporated for iGATTLDA to selec-
tively attend to different neighbours based on their significance
in various attention heads as described in Eq. 7, where M refers
to the number of attention heads.

h0i ¼ σ

0

@ 1
m

XM

m¼1

X

j∈Ni

αkijW
khj

1

A ð7Þ

A Rectified Linear Unit (ReLU) activation function was
applied after every GAT layer for non‐linearity, after which a
penalty factor λ was employed to the final embedding layer p
through a linear layer, in which it is automatically determined
based on the learnt parameters during the forward pass, hence
it controls node contribution as shown in Eq. 8, serving as the
first input of the iGATTLDA model. The λ value ranges be-
tween 0 and 1, where 0 or 1 indicates that p is primarily
influenced by either LS or DS, respectively. Therefore, having λ
between 0 and 1 facilitates a trade‐off between the contribu-
tions of LS and DS feature embeddings.

P ¼
�

λ�LS AT

A λ�DS

�

ð8Þ

Consequently, the GAT‐based node embeddings were
subjected to the transformer, an attention‐based deep learning

architecture widely adopted in Natural Language Processing
(NLP) given its exceptional sequence modelling capabilities
[44]. A standard transformer attention mechanism treats each
element within the input sequence as being related to three
specific vectors: query (Q), key (K), and value (V) vectors [27],
which facilitates the computation of attention scores by
determining the extent to which each element in the sequence
should focus on other elements. Therefore, the model exam-
ines the importance of each K in comparison to the corre-
sponding Q, and the attention weights are subsequently
applied to the corresponding V to produce the final output.
The transformer utilised by iGATTLDA calculates the atten-
tion scores for the input vectorsQ, K and V as shown in Eq. 9,
where Q∈ Rn�dk , K ∈ Rm�dk , and V ∈ Rn�dv , dk is the
dimension of K which aids weight normalisation.

AttentionðQ;K;V Þ ¼ softmax

 
QKT
ffiffiffiffiffi
dk

p

!

V ð9Þ

The transformer’s multi‐head attention capability was uti-
lised for computation of different attention weights for each
embedding which are combined to generate new node embed-
dings, specifically focussing on global node dependencies [27].
The attention mechanism is simultaneously performed on each
Q,K andV, where each attention function is in charge of a single
subspace in the output at various locations. Different attention
function results are eventually merged for linear transformation
to generate the ultimate output. With Q∈ Rdmodel�dk ;

K ∈ Rdmodel�dk and V ∈ Rdmodel�dv , WO ∈ Rhdv�dmodel , utilising
dk = dv, multi‐head attention was computed as demonstrated in

F I GURE 2 An illustration of the proposed iGATTLDA model for the prediction of lncRNA‐disease associations based on the attention‐based GAT and
transformer, leading to the prediction of novel associations by the MLP classifier.
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Eqs. 10 and 11, where the attention scores from multiple
attention heads h are concatenated.

MultiHeadðQKV Þ ¼ Concatðhead1; :::; headhÞWO ð10Þ

headi ¼ Attention
�
QWQ

i ;KW
K
i ;VW

v
i

�
ð11Þ

The transformer contains an MLP classifier as seen in
Figure 2, which is responsible for transforming the rich feature
embeddings from the transformer into useable format by
introducing non‐linearity, dimensionality reduction, optimisa-
tion based on the tasks and feature aggregation. Furthermore,
an additional MLP classifier with two fully connected layers
was implemented for the prediction of lncRNA‐disease asso-
ciations by processing data for extraction of edge features in
the lncRNA and disease nodes based on the edge label index.
Extracted features are concatenated to form the edge features,
which are passed through the MLP classifier for prediction of
potential associations.

3 | RESULTS AND DISCUSSION

The implementations of the iGATTLDA model were con-
ducted on an intel core i7‐10700 CPU with 16 GB RAM, with
the Python programming language, PyTorch geometric library
and the Jupyter Notebook environment. Through the Scikit‐
Learn Python library, popular evaluation metrics that is, the
AUC and AUPRC were employed to establish the capacity of
iGATTLDA in efficiently predicting potential associations
based on the AUC and AUPRC evaluation metrics. Further-
more, other evaluation techniques such as the calibration
curve, learning curve, cumulative gain curve, lift curve and the
histogram of predicted probabilities were further evaluated for
detailed analysis of the prediction performance.

3.1 | Prediction performance

The MLP classifier utilised GAT and transformer‐based node
embeddings as input features to predict potential lncRNA‐
disease associations. The 10‐fold cross‐validation [29] was
used to evaluate the model’s performance on training data.
After full training on the entire dataset, the model was tested
on independent validation and test sets. The predictive per-
formance of the iGATTLDA model was demonstrated using
an area under the receiver operating characteristic (ROC) curve
(AUC) and an area under the precision‐recall curve (AUPRC).
AUC is a commonly used performance evaluation metric for
binary classification, assessing the trade‐off between true and
false positive rates while quantifying the model’s discriminating
power between different classes. An AUC value closer to 1
indicates a good model performance and vice‐versa [45].
AUPRC is also useful when handling imbalanced datasets, in
which the positive class may have smaller samples than the
negative class. Unlike the AUC, which equally considers true
negatives and false positives, the AUPRC is based on precision
and recall values, whereby smaller improvements in either
precision or recall can facilitate substantial gains in perfor-
mance. Therefore, these two metrics were selected given their
suitability to the nature of our data, which also had issues of
class imbalances. During training, weights and biases were
adjusted to minimise the loss. Eventually, the iGATTLDA
model achieved an AUC of 0.95 and AUPRC of 0.96 with 2000
training epochs, a learning rate of 0.001 and the Adam opti-
miser, as depicted in Figure 3.

For further evaluation, the performance of iGATTLDAwas
compared with similar models, namely SIMCLDA [13],
IRWRLDA [11], GANLDA [26], GCNLDA [24] and
HGNNLDA [28], each implemented using different methods.
Specially, SIMCLDA and IRWRLDA were based on matrix
completion and random‐walkwith restart, respectively, while the
GANLDA, GCNLDA and HGNNLDA were based on
different GNN architectures. Despite the distinct implementa-
tion approaches, GANLDA, GCNLDA and HGNNLDA were

F I GURE 3 An illustration showing the AUC and AUPRC used to evaluate the prediction performance of the proposed iGATTLDA model in the
prediction of lncRNA‐disease associations, which highlights the model’s reliability and effectiveness in distinguishing true positives from false positives.
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closely related to the iGATTLDA model, as they were imple-
mented on GNN architectures with the help of lncRNA and
disease association data presented in heterogeneous networks. In
the comparison, iGATTLDA model demonstrated superior
performance with an AUC of 0.95 and AUPRC of 0.96.
SIMCLDA achieved an average AUC of 0.8447 across three
datasets, IRWRLDA obtained 0.7242 and 0.7872 on two
different datasets, respectively, GANLDA produced 0.8834 and
0.8581 in 10‐fold CV and denovo test, respectively. GCNLDA
attained 0.959, while HGNNLDA exhibited the highest
compared performance at 0.9786. However, both GCNLDA
andHGNNLDAhad relatively lowerAUPRCs compared to that
of the iGATTLDA model as demonstrated in Figure 4.

3.2 | Performance interpretation

Previous research has indicated that lncRNAs play crucial roles
in the stages of the cell cycle through different mechanisms,
contributing significantly to key biological processes such as
epigenetic regulation, cell differentiation and apoptosis, meta-
bolic processes, cell cycle control, tissue developments, tran-
scriptional and post‐transcriptional regulation [46–50]. Despite
the evident involvement of lncRNAs in the development of
human diseases, the prediction of lncRNA‐disease associations
remains a complex task, requiring advanced computational
models to enhance prediction efficiency. This study introduces
a highly anticipated iGATTLDA model that aims to fully
leverage local and global feature information to improve the
prediction performance of disease‐related lncRNAs.
iGATTLDA integrates two state‐of‐the‐art deep learning
techniques (GAT and transformer), capturing complex in-
teractions in a heterogeneous network through their double
self‐attention mechanisms, which served as the primary factor
for high prediction performance. At first, three GAT layers
effectively capture the underlying graph structure in the asso-
ciation network and identify the most crucial interactions,
thanks to their self‐attention mechanisms. Additionally, multi‐
head attention was applied to enhance the ability to capture

inherent interactions between nodes and edges. Subsequently,
the Transformer is applied for its ability to handle long‐range
dependencies, particularly from non‐neighbouring nodes.
Similar to GAT, the transformer utilises a self‐attention
mechanism to focus on specific lncRNA‐disease pairs for
improved prediction. As a result, the iGATTLDA achieved
remarkable performance with AUC and AUPRC of 0.95 and
0.96, respectively, underscoring the significance of fully utilis-
ing neighbourhood information within the entire network.

The iGATTLDA model was trained on three heteroge-
neous networks to capture diverse feature information from
different perspectives. Each network edge feature embeddings
were split into training, validation and test sets at the rate of
0.8, 0.1 and 0.1, respectively. The approach ensured model
training and evaluation without data leakage. The embeddings
were fed to the model in mini‐batches for computational ef-
ficiency, simultaneously addressing the common issue of over‐
smoothing in GNN. The model underwent initial training with
10‐fold CV to enhance generalisation and was subsequently
fine‐tuned with the entire training data before using the vali-
dation set for capturing more generalisable interactions.
Throughout model training, a lower learning rate resulted in
sub‐optimal performance with the optimal rate determined to
be 0.001. This efficient training of the iGATTLDA model was
evidenced by consistent loss curves that signifies a stable
prediction performance (Figure 5). This was obtained with the
Binary Cross‐Entropy Loss function as shown in Eq. 12,
where yi and ŷi refer to the actual label and predicted proba-
bility, respectively, while N is the total number of samples. The
figure included training loss curves under 10‐fold CV, along-
side the learning curve, learning rate scheduler, and the cali-
bration curve. The calibration curve was crucial for ensuring
that predicted probabilities aligned well with actual probabili-
ties, demonstrating that the iGATTLDA model achieved near
perfect calibration. This suggests high reliability and suitability
of the model for accurate prediction of lncRNA‐disease as-
sociations. Examining the learning curve, the performance of
iGATTLDA increased in line with the rising learning curve
before stabilising, suggesting that further training may not

F I GURE 4 A demonstration of the prediction
performance of the proposed iGATTLDA model in
comparison to other similar models previously
proposed.
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improve the model performance. Therefore, the model has
learnt underlying data patterns as the learning process has
converged to consistent levels.

BCE Loss ¼
1
N

XN

i¼1

�
yi log

�
ŷi
�
þ
�
1− yi

�
log
�
1− ŷi

��
ð12Þ

The model was further evaluated with the help of the cu-
mulative gain and lift curves as illustrated in Figure 6, alongside
the histogram of predicted probabilities. The cumulative gain
curve clarifies how much of the positive edges iGATTLDA
can capture using a given percentage of the prediction sample,
while the lift curve measures the performance improvement of
the iGATTLDA model compared to a randomly generated
base model. For instance, iGATTLDA captures more than
80% of true interactions by investigating 50% of the total
sample size and identifies interactions at almost twice the rate
of a randomly generated model when considering 20% of the
prediction sample. Note that the steeper the cumulative gain
curve, the more effective the model is at identifying positive
interactions early in the ranking. Also, the higher the lift value,
the higher the chances of effectively identifying positive true

interactions compared to a random model. Therefore, gain and
lift curves contribute to our comprehension of how well the
iGATTLDA model performs across different threshold values.

A histogram facilitates a clear comprehension of the
model’s confidence in predicting negative and positive in-
teractions. For instance, close to 200 samples were confidently
classified as negative samples, while there was an increment in
the number of samples predicted as positive associations with
probability values ranging between 0.4 and 1.0. The higher the
probability value, the higher the confidence in predicting
positive interactions.

Due to the MLP classifier’s capability to learn complex
decision boundaries in high‐dimensional feature space, the
classifier was employed to predict potential associations be-
tween lncRNAs and diseases. Additionally, the MLP classifier
can adapt to different architectures by adjusting the number of
neurons, layers, and activation functions as needed to match
the complexity of the given classification task.

The evaluation and testing of the proposed model on inde-
pendent datasets confirmed its robust performance. Although
its AUC was slightly lower than that of GCNLDA [24] and
HGNNLDA [28], our model outperformed them in terms of

F I GURE 5 An illustration of iGATTLDA’s model training comprising the loss curves in 10‐fold cross‐validation, learning curve and learning rate schedule,
and the calibration curve.

F I GURE 6 An illustration of the cumulative gain and lift curves, alongside the predicted probabilities histogram used for detailed evaluation of the
iGATTLDA model.
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AUPRC. The AUPRC values for GCNLDA and HGNNLDA
were 0.223 and 0.8891, respectively, while iGATTLDA achieved
0.96. This superiority can be attributed to our model’s utilisation
of both local and global features, whereas the other two models
paid less attention to the significance of global features.
Furthermore, in comparison to these models, our model
emphasised positive lncRNA‐disease interactions, and its high
precision underscored its superior ability to select positive cases
with accuracy. The introduction of transformer’s scalability and
its effectivemodelling of dependencies over long sequences after
GAT were the key contributions in this study, significantly
enhancing themodel’s applicability in handling large graphs with
complex relationships.

While the challenge of capturing long‐range dependencies
in lncRNA‐disease associations persists, there is an urgent need
for continuous research and refinement of graph‐structured
data to improve the prediction of complex biological in-
teractions [51, 52]. Despite the successful utilisation of the
transformer in capturing long‐range dependencies, a primary
limitation occurred in the uncertainties involved when handling
large and complex graphs, where the impact of attention
weights in the iGATTLDA model may diminish with
increasing distance between graph elements, leading to inade-
quate performance of the transformer as a result of insufficient
feature aggregation in the global network perspective [53].
Therefore, future studies can address this limitation by devel-
oping tailored algorithms through the incorporation of
domain‐specific knowledge with specialised adaptive attention
mechanisms that dynamically adjust the weights based on the
input graph data. For instance, an algorithm capable of
learning how to assign higher attention weights to significant
nodes while equally suppressing the attention weights for the
less significant ones regarded as irrelevant. Additionally, these
algorithms can enhance the stability and effectiveness of
attention weight’s through the incorporation of significant
regularisation and optimisation strategies. This may include the
prevention of over‐reliance on specific attention weights
through the incorporation of drop‐out regularisation and the
introduction of specialised loss functions, which can enable the

model to focus on specific elements deemed to be relevant and
reduce the effect of irrelevant or noisy network information
which may affect the prediction performance.

3.3 | Case study

To further evaluate the performance of the iGATTLDA model
in predicting lncRNA‐disease associations, we focused on
three common diseases: colon, lung and stomach cancers.
These diseases were selected due to their prevalence, and these
three cancers contribute significantly to the global cancer
burden [54]. For instance, lung cancer is recognised as a leading
cause of cancer deaths and the most diagnosed cancer globally
[55], while colon and stomach cancers consistently rank among
the top cancers by incidence [54, 56]. Therefore, the prediction
of lncRNAs associated with these diseases can play a crucial
role in disease diagnosis, treatment and prevention.

Here, we selected lncRNAs associated with these diseases
and disconnected these associations from the graph. Then the
new data was used to train the model and predict these discon-
nected associations. The predicted probabilities were ranked in
descending order, and the top 10 predicted lncRNAs were
selected for validation. This validation was conducted using the
LncRNADisease and Lnc2Cancer v3.0 databases, which contain
experimentally confirmed lncRNA‐disease associations. Table 1
demonstrates that out of the top 10 predicted lncRNAs, 9, 8, and
6 were verified to be associated with colon, lung, and stomach
cancers, respectively, based on either the LncRNADisease or
Lnc2Cancer databases. These findings further confirmed the
reliability and effectiveness of the iGATTLDA model in the
identification of potential lncRNA‐disease associations.

4 | CONCLUSION

Considering the expensive and time‐consuming nature of
traditional biological experiments, along with the significant
roles played by lncRNAs in the development of human

TABLE 1 The top 10 lncRNA candidates predicted by the iGATTLDA model for colon, lung and stomach cancers.

Colon cancer Lung cancer Stomach cancer

LncRNA Evidence LncRNA Evidence LncRNA Evidence

LINC‐ROR LncRNADisease, lnc2cancer 3.0 CRNDE lnc2cancer 3.0 KCNQ1OT1 lnc2cancer 3.0

PRNCR1 LncRNADisease, lnc2cancer 3.0 NEAT1 LncRNADisease, lnc2cancer 3.0 TUSC7 LncRNADisease, lnc2cancer 3.0

HCP5 lnc2cancer 3.0 DLEU2 lnc2cancer 3.0 IL12A‐AS1 Unverified

SNHG1 Unverified TUSC7 LncRNADisease, lnc2cancer 3.0 NEAT1 LncRNADisease, lnc2cancer 3.0

TUSC8 lnc2cancer 3.0 LINC00629 Unverified NRON Unverified

ZEB1‐AS1 lnc2cancer 3.0 LINC00963 lnc2cancer 3.0 MIR137HG Unverified

FENDRR lnc2cancer 3.0 GACAT2 lnc2cancer 3.0 LINC01133 lnc2cancer 3.0

XIST LncRNADisease, lnc2cancer 3.0 LINC00942 lnc2cancer 3.0 LINC00473 lnc2cancer 3.0

BCYRN1 lnc2cancer 3.0 LINC00473 LncRNADisease, lnc2cancer 3.0 CAHM Unverified

HULC LncRNADisease, lnc2cancer 3.0 MCHR2‐AS1 Unverified GACAT2 lnc2cancer 3.0
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diseases, there is an increasingly urgent demand for computa-
tional techniques. By leveraging advanced computational re-
sources and the available datasets, computer‐based solutions
can effectively enhance the identification of potential lncRNA‐
disease associations, and further contribute to improvements in
disease diagnosis, treatment and prevention‐based efforts
through an improved understanding of disease biomarkers and
molecular mechanisms.

The proposed iGATTLDA model offers an effective solu-
tion for predicting lncRNA‐disease associations. Themodel fully
harnesses the capabilities of GAT and Transformer and suc-
cessfully combines the attention mechanisms of GAT with the
self‐attention techniques of Transformer which allows the
model to capture both local and global significant feature in-
formation from the heterogeneous network for a comprehensive
understanding of the graph data. Therefore, the iGATTLDA
model significantly contributes to the development of reliable
prediction solutions for lncRNA‐disease associations with case
studies further confirming the model’s ability in identifying
potential associations. Additionally, the model’s prediction per-
formance has profound implications in medical practices and
future studies. For instance, themodel can significantly aid timely
disease diagnosis for improved patient outcomes by identifying
disease biomarkers, especially on diseases that are presently
difficult to detect at the early stages. Also, the findings of this
study can serve as a guiding principle for future studies by
identifying potential and previously unknown associations,
which can undergo further investigation.
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