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Abstract

Germline mutations modulate the risk of developing Schizophrenia (SCZ). Much less is known 

about the role of mosaic somatic mutations in the context of SCZ. Deep (239x) whole-genome 

sequencing (WGS) of brain neurons from 61 SCZ and 25 controls postmortem identified 

mutations occurring during prenatal neurogenesis. SCZ cases showed increased somatic variants 

in open chromatin (p <0.0001), with increased mosaic CpG transversions (CpG>GpG) and T>G 

mutations at transcription factor binding sites (TFBS) overlapping open-chromatin, not seen in 

controls. Some of these variants alter gene expression, including SCZ risk genes and genes 

involved in neurodevelopment. Although these mutational processes can reflect difference in 

factors indirectly involved in disease, increased somatic mutations at developmental TFBS could 

also potentially contribute to SCZ.

Schizophrenia (SCZ) has a substantial genetic component, with common variants (minor 

allele frequency >1%) of individually small effect, as well as rare copy number variants 

(CNV) and single nucleotide variants (SNV) with larger effects, all contributing to genetic 

risk (1). Somatic variants, which occur throughout development and hence are present in 

a fraction of cells in the body (2, 3), are familiar drivers of cancer, but are increasingly 

recognized as contributing to neurodevelopmental conditions including focal epilepsy (4, 

5) and autism spectrum disorders (ASD) (6, 7). Recent work implicates somatic CNV in a 

fraction of SCZ cases (8), whereas the contribution of somatic SNV (sSNV) remain largely 

unexplored.
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Study design and variant discovery

We analyzed somatic variants directly from postmortem brain, using deep WGS of DNA 

extracted from NeuN+ neurons of dorsal lateral prefrontal cortex (DLPFC) from 61 

individuals with a diagnosis of SCZ and 25 neurotypical controls (Fig. 1A, Table S2, 

Methods) to specifically capture mutations occurring during early prenatal development. 

Since neocortical neurons are all post-mitotic by ~30 gestational weeks (9), somatic 

mutations clonally shared by neurons occur in progenitor cells prior to 30 weeks, and are not 

confounded by post-gestational clonal mutations.

Subjects were of European and African ancestry based on principal component analysis 

(Fig. S1A). Polygenic risk score (PRS) normalized by ancestry revealed that, as expected, 

individuals with SCZ had a higher PRS for disease than controls (Kolmogorov-Smirnov test 

p = 0.0086, Fig. S1B). Brains tissue was homogenized and nuclei stained for NeuN, and 

subjected to FANS using standard methods (10). DNA extracted from 500,000–1,000,000 

nuclei was sequenced without amplification (Methods). Median genome coverage of ~239X 

showed no significant difference in coverage between cases and controls (Wilcox Ranksum 

Test p = 0.38, Fig. 1B).

Somatic SNVs were identified using best practices of the Brain Somatic Mosaicism Network 

(BSMN), which offers high sensitivity (11, 12). The final call-set of 3,286 sSNV (2,424 in 

SCZ and 862 in controls, Table S3) showed variant allele fractions (VAF) from 0.92% to 

39.7%. We randomly selected 111 variants to validate with 96 having enough coverage for 

orthogonal amplicon-based sequencing (Methods). 90/96 sSNV validated (94%) with VAFs 

highly correlated with WGS estimates (R-squared = 0.87, Fig. 1C), and no differences in 

validation between cases (62 validated, 5 not) and controls (28 validated, 1 not) (Fisher exact 

test p=0.66). One outlier SCZ sample showed 188 mutations without technical anomalies 

or unconventional nucleotide substitution patterns (13); since this high mutational burden 

could dominate downstream statistics, the sample was excluded from all counts and further 

analyses.

Genome-wide sSNV burden in cases and controls

After exclusion of the outlier SCZ sample, genome-wide sSNV counts in remaining SCZ 

cases averaged 37.3 per sample compared to 34.5 in controls, which did not achieve 

statistical significance using permutation-based negative binomial regression (p = 0.051, 

Fig. 1D, Methods). For each permutation we randomly shuffled diagnosis labels and 

ran a forward negative binomial step-regression model to account for ancestry principal 

components, sex assigned at birth, and technical covariates (sequencing facility, coverage, 

year of autopsy, age of death, cause of death, postmortem-interval, and institution where 

diagnosed). Regression analysis was performed on 45 SCZ cases and 19 controls with 

information across all covariates, including ancestry principal components (Table S4). As 

expected, age was not associated with higher sSNV/sample (p>0.05, Fig. S1C), emphasizing 

that identified clonal variants occurred prenatally in neuronal precursors, remaining static 

after birth. Although permutation provides uninflated p-values, power analysis suggests that 
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with mutation rates increased < 1.7-fold in SCZ versus controls, as observed here, this test 

provides low power to detect significant differences (Fig. S1D, E).

One SCZ case showed a somatic copy number variant (sCNV) overlapping intron 1 and 

potentially exon 2 of SORCS2 (Fig. S2A, B), implicated in attention-deficit hyperactive 

disorder (ADHD), and bipolar disorder (14, 15), though roles of SORCS2 in SCZ are 

not established. sSNV were not enriched in GWAS loci associated with SCZ (binomial 

regression, p = 0.936). Exonic sSNV (87 total, 2.6%, including the outlier sample) were 

equally common in cases (1.02 per individual) and controls (1.00 per individual, p =1, Fisher 

Exact test), and we did not detect somatic stop-gain, splice-site altering, or missense variants 

at genes implicated in SCZ in germline de novo or rare variant studies (16) in our small 

sample (Table S3). However, we did find a stop-gain T>G sSNV on exon 1 of STX12/13 
(chr1:28099835, T>G, p.L6*), a highly constrained gene (probability of heterozygous loss 

intolerance, pLI, of 0.96 (17)) that encodes an endosomal synaptic transport protein.

Higher sSNV rate at active TFBS in SCZ

Analysis of sSNV distribution across the genome, using fetal brain tracks from Roadmap 

Epigenomes (18), revealed increased sSNV in open chromatin regions in SCZ compared 

to controls. Previous comparison of ASD to controls showed enrichment of sSNV at open 

chromatin regions (7, 12). We found higher sSNV rates in SCZ versus controls at fetal brain 

DNase hypersensitivity sites (DHS), indicative of open chromatin (binomial regression, p 

= 0.0015, Fig. 2A). Conversely, we found lower sSNV rate in SCZ at H3K27me3 regions, 

associated with downregulation of genes and closed chromatin (19) (binomial regression, p 

= 0.0004, Fig. 2A). To ensure that the genome-wide overdispersion of sSNV did not inflate 

these statistics, we obtained a null p-value distribution by permuting diagnosis labels. This 

empiric null p-value distribution was very close to the expected null, suggesting robustness 

to overdispersion (Fig. S3A). We did not detect case-control differences in sSNV rate at 

regions of increased fetal brain gene expression, nor a systemic transcriptional strand bias 

(Fig. S3B). We also did not find significant association between sSNV rate and replication 

timing or replication fork direction (Fig. S3C).

Previous studies in cancers observed enriched sSNV at active TFBS overlapping DHS, due 

to hindrance of DNA repair by bound transcription factors (TFs) (20–22). To test whether a 

similar phenomenon could explain the local increase in sSNV at DHS regions in SCZ, we 

calculated sSNV rates near the midpoint of TFBS, accounting for the number of genomes 

and sites sampled in each SCZ case (Methods). We aggregated the hg19 TFBS BED files 

from Vorontsov et al (23) using human TF tracks with highest reliability and reproducibility 

(A tracks). These tracks aggregate across experimental designs and tissues, so that they 

are not tissue-specific. We used the top 10% of DHS intensity from fetal brain tracks of 

Roadmap Epigenomes (18) to obtain likely active TFBS. We observed increased sSNV near 

(+/− 1Kb) the midpoint of active TFBS in SCZ compared to controls (Poisson test, RR 

= 2.51 [1.12:6.62], p = 0.018, Fig. 2B). Results were robust to DHS intensity threshold 

(Fig. S4A, B). No individual TF achieved statistical significance after multiple hypothesis 

correction.
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Further genome-wide analysis of SCZ sSNV, comparing rates near active TFBS to expected 

genome-wide rates after accounting for trinucleotide context, revealed 5.74-fold enrichment 

within 50bp from the TFBS mid-point (p = 0.0003, Fig. 2C), and 5.68-fold enrichment 

near promoters (p = 0.017, Fig. 2D), with effects fading >100bp from the TFBS midpoint, 

suggesting highly localized mutational processes. Similar enrichment was observed across 

DHS intensity cut-offs, with increasing effect sizes with higher DHS signal (Fig. S4C, 

D). This rate comparison is across genomes of SCZ only, excluding effects of sequencing 

or hereditary differences. We observed enrichment of sSNV at TFBS across DHSs from 

multiple tissues, developmental stages and embryonic germ layers (including 10 fetal and 10 

adult, Table S5, Fig. 2E), suggesting a pattern that is developmental, but not tissue-specific. 

No similar enrichment was observed in controls.

Specific sSNV patterns at TFBS in SCZ

Two specific base substitution patterns were observed in SCZ but not in controls. Somatic 

SNVs at CpG sites showed 24.0-fold enrichment of CpG>GpG substitutions at active TFBS 

at promoters compared to the expected C>G genome-wide rate accounting for trinucleotide 

context (2 observed, 0.083 expected)(95% CI [2.90:86.5], p=0.0047, Fig. 3A, Fig. S5A). 

C>G and C>A transversions at CpG contexts characterize a known mutational process 

(Component 11, Fig. 3B) (24) reflecting enzymatic demethylation, which involves resection 

of oxidated methyl-cytosine, creating an abasic site (25) (Fig. 3C). Replication of the abasic 

site before repair creates CpG transversions (26). One CpG>GpG variant in SCZ was 

near the promoter of GRN, encoding the essential, dosage-sensitive protein, progranulin 

(Fig. 3D). GRN haploinsufficiency causes frontotemporal dementia in adults and pediatric 

neuronal degeneration (27) and has been reported in SCZ (28).

In addition to enrichment of CpG transversions at active TFBS in SCZ (Observed/Expected 

14.5, 95% CI [1.76:52.57], p=0.0086, Fig. 3E), we observed a similar trend in bulk 

brain DNA from ASD cases analyzed previously (7)(Observed/Expected 6.92, 95% CI 

[0.18:38.6], p=0.13, Fig. 3E). In contrast, we did not find CpG transversions ≤ 100bp from 

the mid-point of TFBS in 1) our control samples, 2) control samples from the WGS ASD 

cohort (7), nor 3) a recent non-diseased twin study (Fig. 3E)(29), so that CpG transversions 

at TFBS were increased in SCZ versus aggregated controls (p=0.013, binomial test). In 

contrast, somatic CpG transversions at CpG islands showed similar rates in SCZ, ASD, 

and controls (Fig. 3F), suggesting that CpG transversions in CpG islands are not disease-

associated.

Relative rates of sSNV across base changes at non-CpG sites in SCZ samples, although 

accounting for trinucleotide context, showed highly localized increase in T>G substitutions 

within 100 bps from the TFBS midpoint versus genome-wide expectation (observed= 3, 

expected = 0.09, observed/expected =34.3 95% CI [7.08:100.3], p = 1.04×10−4, Fig. S5B), 

which was further enhanced near promoters (observed = 2, expected = 0.024, observed/

expected = 82.6, 95% CI [10.0:298.4], p = 2.88×10−4, Fig. 4A). T>G sSNVs in active TFBS 

showed significant enrichment in cases versus the aggregated-control sample above (p = 

0.0032, binomial test). Genome-wide T>G mutations also represented a higher proportion of 

sSNV in SCZ versus control (Permutation Fisher Exact Test, OR= 2.23, p <0.0001, Fig. S6).
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Of note, 3 unrelated pairs of SCZ cases showed the exact same T>G substitution at the exact 

same genomic position (Fig. 4B), which we call same variant same site (SVSS) recurrence. 

We saw no somatic T>G SVSS recurrence in controls or other deep WGS samples including 

ASD(7). We confidently validated 2/3 pairs of T>G variants through orthogonal amplicon 

sequencing; for the third pair we only had DNA from one individual, which showed positive 

validation (Fig. 4B). The exceedingly low probability (Poisson Test, p = 1.22×10−11) of 

observing 3 recurrent sSNVs by chance suggests that mutational processes driving these 

T>G mutations are highly localized, with T>G mutational hotspots showing an estimated 

sSNV rate ~1.44×105 times the expected genome wide rate (Methods).

Analysis of T>G mutations across the Pan Cancer Analysis of Whole Genomes (PCAWG 

(30)) suggested potential mechanisms for T>G mutagenesis at TFBS. We found similarly 

high rates of T>G mutations at TFBS in a subset of liver and bladder cancer samples, with 6 

liver and 2 bladder cancer samples showing strong T>G mutation enrichment at TFBS (>5-

fold, red circles Fig. 4C). Similar to SCZ, these liver and bladder cancer samples showed 

SVSS recurrence, which was enriched in samples with high sSNV rate at TFBS versus 

those with low sSNV rate at TFBS (~100- vs ~10-fold respectively, Fig. 4D, E). Three of 

the six liver and both bladder samples showing SVSS recurrence carried somatic missense 

mutations in XPD, a key DNA repair gene, in line with observations that XPD dysfunction 

can increase sSNV at TFBS (31). Cancer samples with XPD mutations were also enriched 

in T>G mutations at TFBS versus non-carriers (Wilcoxon rank-sum test p-value = 6.3×10−6, 

Fig. 4D).

The trinucleotide mutational spectra at TFBS of liver and bladder cancers showing high 

TFBS mutation rates and XPD deficiency were very similar to that of SCZ at active 

TFBS (Fig. 4F). Despite remarkably converging patterns between liver/bladder cancer and 

SCZ, we did not find XPD somatic or germline mutations in SCZ, nor T>G mutations in 

common, though XPF (ERCC4), encoding another core nucleotide excision repair gene, is a 

reproducible SCZ GWAS hit (32, 33). Thus, mosaic SCZ mutations may be driven by factors 

mimicking XPD dysfunction, such as other factors inhibiting DNA repair; though perhaps 

the similar mutation spectra are coincidental.

Functional interrogation of somatic variants

We used massively parallel reporter assays (MPRA) in a human neuroblastoma cell line 

(SK-N-SH, Methods) to assess gene regulatory impacts of the full set of sSNV identified in 

cases and controls (Fig. 5A, Table S3, S6). MPRA regulatory activity measurements were 

highly reproducible (five replicates’ pairwise Pearson’s r ≥ 0.99, Fig. S7) and recapitulated 

known SK-N-SH positive and negative controls (Fig. S8)(34, 35). The rate of somatic 

mutations causing significant expression modulation (emVars) did not differ by diagnosis 

(Permutation Fisher Exact test p=0.49). Variants were equally likely to up- or down-regulate 

expression (Fig. S9A). T>G transitions were nominally more likely to be emVars in SCZ 

versus controls (Permuted Fisher exact test p = 0.03, OR=2.6, Fig. S9B, C, D, E) but no 

mutation type was enriched after multiple hypothesis correction. Some emVars were located 

at TFBS within DHS near neurodevelopmental genes. For example, emVar chr19:13166346 

T>G decreases regulatory activity (BH-correct Wald’s test p<0.0001, Log2FC = −1.36) 
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and is near NFIX (Fig. 5B, S9D), in which heterozygous loss of function mutations 

cause Malan syndrome, characterized by brain overgrowth and behavioral abnormalities 

(36). Another emVar, chr19:11593076 A>C (BH-corrected Wald’s test p<0.0001, Log2FC= 

−0.57) is near ELAVL3, a neuron-specific RNA-binding protein that regulates glutamate 

neurotransmission and neuronal excitability (37, 38) (Fig. 5C, S9D).

We predicted brain-specific genes targeted by regulatory elements harboring somatic emVars 

using gene-enhancer linkage maps (Table S9, Method) (39, 40), linking 88 emVars to 

247 candidate target genes, with some sSNVs linking to multiple genes (range: 2–13 

targets). Two somatic emVars target seven genes overlapping SCZ risk loci (Fig. 5D, E, 

Methods). These variants had the same direction of effect in all tested contexts in MPRA 

and caused regulatory disruption across most windows (Fig. S9D). In particular, emVar 

chr6:26533434 A>C, a T>G that downregulates activity (BH-corrected Wald’s test p < 0.05, 

Log2FC = −0.18), creates a predicted binding site for PBX1 (p < 0.0001, allele difference 

= 0.99), a repressive regulator of neuron development (41)(Fig. 5D). The variant maps its 

gene-enhancer activity to the genes BTN1A1, BTN2A3P, BTN3A1, BTN3A2, BTN3A3, 

and HMGN4 within the major histocompatibility complex class I region (Fig. 5D), a locus 

reproducibly associated with SCZ (42, 43). The emVar chr6:109152571 G>A also decreases 

transcription (BH-corrected Wald’s test p<0.001, Log2FC= −0.27) and is predicted to loop 

to the FOXO3 promoter (Fig. 5E, Fig. S9D), associated with schizophrenia. The variant 

creates a predicted binding site for BCL6 (p<0.0001, allele difference = 1.52), a direct 

repressor of FOXO3 (44). Together, BCL6 and FOXO3 reciprocally regulate neural stem 

cell proliferation and differentiation(45).

Discussion

Although our data are limited by sample size, they suggest mutational models that could 

explain distinctive sSNV patterns in SCZ. CpG transversions make up ~2.4% of all 

mosaic mutations in brain tissue, potentially originating in the early zygote shortly after 

fertilization, when global DNA demethylation of the paternal and maternal genomes restores 

totipotency at the maternal-to-zygotic transition (24, 25, 46). Alterations in this process, 

either endogenous or exogenous, would predispose to somatic CpG transversions. The high 

VAF of CpG transversions at TFBS (average VAF = 13%) is consistent with this very early 

occurrence. We speculate that the last step of demethylation could be obstructed by TF 

binding, analogous to interference between TF binding and DNA repair in cancer (20–22), 

where enrichment of sSNV at active TFBS has been attributed to steric interference of 

TFs with the repair apparatus. Comparison of mosaic mutations between SCZ and controls 

is remarkable because the overall burden in CpG transversions is higher than in germline 

for both cases and controls (24), but effects of TF binding are unique to neuropsychiatric 

disease.

Somatic T>G mutations may reflect a XPD dysfunction-like mechanism as suggested by the 

similarity in mutational patterns at TFBS between SCZ and cancers deficient in XPD. This 

mechanism could produce preferential sSNV accumulation at active TFBS due to hindrance 

of DNA repair by TFs bound to damaged DNA (21). On the other hand, although we did 

not find deleterious somatic or germline mutations in XPD in any SCZ samples, we cannot 
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exclude altered nucleotide excision repair or XPD expression by other mechanisms. The 

root cause of T>G mutations, even in cancer, is unclear. They have been proposed to reflect 

oxidative damage to deoxyribonucleotides in rapidly dividing cells (47, 48), which could 

reflect stressors during development. For example, maternal infection and immune activation 

(MIA) have been implicated in SCZ by epidemiology and animal models (49), but whether 

MIA causes somatic mutations, and if so in what pattern, are unknown.

The relationship between mutational processes observed here and SCZ might reflect several 

models. Developmental sSNV may exert direct effects on disease liability analogous to 

germline mutations: even though only some neurons harbor these variants, the affected 

population may be large enough to produce phenotypic manifestations. Alternatively, 

differences in detected somatic variants between SCZ and controls may reflect differences in 

clonal structures of progenitor populations, producing differential detection sensitivity, akin 

to focal cortical dysplasia (4). Lastly, various factors involved in SCZ etiology might be 

mutagenic independent of direct effects on SCZ, manifesting, for example, as enhanced CpG 

demethylation, inhibition of DNA repair, or decreased removal of mutated cells.

Our data show enrichment of somatic mutagenic processes previously characterized in other 

contexts, rather than enrichment of functional classes of mutations known to influence SCZ 

risk in the germline (such as coding mutations). Some somatic variants at TFBS can alter 

expression of neurodevelopmental genes, favoring models that somatic mutations increase 

disease liability. Somatic SNVs at TFBS active in development are thus simultaneously 

products of mutagenesis hotspots and ideal candidates to create risk for developmental brain 

dysfunction, increasing the probability that variants disrupt transcriptional regulation crucial 

to neuronal function. They may synergize with germline SCZ risk alleles that typically 

control gene dosage (1, 16, 17). Finally, the highly recurrent sites impacted suggest that 

nonspecific mutagenic processes can be channeled by specific TF binding to create recurrent 

patterns of mutation and potentially increased liability for behaviorally complex phenotypes.

Materials and Methods

Sample preparation and sequencing

Frozen post-mortem DLPFC (dorsolateral pre-frontal cortex) pulverized samples of subjects 

(61 schizophrenic and 25 control) were obtained from the Mount Sinai Brain Bank, part of 

the NIH NeuroBioBank. All specimens were deidentified, and all research was approved by 

the Common Mind Consortium. No statistical methods were applied to predetermine sample 

sizes, but rather we attempted to obtain data from all the affected and control frozen brains 

available to us at the time of the study and within the budget constraints of the project. 

Data collection and batching of samples were not randomized. We isolated NeuN+ (Anti-

NeuN-Alexa488 (Cat# MAB377X, EMD Millipore) antibody) nuclei from DLPFC tissue 

samples using fluorescence-activated nuclei sorting (10), followed by standard proteinase-K 

based DNA isolation with phenol-chloroform cleanup and ethanol precipitation. Sequencing 

libraries were then prepared with the Illumina TruSeq DNA PCR-free kit, according to 

the manufacturer’s standard protocol (350bp fragment design). We quantified sequencing 

libraries using the KAPA Library Quantification Kit (a real-time PCR methodology), and 

libraries were sequenced at the GeneWiz sequencing facility (NJ, USA) on an Illumina 
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HiSeq X Ten platform, to yield 150bp paired-end reads. Sequencing experiments aimed for 

a minimum yield of 200x coverage per sample, and the average coverage obtained across all 

samples was 239x.

Somatic SNV calling and filtering

Somatic SNVs were identified from WGS sequencing data using the best practices workflow 

from the Brain Somatic Mosaicism Network (11). Briefly, fastq files were aligned to the 

GRCh37 reference genome using bwa v0.7.17 (50), and preprocessed using the GATK best 

practices. Raw variants were then called using GATK Haplotypecaller (51) using a ploidy 

that corresponds to 20% of the overall sequencing coverage (i.e., ploidy of 50). Variants 

were then filtered if they fell on genomic regions labeled by 1000 Genomes Strict Mask 

(11). Variants with a GnomAD (17) population allele frequency >0.001 were filtered as 

well as variants with variant allele frequencies close to 0.5 (binomial test p < 1e-6) to 

remove potential germline variants. Candidate sSNVs were required to have >4 independent 

non-duplicated supporting reads with mapping quality of 20. A panel of normals filter from 

the 1000 Genomes Project was also used to remove variants that might occur from technical 

artifacts. The pipeline is readily accessible along with instructions at https://github.com/

bsmn/bsmn-pipeline, which was run using the AWS ParallelCluster (https://github.com/aws/

aws-parallelcluster) with the following configuration settings (https://github.com/bintriz/

bsmn-aws-setup). Variants with VAF > 0.40 were filtered to reduce potential germline 

variants false positives.

Somatic copy number variant calling

We performed somatic CNV analysis on 75 samples with mean coverage higher than 

100x. We excluded 19 samples (MSSM_033, MSSM_063, MSSM_065, MSSM_069, 

MSSM_116, MSSM_118, MSSM_158, MSSM_192, MSSM_201, MSSM_266, 

MSSM_287, MSSM_291, MSSM_293, MSSM_299, MSSM_308, MSSM_309, 

MSSM_310, MSSM_331, MSSM_338) with coverage less than 100x. In addition, we 

excluded MSSM_164 with noisy signals in both read depth and allele frequency. Candidates 

for somatic CNVs were generated by CNVpytor (52) with the caller gathering information 

from both read depth and split in B-allele frequency of germline SNPs called using GATK 

haplotype caller run with ploidy=2. Analysis was conducted with two bin sizes: 100 kbps 

and 10 kbps.

We then applied filters to exclude false positive candidates and germline CNVs. We 

considered as false positives the following: 1) calls with adjusted p-value from CNVpytor 

larger than 0.05/(number of samples*3*109/bin size); 2) calls with <50% of well mapped 

bases (P-bases) as defined by the 1000 Genomes Project; 3) calls with >5% of non-

sequenced reference (N-bases); 4) calls only supported by read depth (p-value from BAF 

signal > 0.01) and with predicted cell frequency <5%; 5) calls with predicted cell frequency 

<10%; 6) calls found in multiple samples (two calls are considered the same if overlap by 

50% reciprocally). We additionally filtered out calls with length <= 3 of bins due to the 

boundary effects, which may lead to underestimation of cell frequency for germline CNVs.
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We were not able to resolve breakpoints for the somatic duplication. Thus, we imputed two 

haplotypes by phasing germlines SNPs using population haplotypes and then confirmed that 

the frequencies of the two haplotypes were different.

Amplicon Validation:

Custom primers were designed for each candidate variant using the default settings in 

Primer3 (53, 54) to generate 150–300bp amplicons. The primers were commercially 

synthesized (IDT) and tested on human genomic DNA (Promega) to confirm generation 

of only one amplicon product at the expected size. Then 10–50ng of genomic DNA from 

patients (based on sample availability) were used to create amplicons for sequencing, 

purified using 2X AMPure XP, and run on a gel for quality control. Amplicons from 

different samples were pooled together and Illumina sequenced to achieve at least 10,000 

reads per each unique amplicon. The raw reads were aligned to the reference genome (hg19) 

and visualized on Integrative Genomics Viewer (IGV) to confirm the presence of each 

candidate variant. The variant allele frequencies were calculated based on the total number 

of REF and ALT alleles.

Variant Annotation

For schizophrenia GWAS loci we used Table S4 of Pardinas (55).

Schizophrenia Polygenic-Risk-Score calculation

Data from SNP genotype arrays were obtained as previously described (56) and were 

mapped to the biospecimens in this study with the use of unique CMC individual 

IDs. Liftover (http://hgdownload.cse.ucsc.edu/admin/exe/) was used to convert marker 

positions to GRCh38. Markers were then aligned to TOPMed (57) version R2 loci with 

HRC-1000G-check-bim-v4.3.0 (https://www.well.ox.ac.uk/~wrayner/tools/). HRC-1000G-

check-bim-v4.3.0 verifies the marker strand, alleles, position, reference/alternate allele 

assignments and frequencies and removes A/T & G/C single nucleotide polymorphisms 

(SNPs) with minor allele frequency (MAF) > 0.4, SNPs with differing alleles, SNPs 

with > 0.2 allele frequency difference between the genotyped samples and the TOPMed 

samples, and SNPs not in reference panel. The TOPMed Imputation Server (58) (https://

imputation.biodatacatalyst.nhlbi.nih.gov/), which uses Eagle (59) for haplotype phasing, 

was used for imputation. Variants were filtered and SNPs with imputation R2 > 0.3 were 

retained. After LD-based pruning of common variants using PLINK2 (60), PLINK2’s 

implementation of KING (61) was used to estimate relatedness; related samples and samples 

with cryptic relationships were removed with a kinship coefficient cut-off of ≥ 0.0884. 

For population stratification, 1000 Genomes (1000G) Project genotypes were lifted-over to 

GRCh38 and merged with imputed genotypes. Merged genotypes were filtered (retained 

MAF ≥ 0.01, Hardy-Weinberg equilibrium P value > 1 × 10−10, imputation R2 > 0.8), 

pruned, and principal components were calculated with PLINK2. We used an ellipsoid 

definition of ancestry (using three standard deviations and three principle components) 

to select ancestry based on reference superpopulation ancestries in 1000G. PRS-CS (33) 

was used for polygenic risk score calculation using GWAS summary statistics from the 

Psychiatric Genomics Consortium (33) with default settings (γ-γ prior=1; parameter b in 

γ-γ prior=0.5; MCMC iterations=1000; number of burn-in iterations=500; thinning of the 
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Markov chain factor=5). PLINK2 was used to calculate PRS scores on filtered imputed 

genotypes described above. PRS scores were normalized by scaling to a mean of 0 and a 

standard deviation (SD) of 1 within the EUR and AFR ancestries to make them easier to 

interpret.

Genome-wide somatic mutation burden analysis

For comparisons of the genome-wide sSNV per sample rate in SCZ compared to controls we 

used a step Negative Binomial regression framework to account for technical and biological 

covariates as well as overdispersion of the count data. The covariates we controlled for 

were: ten ancestry principal components, sex assigned at birth, and technical covariates: 

sequencing center, coverage, year of autopsy, age of death, cause of death, postmortem-

interval, or institution where the individual was diagnosed.

Given the large number of covariates for the small sample size, we performed a staged 

regression approach. To look for the most informative covariates we performed a step 

negative binomial regression model with the number of sSNV per sample as the outcome 

variable and all the covariates listed above except for the diagnosis covariate. We used 

the step function in R and the glm.nb function from the MASS package. Briefly, the step 

forward algorithm started with an intercept only model and then computes the Akaike 

Information criterion (AIC) for each covariate in the regression model and chooses the 

covariate to add to the model that minimizes the overall model’s AIC at each step until 

the AIC cannot be improved any more. This approach reduces the risk of overfitting and 

potential multi-collinearity among the variables. This approach produced coverage and 

post-mortem interval variables as the most informative.

We then used the covariates from the prior step and added the diagnosis covariate and 

performed a negative binomial step regression to estimate effect of diagnosis on the sSNV 

number per sample in cases and controls. Finally, we obtained a null distribution of the 

diagnosis coefficient by performing bootstrapped step negative binomial regression by 

permutating the diagnosis labels 10,000 times. After ensuring that the null distribution 

p-values followed a uniform distribution by qq-plot, we calculated a two-sided bootstrapped 

p-value by comparing the diagnosis coefficient without permutation to the null, permuted 

samples.

We developed a power test to estimate the probability to detect significant changes in 

mutation rates between cases and controls given different magnitudes of mutation rate 

acceleration in cases versus controls. First, we showed that a negative binomial distribution 

offers a good fit for the data (see Fig. S1D). Because we have 4-fold more cases than 

controls we assume that we can estimate parameters of negative binomial distributions for 

cases and then we will preserve the variance and change the mean for the distribution in 

controls. Next, we sample 60 cases and 25 controls from corresponding distributions and 

get negative binomial p-values for the difference between simulated cases and simulated 

controls. We repeat sampling 500 times for each value of the mean in controls and estimate 

how frequently out of 500 times the p-value is < 0.05. If the test is unbiased and in line 

with common sense, for controls sampled from the same distribution as cases, p-values 

would be <0.05 in 5% of the permutations; indeed, this is the case. Our power test 
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shows that if controls are expected to have two-fold lower mutation rates we will detect 

differences between cases and controls every time, but if the difference is 1.4-fold we will 

get significance only 75% of the time (Fig. S1E).

Mutations in Coding DNA Sequence (CDS)

To calculate number of mutations that fall into CDS we used gencode.v19.annotation.gtf 

filtering for CDS in protein coding regions.

Epigenomic mark enrichment

To test the for enrichment of epigenomic tracks (H3K27me3, DHS, H3K4me1, H3K36me3, 

H3K9me3, H3K4me3) in SCZ cases compared to controls we modeled the number of 

mutations Y  at each track region i as a binomial outcome, such that:

Y i Bin Si, pi

where S is the number of sites available to be mutated, and p is the probability of a site being 

mutated. For each track we constructed a matrix with N, the number of regions, times 2 rows 

(one for each disease category) and 3 columns (for the intercept, track signal, and diagnosis), 

so that we can estimate the relationship between each track’s signal and diagnosis status as a 

log binomial regression:

log pi = β0 + βilog(score + 1) + β2Dx + β3log(score + 1) ⋅ Dx

where score is the signal of each track respectively, and Dx is the diagnosis status. We 

considered a result significant if β3 ≠ 0, which we interpret as the excess effect of the 

epigenetic mark on somatic mutation rate in SCZ cases compared to controls. We used 

the glm R package to estimate these parameters. The broadpeak tracks were obtained from 

Roadmap Epigenomics from sample E081 (18). We also performed the analyses using 

samples with permuted diagnosis labels to create a negative distribution and observed that 

the p-value distribution of the diagnosis coefficient followed a uniform distribution with a 

quantile-quantile plot.

Transcription factor binding site track

We aggregated the hg19 TFBS bed files from Vorontsov et al (23) using transcription factor 

tracks with highest reliability and experimental and technical reproducibility (A tracks). 

Since these tracks are an aggregation across experimental designs, they represent TFBS that 

are not necessarily tissue-specific.

DNAse hypersensitivity tracks

We obtained the DHS tracks from ENCODE (62) and Roadmap Epigenome (18). We also 

obtained tracks from fetal neuron, neuro-progenitor cells, and fetal brain from Girskis et al. 

(63). For a complete list of the tracks and how to access them see Table S5. For most of the 

analyses involving DHS we used the broad peak calls with an FDR of 0.01 of fetal brain 

from sample E081 from Roadmap Epigenome (18) unless otherwise stated.
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Comparison of sSNV rates between cases and controls at active TFBS

We compared the sSNV rates per Mb in a range of +/− 10Kb from the TFBS mid-point. For 

this analysis the TFBS bed file was filtered by overlaps with the top 10% DHS regions from 

fetal brain (Table S5) and promoter regions. The promoter regions were defined as 2.5Kb 

upstream from transcription start sites as defined by Ensembl transcripts. The 20Kb range 

was binned into ~2Kb windows and a Poisson test was used to compare the rates in SCZ 

and control mutations, using the genomation R package (64). We adjusted by the number of 

samples in each disease category by multiplying the number of sites covered on each bean 

by the number of cases and controls respectively.

To estimate the significance of the difference in mutation rates for T>G and CpG>GpG 

mutations at TFBS for SCZ samples and aggregated sets of controls, we first calculated 

expected numbers of mutations in these regions based on genome-averaged mutation rates 

in trinucleotide contexts (let us denote these values as λ1 and λ2 for cases and controls 

correspondently). We also know observed numbers of corresponding mutations in these 

regions n1 and n2 for cases and controls. Then we ran a binomial test:

pbinom q = n2, size = n1 + n2, prob = λ2/ λ1 + λ2 , lower . tail = TRUE

Comparison of sSNV rates with genome-wide rates

We compared the sSNV rates per base pair at different distance intervals from the TFBS 

mid-point. For this analysis the TFBS bed file was filtered by overlaps with the top 5% 

DHS regions from fetal brain (Table S5) and promoter regions. The promoter regions were 

defined as 2.5Kb upstream from transcription start sites as defined by Ensembl transcripts. 

The number of mutations from the next interval closest to the TFBS midpoint was subtracted 

from the subsequent interval to make each interval independent. We used a Poisson test to 

compare the sSNV rate at each interval, using the genome-wide rate as the expected rate.

Estimation of mutation rate at mutational hotspots

Our aim is to provide a low bound estimate for the effect of mutational hotspots. The most 

conservative model to simulate hotspots would be bi-modal mutation rate distribution with 

one mode corresponding to hypermutable sites and the other mode to remaining sites.

We are relying on two observations:

1. There are overall 266 (without the outlier sample = 250) mosaic T>G mutations 

in individuals with SCZ

2. There are 3 pairs of T>G mutations that present in two individuals (SVSS)

It is reasonable to assume that mutations are distributed according to a Poisson.

To obtain a conservative estimate for hotspot rate, we assume two different Poisson λ
governing mutation rate distribution in the genome:

λ1 reflects mutation rate in hotspots and λ2 reflects mutation rate in remaining genome.
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The probability to observe double mutants in the dataset:

E Nr = λ1
2 * e−λ1

2 * n1 + λ2
2 * e−λ2

2 * n2

(1)

Nr is the number of recurrent mutations, n1 and n2 number of hyper mutable and non-hyper 

mutable sites correspondently. e−λ1 or e−λ2 are ~1, because both λ1 and λ2 are <<1

In our cohort Nr = 3

3 ≈ λ1
2

2 n1 + λ2
2

2 n2

(2)

And because the overall number of mosaic T>G mutations in context of SCZ is 266

λ1n1 + λ2n2 = 266
n1 + n2 = 1.7 * 109 number of T /A sites in tℎe genome

Now we substitute λ1n1 with 266 − λ2n2, so eq (2) will be:

3 ≈ λ1 /2266 − λ1 * λ2 /2n2 + λ2
2 /2n2,

Since λ1 > λ2

3 < λ1 /2266

0.027 < λ1

Meanwhile, the genome average is λ 1.56 * 10−7 = 266/1.7*109, thus λ1 exceeds λ by a factor 

of 1.73*105.

Analysis of cancer data

Cancer sSNVs were downloaded from PCAWG (30). We used tissue-specific DHS tracks 

from ENCODE (Table S5) to define active TFBS sites in context of specific cancer types.

To calculate recurrence on Fig. 4E, we measured the density of mutations conditioning on 

the presence of another mutation in position 0 in a different tumor sample. We normalized 

mutation rate at distance 91–100 nucleotides from focal mutation.
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MPRA library construction

Sequences of 200 base pairs surrounding the somatic variants were obtained from the 

human hg19 reference genome, with 3 windows designed for each variant: middle – 

where the variant was placed in the center of the oligo (−99bp/+100bp), left – where the 

variant was placed towards the 5’ side of the oligo (−59bp/+140bp), and right – where 

the variant was placed towards the 3’ side of the oligo (−139bp/+60bp). We also included 

69 enhancers that were broadly active across 8 cell types from previous experiments as 

positive controls for the MPRA. Fifteen base pairs of adapter sequences were attached at 

both ends of the oligos for synthesis: 5′-ACTGGCCGCTTGACG – [oligo sequences] – 

CACTGCGGCTCCTGC-3′. The oligo library was synthesized by Agilent Technologies.

Following synthesis, 20-base pair barcodes were added to the oligos via a 36 × 50-uL PCR 

reaction using NEBNext Q5® High-Fidelity 2X Master Mix (M0492L, NEB), with primers 

MPRA_v3_F and MPRA_v3_20I_R (10 μM concentration for both, see Table S7 for primer 

sequences) and a 0.5uL template originally resuspended in 100uL for each reaction. The 

PCR cycle conditions were: 98°C for 2 minutes, 10 cycles (98°C for 10 s, 60°C for 15 s, 

72°C for 45 s), and 72°C for 5 min. PCR products were then purified with 1X AMPure 

SPRIs (Beckman Coulter, A63881) and eluted in 50 μl of water. The MPRA empty vector 

backbone pGL4:23:DxbaDluc was then digested by SFiI (NEB, R0123S) at 50°C for 1 

hour. The cut plasmid backbone and oligo mix were then assembled using the NEBuilder® 

HiFi DNA Assembly Master Mix (NEB, E2621L) with 2 μg of the cut plasmid and 2.2 

μg of oligos, incubated at 50°C for an hour, and subsequently cleaned up with a 1.2X 

AMPure SPRI, with the final product suspended in 200 μl. 5uL of library assembly was 

then electroporated into 100 μl of 10-beta Escherichia coli (NEB, C3020K) at 2kV, 200 

ohm, 25 mF. The electroporated cells were divided into 10 tubes, each incubated in 1mL 

of SOC medium at 37°C for an hour before being separately cultured in 20 mL of LB 

with 100 μg/ml carbenicillin at 37°C for 6.5 hours. At the same time, serial dilutions and 

spotting plates were conducted to estimate library complexity. The cultures were combined 

to achieve approximately 1200 colony-forming units per oligo, and the plasmid DNA was 

extracted using the ZymoPURE™ II Plasmid Midiprep Kit.

Then, 20 μg of the resulting vector was then digested with 200 units of AsiSI (R0630L, 

NEB) in 1x CutSmart buffer in a 600-uL reaction at 37°C overnight. The linearized vector 

was cleaned up with the Zymo Genomic DNA Clean & Concentrator kit (D4065, Zymo), 

followed by Gibson assembly with an amplicon containing a minimal promoter, green 

fluorescent protein (GFP) open reading frame, and partial 3′ untranslated region (3′-UTR). 

The reaction was conducted with vector:GFP ratio of 1:3.3 at 50°C for 1.5 hours, followed 

by 1.5X SPRI clean-up. The entire product was then digested again to remove any uncut 

plasmids with 50 units of AsiSI, 5 units of RecBCD (NEB, M0345S), 10 μg of bovine serum 

albumin, 1 mM adenosine triphosphate (ATP), and 1X NEB Buffer 4 in a 100-μl reaction 

at 37°C overnight. The final vector was cleaned with 1.5X SPRI, and electroporated into 

10-beta E. coli in 6 batches (2.5uL of plasmid DNA in 50uL cells for each electroporations). 

Each batch was recovered in 1mL of SOC for 1 hour, then grown in 3 total liter of LB with 

100 μg/ml carbenicillin (2mL of recovered cells per liter) for 16 hours at 30°C. The plasmid 

was pooled and extracted with the Qiagen Gigaprep kit (Qiagen, 12191).

Maury et al. Page 15

Science. Author manuscript; available in PMC 2024 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To associate barcodes with oligo sequences, 200ng of the plasmid was amplified 

using NEBNext Q5® High-Fidelity 2X Master Mix (M0492L, NEB), with primers 

TruSeq_Universal_Adapter and MPRAv3_a2sa (Table S7) using the following conditions: 

95°C for 20s, 5 cycles (95°C for 20s, 62°C for 15s, and 72°C for 30s), and 72°C for 2 

minutes. The PCR product was SPRI at 1x and subjected to additional 5 cycles of PCR 

to attached custom Illumina P5 and P7 indices. Samples were sequenced on a Novaseq S4 

flowcell (2 × 150 bp) at the Yale Center for Genome Analysis to achieve a coverage of 10x 

estimated total number of barcode-oligo sequences. Identification of which barcodes were 

associated with which oligos was then conducted with the MPRAmatch pipeline (https://

github.com/tewhey-lab/MPRAmatch).

Transfection of MPRA library

Human neuroblastoma SK-N-SH cells (ATCC) were cultured in Eagle’s MEM (EMEM) 

(ATCC, 30–2003) containing 10% FBS and 1% Pen-Strep. Five total replicates were 

transfected with the final MPRA library, with each replicate being transfected in different 

days. 10 million cells of each replicate were trypsinized, resuspended in 400μl of buffer R 

with 10ug of plasmid library, and electroporated using the Neon Transfection system at 1200 

V and 3 20-ms pulses. After transfection, each replicate was recovered in 4 150mm plates 

10% FBS-supplemented EMEM without Pen-Strep. After 48hrs, cells were trypsinized, 

washed with PBS once, flash-frozen using liquid nitrogen and stored at −80°C.

MPRA RNA sample processing

Total RNA was extracted from the cell pellets with the Qiagen Maxi RNeasy kit (Qiagen, 

75162) with on-column DNase digest according to manufacturer’s instructions. A DNase 

reaction was further performed to remove remaining MPRA library vectors using Turbo 

DNAse kit (ThermoFisher Scientific, AM2238). The reaction was stopped with 0.1% 

SDS and 0.05M EDTA. The GFP-transcripts in total RNA were then captured through 

a hybridization reaction with streptavidin beads (ThermoFisher, 65001) and three GFP-

targeted biotinylated oligos (Table S7). RNA was then cleaned up with RNA SPRI 

(Beckman Coulter, A63987) and converted to cDNA using a Superscript III (ThermoFisher, 

18080044) reaction with primer MPRA_v3_Amp2Sc_R (Supplementary Table S7). The 

relative cDNA abundance was estimated through quantitative PCR along with serial 

dilutions of plasmid library serving as a standard curve (see Table S7 for primer sequences). 

The PCR conditions were: 98°C for 30s, 40x of (95°C for 20s, 65°C for 20s, and 72°C 

for 30s), and 72°C for 2 minutes. To minimize amplification bias, the Ct number reflecting 

the point at which the amplification just began to take off, subtracted by 1, was used 

to set up the first PCR for sequencing preparation. cDNA and plasmids were normalized 

to approximately the same concentration and cycled for 10 cycles using NEBNext Q5® 

High-Fidelity 2X Master Mix (M0492L, NEB) and primers MPRA_v3_Illumina_GFP_F 

and TruSeq_Universal_Adapter (Table S7). The product was cleaned up with RNA SPRI at 

1X, eluted in 30μL, 20μL of which was then subjected to another round of 6 cycles to attach 

custom p7 and p5 Illumina adapters with unique sample indices. Samples were sequenced 

on a NextSeq 2000 platform using the P3 100 cycle kit, with an average of around 100M 

reads per sample.
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Quantification of somatic variant activity

Oligo counts were obtained via the MPRAcount pipeline (https://github.com/tewhey-lab/

MPRA_oligo_barcode_pipeline). Oligos with at least 10 barcodes were retained for analysis 

and oligo counts were normalized for sequencing depth with the DESeq2 median of ratios 

method. DESeq2 was then used to estimate the fold change between plasmid DNA and 

cDNA with Wald’s test and p-values were corrected for multiple hypothesis testing by 

Bonferroni’s method. Significance threshold was determined at adjusted p-value less than 

0.01 in either the reference or alternate allele in order to call a sequence as having a 

regulatory effect on expression. For identification of expression-modulating variants, only 

variants originating from sequences determined to have a regulatory effect were considered. 

Allelic skew was calculated by comparing the log ratios of the reference and alternative 

alleles using Wald’s test. All skew p-values were adjusted with the Benjamini-Hochberg 

procedure and determined to be significant at 5% false discovery rate. The Rscripts for 

estimating variant activity and allelic skew are available on https://github.com/tewhey-lab/

MPRAmodel. Windows of each variant were treated as independent observations. The 

output from the DESeq2 analysis is reported in Table S8. Difference of odds of emVars 

stratified by mutational signatures between schizophrenia and cases was calculated using 

Fisher’s exact test.

Linking MPRA emVar to SCZ risk genes

SCZ emVars were linked to target genes by predicted gene-enhancer links 

in human brain tissues and cell types by multiple methods: Activity-By-

Contact (ABC) (39, 65), ENCODE-rE2G (66), and Cicero modeling of single-

cell ATAC-seq (40). Particularly, ABC gene-enhancer links in human induced 

pluripotent stem cell (hiPSC) derived bipolar neurons and neural progenitor 

cells were obtained from https://mitra.stanford.edu/engreitz/oak/public/Nasser2021/

AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz; ENCODE-rE2G 

gene-enhancer links in adult human brain tissues were obtained from the ENCODE portal 

https://www.encodeproject.org/; and gene-enhancer links in single-cells human GABAergic 

and Glutamatergic neurons were obtained from http://catlas.org/catlas_hub/. The list of 

genes is compiled in Table S9. Summary statistics for all schizophrenia-related GWAS 

were then downloaded from the GWAS Catalog, filtered to retain SNPs with p-values < 

5×10−8, and overlapped with SCZ emVars-targeted genes. The potential of SCZ-associated 

emVars to disrupt or create a transcription factor binding site was evaluated with R package 

MotifbreakR, with allelic difference p-value cutoff of 1×10−4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements:

Figs. 1, 3, 5, and S9 were partly generated using Biorender.com. The authors thank Royce Park and Jennifer 
Wiseman and the flow cytometry core staff at the Icahn School of Medicine for technical support and brain 
repositories associated with Common Mind Consortium (Mount Sinai NIH Brain and Tissue Repository and the 
University of Pittsburgh NeuroBioBank) for providing postmortem tissue. We thank Stephen Rong for suggestions 

Maury et al. Page 17

Science. Author manuscript; available in PMC 2024 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/tewhey-lab/MPRA_oligo_barcode_pipeline
https://github.com/tewhey-lab/MPRA_oligo_barcode_pipeline
https://github.com/tewhey-lab/MPRAmodel
https://github.com/tewhey-lab/MPRAmodel
https://mitra.stanford.edu/engreitz/oak/public/Nasser2021/AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz
https://mitra.stanford.edu/engreitz/oak/public/Nasser2021/AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz
https://www.encodeproject.org/
http://catlas.org/catlas_hub/
https://Biorender.com


and conversations about the manuscript. We thank members of the Brain Somatic Mosaicism Network (BSMN) for 
discussions.

Funding:

Harvard/MIT MD-PhD program (T32GM007753) to EAM

Biomedical Informatics and Data Science Training Program (T15LM007092) to EAM

Ruth L. Kirschstein NRSA F31 Fellowship (F31MH124292) to EAM

NIMH grant (U01MH10681) to SA, CAW, AC

NIMH grant (U01MH106876) to AA

NIMH grant (U01MH106883) to CAW

Howard Hughes Medical Institute to CAW

Allen Discovery Center program, a Paul G. Allen Frontiers Group advised program of the Paul G. Allen Family 
Foundation to CAW, EAL

The Templeton Foundation to CAW

NIH grant (K01 AG051791) to EAL

NIH grant (DP2 AG072437) to EAL

SUHF Foundation to EAL

NIH grant (R35GM127131) to SRS

NIH grant (R01MH101244) to SRS

NIH grant (U01HG012009) to SRS

NIH grant (R00HG010669) to SKR

NIH grant (R01HG012872) to SKR

NIH grant (R56MH12784) to KB

NIH grant (R01MH106056) to KB

NIH grant (R01MH123155) to KB

NIH grant (R01MH125579 to KB

Data availability

FASTQ, CRAM, and VCF files were annotated with clinical and sample information 

and submitted to the NIMH Data Archive into collection C2965 (https://nda.nih.gov/

edit_collection.html?id=2965).

References

1. Owen MJ, Legge SE, Rees E, Walters JTR, O’Donovan MC, Genomic findings in schizophrenia and 
their implications. Mol Psychiatry 28, 3638–3647 (2023). [PubMed: 37853064] 

2. Bae T et al. , Different mutational rates and mechanisms in human cells at pregastrulation and 
neurogenesis. Science (New York, N.Y 359, 550–555 (2018). [PubMed: 29217587] 

Maury et al. Page 18

Science. Author manuscript; available in PMC 2024 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://nda.nih.gov/edit_collection.html?id=2965
https://nda.nih.gov/edit_collection.html?id=2965


3. Bizzotto S et al. , Landmarks of human embryonic development inscribed in somatic mutations. 
Science (New York, N.Y 371, 1249–1253 (2021). [PubMed: 33737485] 

4. Heinzen EL, Somatic variants in epilepsy - advancing gene discovery and disease mechanisms. Curr 
Opin Genet Dev 65, 1–7 (2020). [PubMed: 32422520] 

5. Khoshkhoo S et al. , Contribution of Somatic Ras/Raf/Mitogen-Activated Protein Kinase Variants 
in the Hippocampus in Drug-Resistant Mesial Temporal Lobe Epilepsy. JAMA Neurol 80, 578–587 
(2023). [PubMed: 37126322] 

6. Dou Y et al. , Postzygotic single-nucleotide mosaicisms contribute to the etiology of autism 
spectrum disorder and autistic traits and the origin of mutations. Hum Mutat 38, 1002–1013 (2017). 
[PubMed: 28503910] 

7. Rodin RE et al. , The landscape of somatic mutation in cerebral cortex of autistic and neurotypical 
individuals revealed by ultra-deep whole-genome sequencing. Nat Neurosci 24, 176–185 (2021). 
[PubMed: 33432195] 

8. Maury EA et al. , Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal 
recurrent NRXN1 and ABCB11 disruptions. Cell Genom 3, 100356 (2023).

9. Marin-Padilla M, Origin, formation, and prenatal maturation of the human cerebral cortex: An 
overview. Journal of Craniofacial Genetics and Developmental Biology 10, 137–146 (1990). 
[PubMed: 2211963] 

10. Matevossian A, Akbarian S, Neuronal nuclei isolation from human postmortem brain tissue. J Vis 
Exp, (2008).

11. Wang Y et al. , Comprehensive identification of somatic nucleotide variants in human brain tissue. 
Genome Biol 22, 92 (2021). [PubMed: 33781308] 

12. Bae T et al. , Analysis of somatic mutations in 131 human brains reveals aging-associated 
hypermutability. Science (New York, N.Y 377, 511–517 (2022). [PubMed: 35901164] 

13. Alexandrov LB et al. , The repertoire of mutational signatures in human cancer. Nature 578, 
94–101 (2020). [PubMed: 32025018] 

14. Lesch KP et al. , Molecular genetics of adult ADHD: converging evidence from genome-wide 
association and extended pedigree linkage studies. J Neural Transm (Vienna) 115, 1573–1585 
(2008). [PubMed: 18839057] 

15. Ollila HM et al. , Findings from bipolar disorder genome-wide association studies replicate in a 
Finnish bipolar family-cohort. Mol Psychiatry 14, 351–353 (2009). [PubMed: 19308021] 

16. Liu D et al. , Schizophrenia risk conferred by rare protein-truncating variants is conserved across 
diverse human populations. Nature genetics 55, 369–376 (2023). [PubMed: 36914870] 

17. Karczewski KJ et al. , The mutational constraint spectrum quantified from variation in 141,456 
humans. Nature 581, 434–443 (2020). [PubMed: 32461654] 

18. C. Roadmap Epigenomics et al. , Integrative analysis of 111 reference human epigenomes. Nature 
518, 317–330 (2015). [PubMed: 25693563] 

19. Cai Y et al. , H3K27me3-rich genomic regions can function as silencers to repress gene expression 
via chromatin interactions. Nat Commun 12, 719 (2021). [PubMed: 33514712] 

20. Perera D et al. , Differential DNA repair underlies mutation hotspots at active promoters in cancer 
genomes. Nature 532, 259–263 (2016). [PubMed: 27075100] 

21. Sabarinathan R, Mularoni L, Deu-Pons J, Gonzalez-Perez A, Lopez-Bigas N, Nucleotide excision 
repair is impaired by binding of transcription factors to DNA. Nature 532, 264–267 (2016). 
[PubMed: 27075101] 

22. Katainen R et al. , CTCF/cohesin-binding sites are frequently mutated in cancer. Nature genetics 
47, 818–821 (2015). [PubMed: 26053496] 

23. Vorontsov IE et al. , Genome-wide map of human and mouse transcription factor binding sites 
aggregated from ChIP-Seq data. BMC Res Notes 11, 756 (2018). [PubMed: 30352610] 

24. Seplyarskiy VB et al. , Population sequencing data reveal a compendium of mutational processes 
in the human germ line. Science (New York, N.Y 373, 1030–1035 (2021). [PubMed: 34385354] 

25. Wu X, Zhang Y, TET-mediated active DNA demethylation: mechanism, function and beyond. Nat 
Rev Genet 18, 517–534 (2017). [PubMed: 28555658] 

Maury et al. Page 19

Science. Author manuscript; available in PMC 2024 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Chan K, Resnick MA, Gordenin DA, The choice of nucleotide inserted opposite abasic sites 
formed within chromosomal DNA reveals the polymerase activities participating in translesion 
DNA synthesis. DNA Repair (Amst) 12, 878–889 (2013). [PubMed: 23988736] 

27. Ward ME et al. , Individuals with progranulin haploinsufficiency exhibit features of neuronal 
ceroid lipofuscinosis. Sci Transl Med 9, (2017).

28. Momeni P et al. , Progranulin (GRN) in two siblings of a Latino family and in other patients with 
schizophrenia. Neurocase 16, 273–279 (2010). [PubMed: 20087814] 

29. Jonsson H et al. , Differences between germline genomes of monozygotic twins. Nature genetics 
53, 27–34 (2021). [PubMed: 33414551] 

30. I. T. P.-C. A. o. W. G. Consortium, Pan-cancer analysis of whole genomes. Nature 578, 82–93 
(2020). [PubMed: 32025007] 

31. Barbour JA et al. , Global and local redistribution of somatic mutations enable the prediction of 
functional XPD mutations in bladder cancer. BioRxiv 10.1101/2022.01.21.477237, (2024).

32. Li Z et al. , Genome-wide association analysis identifies 30 new susceptibility loci for 
schizophrenia. Nature genetics 49, 1576–1583 (2017). [PubMed: 28991256] 

33. Trubetskoy V et al. , Mapping genomic loci implicates genes and synaptic biology in 
schizophrenia. Nature 604, 502–508 (2022). [PubMed: 35396580] 

34. Xue JR et al. , The functional and evolutionary impacts of human-specific deletions in conserved 
elements. Science (New York, N.Y 380, eabn2253 (2023).

35. Tewhey R et al. , Direct Identification of Hundreds of Expression-Modulating Variants using a 
Multiplexed Reporter Assay. Cell 172, 1132–1134 (2018). [PubMed: 29474912] 

36. Malan V et al. , Distinct effects of allelic NFIX mutations on nonsense-mediated mRNA decay 
engender either a Sotos-like or a Marshall-Smith syndrome. Am J Hum Genet 87, 189–198 (2010). 
[PubMed: 20673863] 

37. Mulligan MR, Bicknell LS, The molecular genetics of nELAVL in brain development and disease. 
Eur J Hum Genet 31, 1209–1217 (2023). [PubMed: 37697079] 

38. Ince-Dunn G et al. , Neuronal Elav-like (Hu) proteins regulate RNA splicing and abundance 
to control glutamate levels and neuronal excitability. Neuron 75, 1067–1080 (2012). [PubMed: 
22998874] 

39. Nasser J et al. , Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 
238–243 (2021). [PubMed: 33828297] 

40. Li YE et al. , A comparative atlas of single-cell chromatin accessibility in the human brain. Science 
(New York, N.Y 382, eadf7044 (2023).

41. Golonzhka O et al. , Pbx Regulates Patterning of the Cerebral Cortex in Progenitors and 
Postmitotic Neurons. Neuron 88, 1192–1207 (2015). [PubMed: 26671461] 

42. C. International Schizophrenia et al. , Common polygenic variation contributes to risk of 
schizophrenia and bipolar disorder. Nature 460, 748–752 (2009). [PubMed: 19571811] 

43. Stefansson H et al. , Common variants conferring risk of schizophrenia. Nature 460, 744–747 
(2009). [PubMed: 19571808] 

44. Wu WR et al. , Amplification-driven BCL6-suppressed cytostasis is mediated by transrepression 
of FOXO3 and post-translational modifications of FOXO3 in urinary bladder urothelial carcinoma. 
Theranostics 10, 707–724 (2020). [PubMed: 31903146] 

45. Renault VM et al. , FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527–539 
(2009). [PubMed: 19896443] 

46. Eckersley-Maslin MA, Alda-Catalinas C, Reik W, Dynamics of the epigenetic landscape during the 
maternal-to-zygotic transition. Nat Rev Mol Cell Biol 19, 436–450 (2018). [PubMed: 29686419] 

47. Satou K, Kawai K, Kasai H, Harashima H, Kamiya H, Mutagenic effects of 8-hydroxy-dGTP in 
live mammalian cells. Free Radic Biol Med 42, 1552–1560 (2007). [PubMed: 17448902] 

48. Guo YA et al. , Mutation hotspots at CTCF binding sites coupled to chromosomal instability in 
gastrointestinal cancers. Nat Commun 9, 1520 (2018). [PubMed: 29670109] 

49. Estes ML, McAllister AK, Maternal immune activation: Implications for neuropsychiatric 
disorders. Science (New York, N.Y 353, 772–777 (2016). [PubMed: 27540164] 

Maury et al. Page 20

Science. Author manuscript; available in PMC 2024 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



50. Li H, Durbin R, Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics 25, 1754–1760 (2009). [PubMed: 19451168] 

51. R. P et al. , Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv 
201178, (2017).

52. Suvakov M, Panda A, Diesh C, Holmes I, Abyzov A, CNVpytor: a tool for copy number variation 
detection and analysis from read depth and allele imbalance in whole-genome sequencing. 
Gigascience 10, (2021).

53. Untergasser A et al. , Primer3--new capabilities and interfaces. Nucleic Acids Res 40, e115 (2012). 
[PubMed: 22730293] 

54. Koressaar T, Remm M, Enhancements and modifications of primer design program Primer3. 
Bioinformatics 23, 1289–1291 (2007). [PubMed: 17379693] 

55. Pardinas AF et al. , Common schizophrenia alleles are enriched in mutation-intolerant genes and 
in regions under strong background selection. Nature genetics 50, 381–389 (2018). [PubMed: 
29483656] 

56. Hoffman GE et al. , CommonMind Consortium provides transcriptomic and epigenomic data for 
Schizophrenia and Bipolar Disorder. Sci Data 6, 180 (2019). [PubMed: 31551426] 

57. Taliun D et al. , Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. 
Nature 590, 290–299 (2021). [PubMed: 33568819] 

58. Das S et al. , Next-generation genotype imputation service and methods. Nature genetics 48, 1284–
1287 (2016). [PubMed: 27571263] 

59. Loh PR et al. , Reference-based phasing using the Haplotype Reference Consortium panel. Nature 
genetics 48, 1443–1448 (2016). [PubMed: 27694958] 

60. Chang CC et al. , Second-generation PLINK: rising to the challenge of larger and richer datasets. 
Gigascience 4, 7 (2015). [PubMed: 25722852] 

61. Manichaikul A et al. , Robust relationship inference in genome-wide association studies. 
Bioinformatics 26, 2867–2873 (2010). [PubMed: 20926424] 

62. Funk CC et al. , Atlas of Transcription Factor Binding Sites from ENCODE DNase 
Hypersensitivity Data across 27 Tissue Types. Cell Rep 32, 108029 (2020).

63. Girskis KM et al. , Rewiring of human neurodevelopmental gene regulatory programs by human 
accelerated regions. Neuron 109, 3239–3251 e3237 (2021). [PubMed: 34478631] 

64. Akalin A, Franke V, Vlahovicek K, Mason CE, Schubeler D, Genomation: a toolkit to summarize, 
annotate and visualize genomic intervals. Bioinformatics 31, 1127–1129 (2015). [PubMed: 
25417204] 

65. Fulco CP et al. , Activity-by-contact model of enhancer-promoter regulation from thousands of 
CRISPR perturbations. Nature genetics 51, 1664–1669 (2019). [PubMed: 31784727] 

66. Gschwind AR et al. , An encyclopedia of enhancer-gene regulatory interactions in the human 
genome. bioRxiv, (2023).

67. Hermey G et al. , The three sorCS genes are differentially expressed and regulated by synaptic 
activity. J Neurochem 88, 1470–1476 (2004). [PubMed: 15009648] 

68. Alemany S et al. , New suggestive genetic loci and biological pathways for attention function 
in adult attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 168, 
459–470 (2015). [PubMed: 26174813] 

Maury et al. Page 21

Science. Author manuscript; available in PMC 2024 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Experimental design and orthogonal validation.
A) Schematic of experimental and analysis design. Notably, neuronal clonal somatic 

mutations that are shared across neurons originate during prenatal brain development; 

occurring either before organogenesis (pre-gastrulation) or during neuronal proliferation 

during neurogenesis, resulting in somatic variants present in cells across multiple tissues. 

Mutations occurring postnatally in neurons are not clonal and hence undetectable with this 

method. B) Histogram of average sequencing coverage for schizophrenia cases and control 

samples. C) Scatter plot of Deep WGS variant allele fraction (VAF) for variant submitted 

for validation and the VAF from the validation amplicon sequencing from SCZ and controls 

samples. R-squared value was computed from ordinary linear regression model. D) Scatter 

plot of number of sSNV per sample for schizophrenia cases and control after removal of 

an outlier SCZ case with 188 sSNVs. Large black points represent the sample medians. 

The p-value was calculated using permutation based negative binomial step-regression (see 

Methods).
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Fig. 2. Increased sSNV rate at developmentally active transcription factor binding sites (TFBS in 
SCZ.
A) Bar plot of binomial regression interaction term between epigenomic tracks and disease 

status. Positive values indicate enrichment in SCZ and negative values indicate depletion. 

Line ranges indicate 95% confidence intervals from binomial regression. B) Somatic SNV 

rate at +/− 10Kb region from active TFBS in fetal brain (TFBS+DHS) in SCZ and controls. 

C, D) Bar plot of observed over expected mutation rate at binned regions around TFBS in 

SCZ. E) Heatmap of rate ratios in SCZ at TFBS using different DHS tracks. For B, C, D, 

and E p-values and confidence intervals were calculated using Poisson tests. For E, stars 

indicate statistical significance at the FDR adjusted p < 0.05 level.
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Fig. 3. Increased somatic CpG transversions at active transcription factor binding sites in SCZ.
A) Forest plots of rate ratios in SCZ of different base changes in active TFBS at CpG 

sites. B) Trinucleotide context plot of sSNV in schizophrenia at active TFBS and promoter 

sites, and CpG transversion signature Component 11(24). C) Schematic of enzymatic 

demethylation mechanism resulting in CpG transversions. Abbreviations: 5meC, 5-methyl-

cytosine; 5hmc, 5-hydroxymethyl-cytosine; AP abasic site. D) Illustration of promoter 

CpG>GpG mutation of GRN gene with DHS and TFBS tracks. E) Forest plots of observed 

vs expected CpG transversions at active TFBS in promoter regions from schizophrenia, 

autism spectrum disorder, and aggregated control. F) Forest plot of the relative observed vs 

expected CpG transversions at CpG islands across diagnostic categories. For panels A, E, 

and F, p-values and 95% confidence intervals were computed using a Poisson test.
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Fig. 4. Increased somatic T>G substitutions at active TFBS in SCZ and cancer samples.
A) Forest plots of rate ratios in SCZ of different base changes in active TFBS at promoter 

regions at non-CpG sites. P-values and 95% confidence intervals were computed using a 

Poisson test. B) List of T>G variants occurring at the same genomic position. C) T>G sSNV 

observed vs. expected mutation rate at TFBS across various cancer types. Samples on the 

x-axis are sorted based on observed/expected ratios for each cancer category. Pink data 

points indicate samples with enriched T>G burden at TFBS. Triangles indicate samples with 

XPD mutation. D) Observed over expected ratio of T>G sSNV at TFBS in cancer samples 

carrying XPD mutations, vs non-carriers. E) Forest plot of sSNV rate in Liver and Bladder 

cancers stratified by enrichment of T>G mutations at TFBS (pink data points from panel 
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C). F) 96 trinucleotide context of SCZ sSNV at active TFBS (TFBS+DHS) and at promoter 

regions, along with liver and bladder cancer sSNV from samples with XPD dysfunction at 

active TFBS. The corresponding tissue DHS track for each cancer type was obtained from 

the ENCODE database (Table S5).
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Fig. 5. Transcriptional impact of early developmental somatic variants in SCZ and control 
individuals.
A) Schematic of MPRA experimental design. B, C) Schematic of T>G sSNV occurring near 

developmental genes NFIX and ELAVL3/ZNF63, with DHS and TFBS tracks. MPRA bar 

plots represent expression levels from each allele in MPRA. P-values represent Benjamini-

Hochberg-corrected Wald’s test between the log ratios of the reference and alternative 

alleles. D) & E) MPRA results, motif break prediction, and integrative genomic viewer of 

enhancer-gene linkage map for somatic-emVars targeting known SCZ risk genes. MPRA 

bar plots represent expression levels from each allele in MPRA, and P-values represent 

Benjamini-Hochberg-corrected Wald’s test between the log ratios of the reference and 
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alternative alleles. DHS tracks for human fetal brain tissues at different stages are from 

the ENCODE portal.
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