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laboratories. The stochastic effects associated with low tem-
plate (Lt) DNA, such as STR allele drop-out, allele drop-
in, and inter-locus/intra-locus peak imbalances, can cause 
uncertainty in the interpretation process [1]. In addition to 
the difficulty of interpreting Lt DNA profiles, the presence 
of DNA from multiple contributors can further complicate 
the data, increasing uncertainty [2]. Adjustments to proce-
dures that could compensate for these issues and potentially 
yield more discernable profiles are often not possible, as 
artifacts and other profile characteristics are not revealed 
until the end of the DNA workflow. In order to correct these 
issues, the analyst may need to return to the sample prepara-
tion, DNA extraction, or STR amplification stage, which is 
costly, time-consuming, and may not be possible if the sam-
ple was consumed in the initial testing. Thus, having more 
information earlier on in the analytical workflow would 
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Abstract
Despite the improvements in forensic DNA quantification methods that allow for the early detection of low template/
challenged DNA samples, complicating stochastic effects are not revealed until the final stage of the DNA analysis work-
flow. An assay that would provide genotyping information at the earlier stage of quantification would allow examiners to 
make critical adjustments prior to STR amplification allowing for potentially exclusionary information to be immediately 
reported. Specifically, qPCR instruments often have dissociation curve and/or high-resolution melt curve (HRM) capa-
bilities; this, coupled with statistical prediction analysis, could provide additional information regarding STR genotypes 
present. Thus, this study aimed to evaluate Qiagen’s principal component analysis (PCA)-based ScreenClust® HRM® 
software and a linear discriminant analysis (LDA)-based technique for their abilities to accurately predict genotypes and 
similar groups of genotypes from HRM data. Melt curves from single source samples were generated from STR D5S818 
and D18S51 amplicons using a Rotor-Gene® Q qPCR instrument and EvaGreen® intercalating dye. When used to predict 
D5S818 genotypes for unknown samples, LDA analysis outperformed the PCA-based method whether predictions were 
for individual genotypes (58.92% accuracy) or for geno-groups (81.00% accuracy). However, when a locus with increased 
heterogeneity was tested (D18S51), PCA-based prediction accuracy rates improved to rates similar to those obtained using 
LDA (45.10% and 63.46%, respectively). This study provides foundational data documenting the performance of predic-
tion modeling for STR genotyping based on qPCR-HRM data. In order to expand the forensic applicability of this HRM 
assay, the method could be tested with a more commonly utilized qPCR platform.
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make better use of analyst time and maximize the utility of 
limited evidentiary samples.

Melt curve analysis utilizing qPCR instrumentation has 
long been explored as a potentially useful tool for a variety 
of forensic applications including mRNA analysis for body 
fluid identification, species identification, individualization 
of twins via methylation pattern analysis, Y STR screening, 
and human identification via single nucleotide polymor-
phism (SNP) analysis [3–10]. Recently, Torres et al. (2023) 
developed a high-resolution melt (HRM) assay that, when 
combined with the Quantifiler™ Trio kit (Thermo Fisher 
Scientific, Waltham, MA) components and machine learn-
ing algorithms, was capable of accurately predicting if a 
forensic sample is a single-source or mixed DNA sample for 
79% of samples tested [10]. However, the assay was unable 
to predict the number of contributors (for mixture samples) 
nor was it able to determine the contributor genotypes [10, 
11]. Introducing a detection assay to the quantification step 
that could identify contributor genotype and determine 
the number of contributors present would significantly 
strengthen this application. For example, having access to 
minimal STR genotyping information at the DNA quanti-
fication step would allow the examiner time to adjust the 
workflow prior to STR multiplex amplification. Further, this 
would allow them to provide early exclusionary information 
to investigators, if genotypes can be properly resolved.

Melt curve analysis of STR amplicons has been explored 
for rapid genotyping of single source DNA samples [12–
18]. For example, one UK study explored amplification 
of the D18S51, TH01 and D8S1179 loci using HyBecon® 
fluorescent probes and non-fluorescent blocker oligonucle-
otides to enhance melt curve analysis; this study success-
fully obtained partial STR profiles from buccal swabs [13]. 
Additionally, Kuehnert et al. developed an optimized pro-
cedure for the amplification of D5S818 and D18S51 with 
subsequent high-resolution melting (HRM) using a Rotor-
Gene® Q (QIAGEN, Hilden, Germany) and an intercalating 
dye (EvaGreen®) [12]. While distinguishable peaks for each 
STR locus were observed from resulting melt curve data, 
genotypes were not consistently discernible [12]. Further, 
this assessment only analyzed 16–20 samples, all having 
one of only three closely related STR genotypes. Similarly, 
Nguyen et al. [14] developed a melt curve screening tool for 
forensically relevant samples utilizing mini-STR primers 
for CSF1PO and TH01 along with either Taqman® chem-
istry or intercalating dyes (SYBR® Green or LCGreen® 
Plus). The study reported accurate STR allele determination 
from degraded and inhibited samples, but noted inconsis-
tent reproducibility of the assay [14]. Unfortunately, none 
of these studies reported exploration of statistical software-
based models, which could help improve accuracy and 
remove subjectivity from melt curve analysis.

The Qiagen Rotor-Gene® ScreenClust HRM® software 
(Qiagen) incorporates principle component analysis (PCA) 
as a way to group like-samples using melt curve data [12, 
19, 20]. PCA is a correlational technique which transforms 
data into its main elements; from this transformation and 
reduction in dimension, a linear combination of variables 
can create new data. The newly created data can then be 
assessed for underlying patterns and variation [21]. Alter-
natively, linear discriminant analysis (LDA) is a classifica-
tion algorithm that attempts to make a distinction between 
observations. LDA assesses the data provided and compares 
it to other previously classified data patterns by determin-
ing similarity based on variance between classes and within 
classes [12, 22, 23]. As of today, there is not a packaged 
software available for high resolution melt curve analy-
sis which utilizes an LDA-type classification algorithm; 
however, previous work has generated code in R statisti-
cal software (©The R Foundation, Vienna, Austria) to meet 
this goal [12, 24]. Further exploration of HRM analysis for 
STR genotyping should include an analysis of a wide range 
of STR genotypes as well as a quantitative assessment of 
the melt curve data using statistical prediction modeling in 
order to determine if HRM could be used to provide reliable 
STR genotyping information for forensic investigations.

Methods and materials

Sample collection & initial DNA analysis

This study utilized previously collected DNA samples as 
well as buccal swab samples collected from volunteers in 
compliance with Virginia Commonwealth University Insti-
tutional Research Board protocol number HM20002931 
and HM20006066. DNA from newly obtained samples was 
extracted using a QIAcube liquid handling robot (QIAGEN, 
Hilden, Germany) and the standard manufacturer’s Buccal 
Swab Spin QIAcube Protocol using QIAamp® DNA Blood 
Mini kit reagents (Qiagen). Extracted samples were quan-
tified using manufacturer’s protocol, but with half-volume 
reactions using the Investigator® Quantiplex Kit (Qiagen) 
on the Rotor-Gene® Q (Qiagen). Reference STR profiles 
for each sample were developed by amplifying 1ng of DNA 
extract with the AmpFLSTR® Identifiler® PCR amplifica-
tion kit (Thermo Fisher Scientific, Waltham, MA) on the 
GeneAmp 9600 thermal cycler (PerkinElmer, Waltham, 
MA). The 15 µl reaction consisted of 5.7 µl of PCR Reac-
tion mix, 2 µl of Primer set, 2.1 µl Tris-EDTA (TE), 0.2 µl 
of AmpliTaq Gold™ Polymerase (5U/µl) (Applied Biosys-
tems, Waltham, MA), and 5 µl of template DNA. Thermal 
cycling conditions included a pre-denaturing step at 94 °C 
for 11 min, followed by 28 cycles of: denature 94 °C for 

1 3

2282



International Journal of Legal Medicine (2024) 138:2281–2288

1 min, anneal 59 °C for 1 min, extension 72 °C for 1 min, 
and final post-extension step of 60 °C for 90 min. Ampli-
fied STR products were then separated and detected on 
the ABI PRISM® 3130 Genetic Analyzer (Thermo Fisher 
Scientific) using a 36 cm capillary array with a 10s injec-
tion. Each reaction consisted of 0.1 µl of GeneScan™ 500-
LIZ™ size standard (Thermo Fisher Scientific) and 12 µl 
of Hi-Di™ formamide (Thermo Fisher Scientific) diluent. 
The wells containing an allelic ladder received 1 µl of the 
ladder; 1.5 µl of amplified DNA was added to all other 
sample wells. The profiles were analyzed using GeneMap-
per ID™ software v4.1 (Thermo Fisher Scientific) with an 
analytical threshold of 75 relative fluorescent units (RFUs). 
The D5S818 and D18S51 genotypes were documented as 
the known reference genotypes for comparison in all stud-
ies detailed below. Ultimately, 311 samples were obtained 
and selected for this study. Samples selected were those 
that were available at the time of testing and had one of 
seven closely-related D5S818 genotypes [(10,11), (11,11), 
(11,12), (11,13), (12,12), (12,13), (13,13)] and/or one of 
six closely-related D18S51 genotypes [(12,14), (12,15), 
(12,16), (13,14), (13,16), (14,15)].

STR locus amplification & melt curve detection

Samples selected were amplified for each of two STR loci 
(D5S818 and D18S51) separately on the Rotor-Gene® Q 
using the primer and amplification parameters previously 
established [12]. Each amplification reaction included 1X 
concentration of AmpliTaq Gold™ Buffer, 3mM MgCl2, 
250µM dNTPs, 1µM each of forward and reverse primer, 
2U AmpliTaq Gold DNA polymerase, 1X concentration of 
EvaGreen® intercalating dye (Biotium, Fremont, CA), and 
250ng/µl of bovine serum albumin (BSA) in water. Two 
microliters of template DNA were added to each reaction 
for a total reaction volume of 40µl. Primer sequences for 
D5S818 were (F) 5’- G G G T G A T T T T C C T C T T T G G T-3’ 
and (R) 5’- A A C A T T T G T A T C T T T A T C T G T A T C C T T A T 
T T A T-3’; primer sequences for D18S51 were (F) 5’- C A A 
A C C C G A C T A C C A G C A A C-3’ and (R) 5’- G A G C C A T G 
T T C A T G C C A C T G-3’. The amplification cycling for both 
primer sets consisted of an initial 10 min 95 °C denaturation 
followed by 45 cycles of: 95 °C denaturation for 5s, 56 °C 
annealing for 20s, and 65 °C elongation for 30s with fluo-
rescence detection at the 65 °C elongation step in the stan-
dard green channel. A cycle of 72 °C for 2 min, 95 °C for 
20s, 55 °C for 20s and 56 °C for 2 min followed to transition 
into the melt phase. The amplicons were melted by 0.1 °C 
incremental increases in temperature from 60 to 95 °C. Each 
incremental step was held for 2s with fluorescent detection 
throughout the melt using the high-resolution melt curve 
detection channel.

Genotype prediction analysis from HRM data

For PCA analysis, melt curve data generated from each 
sample at both STR loci were separately analyzed using the 
Rotor-Gene® ScreenClust HRM® software. For the D5S818 
sample set, 56 samples were assigned as the training samples 
or “standards” based on their known genotypes; similarly, 
for the D18S51 sample set, 52 samples were assigned as 
the training samples or “standards”, with 7–10 samples per 
genotype for both loci. For each locus analyzed, all experi-
mental samples were included as unknowns submitted for 
prediction analysis; the software placed each unknown into 
a genotype category based on highest probabilities given 
acceptable variability from the group mean. From the pre-
dicted clusters, confusion matrices were generated and then 
used to assess the software’s prediction accuracy (given as 
an overall percentage). From this, the percentage of mis-
classification for each genotype was determined and trends 
were identified. Geno-groups were formed based on these 
patterns of misclassification at each locus tested as well as 
the similarity of the genotype (and thus, amplicons pro-
duced). To subsequently evaluate the prediction accuracy 
using the identified geno-groups, the standard (training) 
samples were re-assigned in the software (as belonging to 
a geno-group, rather than a specific genotype), unknown 
samples were reanalyzed, and the newly predicted clusters 
were assessed for accuracy, as indicated above. Several 
different geno-grouping options were explored in order to 
determine the best option for the highest PCA-based predic-
tion accuracy.

For LDA analysis, the melt curve data generated from 
each sample at both STR loci were separately analyzed using 
LDA code in R statistical software. The change in fluores-
cence (dF) with respect to temperature was exported, melt 
curves generated, and the primary peaks and shoulders were 
identified (Figs. 1 and 2). The data from each sample were 
then summarized into its primary peak and shoulder peak(s) 
temperatures along with their corresponding peak heights. 
For D5S818 samples, the peak/shoulder temperatures and 
peak heights for up to three observations were used; if only 
two peaks/shoulders were observed, the height at 64.95 °C 
was used as the third data point (required, as samples with 
disparate numbers of data points cannot be compared). No 
sample had fewer than two observed peaks. For D18S51 
samples, the peak/shoulder temperatures and corresponding 
peak heights for four observations were used; if only three 
peaks/shoulders were observed, the peak height at 64.95 °C 
was used as the fourth data point. No sample had fewer than 
three observed peaks at this locus. For the D5S818 sample 
set, the same 56 samples used above were again assigned as 
the training samples for this analysis based on their known 
genotypes; similarly, for the D18S51 sample set, the same 
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Results and discussion

D5S818

When using the Rotor-Gene® Q ScreenClust HRM® soft-
ware to predict D5S818 genotypes from HRM data using 
a PCA approach, samples were classified correctly only 
23.77% of the time (Table 1). Overall, samples with known 
homozygous genotypes were more likely to classify accu-
rately (39.58%) than samples whose known genotypes 
were heterozygous (20.18%). Most often, misclassified 
homozygous samples were predicted as having another 
homozygous genotype, whereas heterozygous sample mis-
classifications were more evenly split among homozygous 
and heterozygous genotypes. Conversely, when using LDA 

52 samples used above were assigned as the training sam-
ples for this analysis. Code was generated in R statistical 
software so that the accuracy of LDA-based predictions 
could be calculated. Confusion matrices were generated and 
then used to assess the LDA prediction accuracy (given as 
an overall percentage). From this, the percentage of misclas-
sification for each genotype was determined, trends were 
identified, and geno-grouping options were created. Geno-
groups were formed, training samples were reassigned, and 
unknown samples reanalyzed, as described above. Several 
different geno-grouping options were explored in order to 
determine the best option for the highest LDA-based predic-
tion accuracy.

Fig. 2 Representative D18S51 melt curves showing key morphological features used for LDA analysis. Melt curves from four samples (A-D) 
showing changes in the primary peak height: shoulder peak height ratios across different known genotypes

 

Fig. 1 Representative D5S818 melt curves showing key morphologi-
cal features used for LDA analysis. (A) Melt curve of genotype (11,13) 
with two shoulders present. (B) Melt curve of genotype (7,11) with 
one shoulder present that is fully resolved from the primary peak. (C) 

Melt curve of genotype (13,14) with one unresolved shoulder on the 
primary peak. (D) Melt curve of genotype (13,13) primary peak with 
no shoulders present
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in R statistical software to predict D5S818 genotypes from 
the HRM data, samples were classified correctly at a rate 
of 58.92% (Table 2), which is substantially higher than the 
PCA-based model and the random chance rate of 14.29% 
(one in seven). As with the PCA method, samples with 
known homozygous genotypes were more likely to classify 
accurately (65.08%) than samples whose known genotypes 
were heterozygous (55.74%).

In an attempt to increase prediction accuracies, 13 dif-
ferent geno-groupings were created (based on the above 
trends and misclassification rates) and tested. As expected, 
geno-grouping improved classification accuracies, regard-
less of which geno-grouping option was used or algorithm 
tested (data not shown). The three geno-grouping options 
that produced the highest prediction accuracies for each pre-
diction model used in this study were assessed using the 
converse method to allow for direct comparison (Table 3). 
Geno-group option A provided the highest LDA-based and 
highest overall prediction accuracy (81.0%). Alternately, 
the highest prediction accuracy achieved with the PCA-
based method was 46.6% (option F). Regardless of geno-
grouping option tested, LDA-based prediction modeling 
provided higher geno-grouping prediction accuracies. This 
result may be due to the fact that LDA aims to maximize 
the separation amongst classes, in order to heighten class 
discrimination.

Table 1 Classification of D5S818 genotypes using HRM data and the PCA-based Rotor-Gene® Q ScreenClust HRM® software
Principal Component Analysis Predicted Genotypes

(10,11) (11,11) (11,12) (11,13) (12,12) (12,13) (13,13)
Known Genotypes* (10,11) 5 1 1 3 1 0 2

(11,11) 4 14 3 1 7 1 2
(11,12) 7 0 10 9 14 10 17
(11,13) 3 9 3 3 2 6 8
(12,12) 1 7 0 1 7 4 1
(12,13) 1 1 7 1 5 5 7
(13,13) 0 1 0 0 4 2 5
Accuracy Rate: 23.77%

*n = 12–67 per genotype

Table 2 Classification of D5S818 genotypes using HRM data and LDA analysis using R statistical software
Linear Discriminant Analysis Predicted Genotypes

(10,11) (11,11) (11,12) (11,13) (12,12) (12,13) (13,13)
Known Genotypes* (10,11) 2 1 1 5 0 2 0

(11,11) 1 34 1 0 1 2 0
(11,12) 1 0 35 3 10 0 0
(11,13) 0 1 3 26 1 1 0
(12,12) 0 2 4 1 7 1 0
(12,13) 0 9 7 4 3 5 2
(13,13) 0 5 0 2 1 1 0
Accuracy Rate: 58.92%

*n = 9–49 per genotype

Table 3 Genotype prediction accuracy rates for top performing 
D5S818 geno-groupings obtained using two prediction models (PCA 
and LDA)

Genotypes Included PCA 
Accu-
racy 
Rate

LDA 
Accu-
racy 
Rate

Option 
A

Group 1 (10,11), (11,13) 37.9% 81.0%
Group 2 (11,12), (12,12)
Group 3 (11,11), (12,13), (13,13)

Option 
B

Group 1 (11,11) 41.3% 76.2%
Group 2 (11,12), (12,12), (12,13)
Group 3 (10,11), (11,13)
Group 4 (13,13)

Option 
C

Group 1 (11,11), (13,13) 46.1% 74.6%
Group 2 (11,12), (12,12), (12,13)
Group 3 (10,11), (11,13)

Option 
F

Group 1 (10,11), (11,13) 46.6% 72.4%
Group 2 (11,11), (12,12)
Group 3 (11,12), (12,13), (13,13)

Option 
H

Group 1 (10,11), (11,11) 42.2% 70.8%
Group 2 (11,12), (12,12)
Group 3 (11,13), (12,13), (13,13)

Option 
J

Group 1 (10,11), (11,12) 45.6% 65.4%
Group 2 (11,11), (12,12)
Group 3 (11,13), (12,13), (13,13)
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no discernible trends when misclassifications were closely 
examined.

As with the D5S818 locus, D18S51 geno-grouping 
options were created based on observed trends and clas-
sification rates; eight different geno-groupings were tested 
using both prediction models. As described above for 
D5S818, geno-grouping improved classification accuracies 
when the PCA algorithm was used; for LDA, however, only 
half of the geno-grouping options tested resulted in favor-
able increases in prediction accuracies (data not shown). 
The three geno-grouping options that produced the highest 
prediction accuracies for each prediction model used in this 
study were assessed using the converse method to allow for 
direct comparison (Table 6). Geno-group option E provided 
the highest PCA-based and highest overall prediction accu-
racy (65.4%). The highest prediction accuracy achieved with 
the LDA-based method was very similar (63.5%, option G). 
This study suggests that PCA-based methods may work bet-
ter for predicting genotypes of loci that have increased allele 
diversity, such as that observed with D18S51.

Conclusion

This study evaluated the use of PCA- and LDA-based 
prediction modeling tools for their ability to distinguish 
between genotypes of two STR loci using HRM data 
obtained from the Qiagen Rotor-Gene® Q qPCR plat-
form. When assessing the D5S818 locus, the LDA model 

D18S51

In order to determine if a more polymorphic STR locus 
would be better for genotype predictions using the two 
selected models, the testing was repeated using primers 
targeting the D18S51 locus. With more common genotypes 
known and higher levels of heterozygosity reported for this 
locus [15], one may expect the melt curve resolution, and 
thus genotyping predictions, to improve. When using the 
PCA-based Rotor-Gene® Q ScreenClust HRM® software 
to predict heterozygous D18S51 genotypes from HRM 
data, samples were classified correctly 40.38% of the time 
(Table 4). Of the 62 samples that misclassified, 40.32% had 
one allele predicted accurately with the second allele off by 
only one-repeat unit (one allele value). Additionally, the 
samples expected to produce heterozygous amplicons with 
the greatest difference in base pair length (those with 12,16 
genotypes) were the most likely to be classified correctly 
(57.14%). This result is not surprising as the amplicons with 
the greatest difference in base pair length correspondingly 
have the greatest difference in melting rates thus produc-
ing visually distinct melt curves when compared amongst 
melt curves with amplicons that are close in base pair length 
and thus have similar melting rates. When LDA was used 
to predict D18S51 genotypes from the HRM data, samples 
were classified at a rate similar to the PCA-based method 
(45.10%, Table 5). However, unlike the PCA model for 
D18S51, the data obtained using the LDA approach showed 

Table 4 Classification of D18S51 genotypes using HRM data and the PCA-based Rotor-Gene® Q ScreenClust HRM® software
Principal Component Analysis Predicted Genotypes

(12,14) (12,15) (12,16) (13,14) (13,16) (14,15)
Known Genotypes* (12,14) 7 3 2 5 1 2

(12,15) 6 6 4 2 2 0
(12,16) 2 2 8 1 1 0
(13,14) 4 1 1 7 6 1
(13,16) 0 1 0 1 7 5
(14,15) 1 1 0 1 6 7
Accuracy Rate: 40.38%

*n = 14–20 per genotype

Table 5 Classification of D18S51 genotypes using HRM data and LDA analysis using R statistical software
Linear Discriminant Analysis Predicted Genotypes

(12,14) (12,15) (12,16) (13,14) (13,16) (14,15)
Known Genotypes* (12,14) 9 1 1 4 4 1

(12,15) 7 6 2 1 3 1
(12,16) 1 1 4 1 0 7
(13,14) 0 1 1 7 0 11
(13,16) 0 0 0 1 6 5
(14,15) 0 0 0 1 1 14
Accuracy Rate: 45.10%

*n = 12–20 per genotype
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wholescale use in forensic settings and becomes highly 
impractical when assessing loci with large repeat ranges and 
many common genotypes. Alternatively, R statistical soft-
ware is free and training set data is stored for use of classifi-
cation of unknown samples subsequently and independently 
tested. However, it requires some initial programming and 
forensic implementation would require the development of 
a more user-friendly interface.

In conclusion, this study provides foundational data 
documenting the performance of prediction modeling for 
STR genotyping based on HRM data. In order to expand the 
forensic applicability of the HRM assay described herein, 
it may be useful to test it using more commonly utilized 
qPCR platforms, such as Thermo Fisher’s QuantStudio™, 
and potentially incorporate it into the previously described 
mixture detection assay [10]. Further, exploring other pre-
diction models that use similar classification schemes to 
those used in this study but are designed to classify larger 
data sets (e.g., comprehensive melt curve data), such as sup-
port vector machines (SVM), may prove useful [25–27].
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substantially outperformed the PCA model for predicting 
genotypes. This trend held true when like-genotypes were 
grouped together for prediction analysis into geno-groups 
with prediction accuracies exceeding 80%. However, when 
assessing a more polymorphic STR locus (D18S51) with a 
more heterogeneous sample set, the differences in predic-
tion accuracies between the models tested were far less 
pronounced suggesting that the LDA-based method may 
work better for predicting homozygous genotypes. Regard-
less of method or locus tested, placing samples with closely 
aligned genotypes into geno-groups for classification results 
in improved prediction modeling, but fewer classification 
options would limit the forensic utility of an HRM-based 
assay, as DNA from different contributors will be less likely 
to be individualized. Ultimately, the data from this study 
suggests that the best prediction model for STR genotyping 
may differ from locus-to-locus, depending on the nature and 
complexity of the STR locus tested. Further, the inclusion of 
additional heterozygous genotypes in the training sets used 
to train the software may improve overall prediction rates, 
regardless of the testing model employed.
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selecting a prediction model to use for genotyping using 
HRM data. For example, the PCA-based ScreenClust HRM® 
software is commercially available, requires no coding, and 
is easy to use. However, the software is proprietary and the 
principal components it utilizes for analysis are unknown. 
Further, the ScreenClust HRM® software requires that all 
known (training) standards be run on the instrument at 
the same time as tested unknown samples to provide the 
most accurate clustering. This would be impractical for 
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