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Introducing edge intelligence to smart
meters via federated split learning

Yehui Li1,3, Dalin Qin 1,3, H. Vincent Poor 2 & Yi Wang 1

The ubiquitous smart meters are expected to be a central feature of future
smart grids because they enable the collection of massive amounts of fine-
grained consumption data to support demand-side flexibility. However, cur-
rent smart meters are not smart enough. They can only perform basic data
collection and communication functions and cannot carry out on-device
intelligent data analytics due to hardware constraints in terms of memory,
computation, and communication capacity. Moreover, privacy concerns have
hindered the utilization of data from distributed smart meters. Here, we pre-
sent an end-edge-cloud federated split learning framework to enable colla-
borative model training on resource-constrained smart meters with the
assistance of edge and cloud servers in a resource-efficient and privacy-
enhancingmanner. The proposedmethod is validated on a hardware platform
to conduct building and household load forecasting on smartmeters that only
have 192 KB of static random-access memory (SRAM). We show that the pro-
posedmethod can reduce thememory footprint by 95.5%, the training time by
94.8%, and the communication burden by 50% under the distributed learning
framework and can achieve comparable or superior forecasting accuracy to
that of conventional methods trained on high-capacity servers.

Electric power systems account for more than 40% of global carbon
dioxide emissions1,2. Accommodating high penetration of renewable
energy is an essential way to decarbonize power systems and thus
alleviate climate change. Harnessing demand-side flexibility is a cost-
effective strategy for promoting renewable energy accommodation3,
where smartmeters play apivotal role in this process. Smartmeters are
the core of the advanced metering infrastructure in power systems,
which are supported by sensors, control devices, and dedicated
communication infrastructure4. Smart meters can record real-time
energy information, including voltage, frequency, and energy con-
sumption, from the demand side and can enable bidirectional com-
munication between system operators and end-users5. The advanced
functions of smart meters provide a strong foundation for harnessing
demand-side flexibility in terms of data and hardware platforms6,7. On
the one hand, smart meter data enable the estimation of demand
response potential8 and dynamic pricing design9 to integrate

renewable energy. On the other hand, smart meters can act as agents
for home energy management systems to monitor distributed
renewable energy generation, storage, and consumption10.

The construction of smart grids has increased the adoption of
smart meters, and the number of smart meters is expected to exceed
1.2 billion globally by the end of 202411; the global penetration of smart
meters will increase to nearly 59% by 202812. The ubiquity of smart
meters will enable them to become a central feature of future smart
grids by enabling the collection of massive fine-grained consumption
data to support demand-side flexibility7,13. However, current smart
meters are not smart enough. They are incapable of conducting on-
device intelligent data analytics and can only transmit collecteddata to
a data management system6, which can result in potential privacy
leakage, heavy transmission burdens, and low efficiency in demand-
side management. Enabling on-device intelligence for smart meters
without additional investment in computational facilities is an
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economical way to help consumers manage flexible resources more
autonomously and efficiently. Moreover, enabling smart meter intel-
ligence can reduce the need for uploading local data, which may
alleviate privacy concerns and increase consumers’ willingness to
adopt smart meters14–16, thus facilitating the digitalization of electric
grids a step forward.

On-device load forecasting is one of the key components of smart
meter intelligence, as it can provide consumers with valuable informa-
tion and a foundation for optimal decision-making in a peer-to-peer
energy market17,18, building energy and household appliance
management19,20, electric vehicle charging/discharging and local storage
scheduling21,22, etc. Deep learning-based methods for accurate load
forecasting have been investigated in numerous studies23–25. The success
of these load forecasting methods relies heavily on the training of
complex neural networks with extensive data as input, which are tradi-
tionally carried out in a data-centralized manner on servers with abun-
dant computational resources. However, these methods are not
applicable to smartmeters due to limitations in terms of data availability
and hardware resources: (1) smartmeter data involve consumer privacy,
which creates a data barrier that hinders the utilization of distributed big
data26; and (2) smart meters have insufficient memory, computational
power, and communication resources to support complicated model
training. Therefore, it is worth investigating how to effectively utilize
distributed data resources to train complex models for accurate load
forecasting on resource-constrained smartmeters. Such an investigation
will help to intellectualize the end infrastructure of power systems at a
low cost and to obtain maximal value from smart meter data.

Recently, researchers have focused on harnessing the potential of
edge data and computational resources by pushing artificial intelli-
gence toward end devices, giving rise to the concept of “edge intelli-
gence" (EI)27–29. Considering the data privacy concerns regarding smart
meters, as well as their hardware constraints in terms of memory,
computation, and communication capacity, achieving EI on smart
meters requires a privacy-enhancing framework with high efficiency.
First, to address the memory and computational power limitations of
end devices, studies have considered computation offloading to
transfer computation-intensive tasks from end devices to edge or
cloud servers30,31. The split learning approach32,33 enables a deep neural
network to be split, allocated, and trained across multiple entities,
thereby opening up opportunities for addressing the resource con-
straints of end devices. Second, to make full use of smart meters and
distributed data while helping preserve privacy, federated learning
(FL) is a promising solution, as it allows multiple clients to collabora-
tively develop high-performance global models34,35. The success of FL
has been achieved in several fields, such as healthcare36–38, finance39,40,
and energy41–43. In FL, model development involves intensive infor-
mation exchange (including the exchange of model parameters and
gradients) between clients and a server, making communication
overhead a crucial concern. In the scenario of the large-scale deploy-
ment of smart meters, the transmission of massive numbers of para-
meters generated by deep learning models will impose a significant
burden on communication networks and can even cause network
congestion44,45. Another problem in implementing FL is that the overall
computation speed is subjected to the model aggregation process. In
practice, smart meters may have different training speeds depending
on the computing power and task occupancy of each meter. The
vanilla FL method adopts a synchronous approach in model aggrega-
tion, which slows convergence since it needs to wait for the slowest
meter to complete model updates in each communication round46,47.
Several studies have investigated FL for edge intelligence, such as
refs. 48–52. However, these studies mainly utilize smart meter data to
carry out simulation experiments instead of implementing their
methods on resource-constrained smart meter hardware. There is still
a lack of a unified framework that considers all perspectives of model

accuracy, on-device memory footprint, computation speed, and
communication overhead to fully achieve on-device intelligence.

Previous edge intelligence studies cannot be applied to the smart
grid since the ubiquitous smart meters present distinctive challenges
and opportunities. Our work provides a comprehensive solution tai-
lored for smart meter hardware that translates theoretical methods
into practical, real-world applications. This paper focuses on two cri-
tical questions in achieving on-device intelligence: “How can we effi-
ciently utilize distributed data?" and “How can we train models on
resource-constrained devices?". To answer these questions, we pre-
sent an end-edge-cloud framework that combines federated learning
and split learning to intellectualize resource-constrained smart meters
for on-device load forecasting in a privacy-enhancing manner. This
work overcomes the constraints inherent to smart meter environ-
ments, ensuring that our approaches are not only theoretically sound
but also viable for on-the-ground deployment. Figure 1 compares the
characteristics of mainstream learning methods, highlighting that our
framework consolidates several properties: higher accuracy, reduced
memory footprint, faster computation speed, smaller communication
overhead, and enhanced privacy. In particular, we develop an optimal
splitting strategy, collaborative knowledge distillation mechanism,
and semi-asynchronous aggregation approach in our framework to
tackle the issues of computation offloading, device collaboration, and
heterogeneous aggregation for smartmeter intelligence.We provide a
theoretical analysis for guaranteeing the convergence of the proposed
distributed method and set up a hardware platform to validate the
proposed method by performing individual building and household
load forecasting on smart meters. The experimental results demon-
strate that our method can reduce thememory footprint by 95.5%, the
training timeby94.8%, and the communicationoverheadby 50% in the
distributed learning framework and can achieve comparable or even
superior forecasting accuracy to that of conventional methods trained
on high-capacity servers. This implementation of complex model
training on smart meters represents a pioneering effort in EI concepts
within smart grids. It bridges the gap between theory and practice,
fostering the utilization of demand-side flexibility to enhance the
efficiency and reliability of smart grids.

Results
Overall framework
We first present a concise overview of the proposed end-edge-cloud
framework for intellectualizing smart meters. As shown in Fig. 2, the
framework consists of a hierarchywith three levels: smartmeters, edge
servers, and a cloud server. The proposed framework is capable of
collaboratively training the model deployed on different entities with
distributed data in a privacy-enhancing manner to address the chal-
lenges posed by the resource constraints and insufficient data of
individual smartmeters. Toenable accurate on-device load forecasting
with memory, computation, and communication efficiency, our fra-
mework incorporates three critical phases, namely, model splitting,
model training, and model aggregation.

• In the model splitting phase, the cloud server determines an
efficiency-optimalmodel split ratio for each smartmeter andedge
server pair. This aims tominimize the training timewhile avoiding
memory overflow on smart meters. Consequently, the model is
split into three components: a feature extractor, a feature
processor, and a regressor. The feature extractor and regressor
involve private raw data and thus are deployed on smart meters,
while the feature processor requires complex computations and
thus is deployed on edge servers. In thisway,most of the resource
burden of the model training is transferred to edge servers.

• In the model training phase, the smart meters and edge servers
collaboratively train the model deployed on them. We introduce a
small auxiliary network as an extra regressor on smart meters to
update the end- and edge-side models in parallel. This parallelism
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significantly reduces the computation time and communication
overhead. To enhance the model accuracy, a knowledge
distillation-based mechanism is employed to guarantee objective
consistency between the two split models throughout the training
process.

• In the model aggregation phase, the cloud server and the edge
servers aggregate the trained models in a hierarchical way. We
first adopt a hardware-aware clustering algorithm to designate
smart meters with similar training times to the same edge server.

This allows the models of intra-cluster smart meters to be
synchronously aggregated by edge servers. Subsequently, the
aggregated models of each edge server can be asynchronously
uploaded to update the global model via the cloud server. This
two-stage semi-asynchronous approach effectively reduces the
delay time without compromising accuracy by combining the
benefits of the synchronous and asynchronous methods.

Experimental setup
We established a hardware platform instantiating the end-edge-cloud
framework to verify the effectiveness of our method for smart meter
intelligence and on-device load forecasting. As illustrated in Fig. 3a, this
hardware platform comprises one tower server, three personal com-
puters (PCs), and thirty microcontroller units (MCUs). Specifically, the
tower server and PCs function as the cloud server and edge servers in
our framework, respectively. In addition to the metering core, the
internal MCU of the smart meter is primarily used for computation and
storage functionalities. Therefore, we employ an ARM Cortex-M4 series
microchip, which is a representativeMCU in smartmeters53,54. The smart
meter faces considerable constraints in terms of memory, computa-
tional, and communication resources. Training deep learning-based
models typically requires the storage of numerous variable parameters
and massive amounts of constantly collected data. The constants, such
as preloaded datasets, can be stored in nonvolatile FLASHmemory. The
variables, such as the weights and gradients involved in model training,
are cached in volatile SRAM memory. However, the limited memory
budget of 192KB SRAM and 1MB FLASH in smart meters is inadequate
for inference, let alone for training. Furthermore, the Cortex-M4 pro-
cessor, with a maximum frequency of only 168MHz, struggles to carry
out computationally intensive model training. In addition, the commu-
nication rates of wired modes such as RS485 in smart meters are

Fig. 1 | Comparison among mainstream energy data analytics methods. The
excellent, good, fair, and poor coordinate points represent the general perfor-
mance of different methods in various dimensions. Our proposed federated split
learning integrates the advantages of federated learning and split learning meth-
ods, achieving exceptional performance across all dimensions.

Smashed Data

Edge

Fig. 2 | Overview of the end-edge-cloud framework for on-device load fore-
casting. We develop a federated split learning approach under this framework,
which mainly incorporates three phases: (1) model splitting, in which the cloud
server splits the large model and assigns a small portion to smart meters and a

larger portion to the edge servers; (2) model training, in which multiple smart
meters collaborate with edge servers to train the complete model; (3) model
aggregation, in which the trainedmodels are hierarchically aggregated by the edge
servers and the cloud server to update the global model.
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restricted to a relatively low level (115.2 kbps in subsequent experiments)
to ensure transmission stability.

We conduct comprehensive experiments on two open smart
meter datasets. The first dataset BDG255, contains hourly-resolution
load profiles for different types of buildings across North America and
Europe, spanning from January 2016 to December 2017. The second
dataset, CBTs56, contains load data at a 30-min resolution for Irish
residences from July 2009 to December 2010. Adjacent half-hour data
values in CBTs are averaged to obtain hourly load values. In our
experiments, data from 30 randomly selected buildings and resi-
dences are imported into each MCU as the load record. We divide the
load data into two parts: the data of the first full year are used to train
themodel and the data of the subsequent half-year are used to test the
model. Considering the unavailability of weather data for smart
meters, the input features include only historical load and calendar
information (month, weekday, day, and hour).

Three common metrics are selected to evaluate the forecasting
accuracy: mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE). Since residential loads are
near zero at some moments, we adopt the symmetric mean absolute
percentage error (sMAPE) instead of the MAPE to avoid extremes in
evaluating forecasting performance on the CBTs dataset. The accuracy
of load forecasting is expressed as 1-MAPE. In addition, three model
efficiency metrics are of significant interest and are crucial for smart
meter intelligence: the memory footprint, training time, and commu-
nication overhead. The peak memory footprint determines whether the
model can be trained without overflowing the SRAM of smart meters. A
reduction in training time can effectively improve the response speed of

the smart grid, thus enabling regular updates of the model on smart
meters. A reduction in the communication overhead of distributed
smart meters can effectively alleviate network congestion and delay,
thus improving the reliability of communication in smart grids.

Performance evaluation
We compare the proposed method with several benchmarks, including
privacy-invasive centralized learning (Cen), local learning (Local), two
versions of federated learning (FedAvg57 and FedProx58), split learning
(Split)32, and twoversions of split federated learning (SFLV1 and SFLV2)33.
Cen collects private load data from smart meters and trains the fore-
casting model on the cloud server. Local allows each smart meter to
train the forecasting model with locally measured data. FedAvg and
FedProx leverage a server to aggregate model parameters to train the
forecasting model with data from distributed smart meters. Split trains
the large forecasting model on smart meters with the assistance of
servers. The proposed method, SFLV1, and SFLV2, enable smart meters
to collaborate with edge servers to train the large forecasting model
with multiple data sources. A basic multilayer perception (MLP) is
applied as the baseline model to forecast the next 4-h electricity loads.

As a hard constraint, the limited memory resources on smart
meters make it challenging to train a high-performing large-scale
model with large amounts of data. We first investigate model accuracy
versus on-device memory footprint for the local and distributed
learning methods in Fig. 3b. The results show that Local consistently
underperforms the other methods. This can be attributed to the
inability of smart meters to effectively utilize either large models or
extensive data. Interestingly, increasing the model size would lead to

Fig. 3 | Hardware demonstration for on-device load forecasting in our frame-
work. a Schematic of the hardware platform. The established platform instantiates
the proposed end-edge-cloud framework for comprehensive experiments. The
memory-constrained smart meter cannot match the requirement of numerous
variable parameters and massive amounts of constantly collected data for model

training. b Comparison of forecasting accuracy versus memory usage on smart
meters for our method and benchmark methods with different model sizes. The
average forecasting accuracy with 95% confidence intervals is presented with five
independent experiments. Source data are provided as a Source Data file.
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overfitting and a subsequent decrease in accuracy due to the insuffi-
cient amountof local data.Owing to thebenefits derived frommultiple
data resources, FedAvg achieves greater accuracy than Local. How-
ever, thememory constraints of smartmeters prevent the smallmodel
from accurately characterizing the volatile individual load well. In
contrast, Split enables smartmeters to train a powerful largemodel on
smart meters with minimal memory footprint. However, model gen-
eralization is hindered by the limited data from a single smart meter,
resulting in unsatisfactory accuracy. SFLV1 and SFLV2, which combine
federated learning and split learning, significantly improve model
accuracy. Remarkably, compared to the benchmark methods, our
proposed method achieves the best performance within the 192 KB
memory constraint and saves the memory footprint of smart meters
by 15.2 times with similar accuracy.

We next compare the performance of our method with eight
benchmark methods in terms of accuracy, memory, training time, and
communication. We design two models of different sizes: a small
model with a single hidden layer and a large model with multiple
hidden layers. Due to the limited resources of smart meters, Local,
FedAvg, and FedProx can only support the training of the small model.
In contrast, the split learning-based methods can effectively train the
large model under a memory constraint of 192 KB. Although training
the large model on resource-constrained smart meters is an over-
whelming task in local and federated frameworks, we simulate the
experimental results to illustrate the superiority of our method. From
the results in Table 1, we find that the forecasting performance of our
method exhibits varying degrees of improvement compared to other
device-friendly alternatives in terms of all accuracy metrics. For
instance, the proposedmethod outperforms Split, FedAvg-S, FedProx-
S, and Local-S by achieving 5.62%, 7.27%, 9.46%, and 11.07% improve-
ments in the MAE for the BDG2 dataset, respectively. Compared with
SFLV1 and SFLV2, our method achieves comprehensive improvements
in both accuracy and efficiency metrics, with only a slight increase in
the memory footprint. Moreover, the accuracy of our on-device
training method is similar to or even superior to that of the conven-
tional methods trained on high-capacity servers. Importantly, the
migration of themodel training burden provides substantial savings of
22.4 ×memory footprint, 2.02 × communication overhead, and
19.23 × training time. These results indicate that the proposedmethod
enables resource-constrained smart meters to execute resource-
intensive intelligence algorithms effectively.

Model effectiveness
Next, we verify the effectiveness of three important techniques in our
method, namely, efficiency-optimal model splitting, knowledge
distillation-based model training, and semi-asynchronous model
aggregation. We first investigate the impact of our efficiency-optimal
splitting strategy. The proposed method requires two split layers to
split the model into three components. The subsequent split point is
fixed as the last hidden layer. Here we only discuss how to determine
the previous split layer. The implemented MLP model consists of 5
hidden layers,with the lower andupper bounds for the split ratio being
the first and fifth hidden layers, respectively. The experimental results
in Supplementary Fig. 4 reveal that splitting at different hidden layers
does not affect the forecasting accuracy of the model. However, the
training time varies depending on the chosen split layer due to the
differences in computational resources between smart meters and
edge servers. We report the total training time under four distinct
configurations of the computational power of the edge servers and
smart meters in Fig. 4. We can observe that the proposed efficiency-
optimal split ratio can serve as a guideline for how to split themodel to
minimize the training time. By adopting the proposed splitting strat-
egy, the allocation of the completemodel can benefit fromup to 2.97 ×
shorter training time.

We further conduct an ablation study on parallelism and knowl-
edge distillation in model training. We compare the accuracy, training
time, and communicationper round for the proposedmethod and two
ablated variants. The results of the ablation experiments in Fig. 5 show
that the integration of the parallelism mechanism decreases the
training timebyup to 1.55 × and the communicationoverheadby 1.3 × .
This is mainly due to the benefit of parallelizing the model training on
smart meters and edge servers. However, the parallel training leads to
instability in the convergence processes of the two models, which
subsequently impairs the convergence accuracy. We find that our
method employing knowledge distillation exceeds the accuracy of the
nonparallelized method at no extra memory cost. This improvement
can be primarily attributed to the knowledge incorporated into the
loss function, which enables the two models to guide each other
during training and helps them avoid becoming trapped in local
optima.

We also conduct a performance comparison between the pro-
posed method and two widely used methods in federated learning
(synchronous aggregation and asynchronous aggregation) in a het-
erogeneous smart meter scenario. To create device heterogeneity, we
set the MCUs in our experiment to have different operation fre-
quencies that determine the computation speed. As shown in Fig. 6,
the synchronous approach results in a considerable waiting time due
to the different training times of heterogeneous meters. Nonblocking
updates in asynchronous aggregation substantially shorten the delay
time and diminish the communication overhead. However, this
approach also reduces the convergence accuracy due to the stochas-
ticity of a single model’s gradient. In contrast, the proposed method
strikes a good trade-off between accuracy and training efficiency.
Specifically, our semi-asynchronous method can reduce the total
training time by 3.11 × and the communication overhead by 2.0 × with
minimal sacrifice in accuracy. This suggests that our two-stage
approach combines the strengths of both methods while suppres-
sing the effects of their weaknesses. Follow-up experiments illustrate
that choosing an appropriate number of clusters can enable our
method to achieve almost the same accuracy as the synchronous
method with a greater training speed and smaller communication
overhead (see Supplementary Fig. 9).

Considering additional forecasting scenarios in smart grids, we
evaluate the accuracy of our method compared with other device-
friendlymethods on different forecasting ranges and different neural
network backbones. We first visualize the performance improvement
on all accuracy metrics obtained by the proposed method for 12 h
ahead and 24 h ahead forecasting in Fig. 7. Compared to the best-
performing benchmarks in each task, our proposed model has
improvements of 1.33%, 2.19%, and 3.27% in terms of the RMSE,
MAPE, and MAE, respectively. This highlights the superior ability of
our method to handle forecasting tasks at different scales. We also
implement our method and the benchmarks with several common
deep learning-based backbones in load forecasting, including a
convolutional neural network (CNN), recurrent neural network
(RNN), gate recurrent unit (GRU), and long short-term memory
(LSTM). Our proposed method surpasses other feasible on-device
methods on both BDG2 and CBTs datasets, which shows that our
method is model-agnostic and performs well with different neural
networks as the backbone (see Supplementary Fig. 11). Recalling the
results presented in Table 1, we see that the basic deep-learning
model MLP even achieves higher forecasting accuracy. The possible
reason is that MLP with simple architectures can accommodate more
neurons than models with complex architecture in limited memory
space, thus achieving a stronger representation capacity. In sum-
mary, we can conclude that the proposed method consistently
maintains high performance in handling various real-world fore-
casting scenarios.
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Impact on energy management
Load forecasting facilitates consumers to gain deeper insights into
future energy consumption patterns, thereby supporting tailored
energy management decisions. In addition to conducting accuracy
analysis, we explore the impact of forecasting errors on the down-
stream decision-making process. Figure 8(a) illustrates a representa-
tive home that features distributed flexible energy resources,
including solar panels, controllable appliances, electric vehicles, and
energy storage systems. Note that a building can be regarded as a
multi-household collective with larger-scale distributed resources.
Building energy management (BEM) and home energy management
(HEM) are typically achieved through two stages: (1) short-term sche-
duling and (2) real-time balancing. Briefly, short-term scheduling aims

tominimizeelectricity costswhile ensuring a balancebetween forecast
demand and supply by scheduling various flexible resources for
upcoming periods. To this end, the smart meter installed on each
building/home first predicts the future load using a pre-trained fore-
castingmodel and retrieves the time-of-use tariff information from the
grid operator’s cloud platform. On this basis, the smart meter can
determine the operating strategies of storage systems and household
appliances and recommend strategies for participating in the energy
market. To save electricity costs, storage systems, and electric vehicles
can be charged during off-peak tariff periods, while grid-connected
electricity sales can be conducted during peak solar generation peri-
ods. However, due to prediction errors, smart meters may require
further adjustments to achieve the real-time supply and demand

Table 1 | PerformanceofdifferentmethodsonBDG2andCBTs in termsof accuracy,memory, training time, andcommunication
overhead per round

Method BDG2 CBTs Memory (KB) Training Time (s) Communication (KB)

RMSE MAPE MAE RMSE MAPE MAE

Cen 22.82 8.41 8.20 0.4780 26.98 0.2727 2578.42 (1.0 ×) 586.42 (2.05 ×) –

Local-S 23.56 8.13 8.12 0.4698 28.19 0.2726 152.53 (16.9 ×) 41.19 (29.14 ×) –

FedAvg-S 22.79 7.67 7.98 0.4681 27.04 0.2699 152.53 (16.9 ×) 46.49 (28.80 ×) 5.50 (27.18 ×)

FedProx-S 22.58 7.71 7.91 0.4668 27.17 0.2678 152.53 (16.9 ×) 46.49 (28.80 ×) 5.50 (27.18 ×)

Local-M 22.84 7.75 8.03 0.4645 26.67 0.2682 2578.42 (1.0 ×) 1187.15 (1.01 ×) –

FedAvg-M 22.25 6.96 7.48 0.4614 25.81 0.2637 2578.42 (1.0 ×) 1200.44 (1.0 ×) 149.50 (1.0 ×)

FedProx-M 22.21 7.16 7.62 0.4622 25.76 0.2639 2578.42 (1.0 ×) 1200.44 (1.0 ×) 149.50 (1.0 ×)

Split 23.27 7.68 7.96 0.4679 26.83 0.2687 103.75 (24.8 ×) 96.00 (12.50 ×) 91.25 (1.63 ×)

SFLV1 22.34 7.25 7.68 0.4647 26.03 0.2664 103.75 (24.8 ×) 96.49 (12.44 ×) 96.75 (1.54 ×)

SFLV2 22.76 7.53 7.89 0.4674 26.49 0.2683 103.75 (24.8 ×) 96.49 (12.44 ×) 96.75 (1.54 ×)

Proposed 22.17 6.98 7.44 0.4630 25.74 0.2636 115.07 (22.4 ×) 62.41 (19.23 ×) 74.43 (2.01 ×)
1The best-performing and second-best-performing methods are bolded and underlined, respectively.
2-S and -M indicates that the model has single and multiple hidden layers, respectively.

Fig. 4 | Effectiveness of the efficiency-optimal model splitting strategy. Each
hidden layer is considered a candidate split layer. The split layers that yield the best
efficiency are annotated. The hidden layers contained in the feature extractor,
feature processor, and regressor after the optimal splitting are indicated with dif-
ferent colors. The total training times under four distinct hardware configurations

when choosing different split layers are provided. The stacked histograms repre-
sent the measured times for communication, forward propagation of the edge
server and smartmeter, and parallel backward propagation, arranged frombottom
to top. Source data are provided as a Source Data file.
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balance. In this case, a higher predicted load implies that consumers
discard unused generated renewable energy, while a lower predicted
loadmeans that consumers have to temporarily purchase electricity in
the energymarket. Both situations are unfavorable for efficient energy
management. In short, accurate forecasting results contribute to low
additional grid electricity purchases and a high accommodation ratio
of solar generation, thus reducing total carbon emissions.

We conducted comprehensive experiments on the BDG2 and
CBTs datasets to showcase the effectiveness of the proposed method

in enhancing decision-making for BEM and HEM. Figure 8b provides a
performance comparison of a non-intelligent strategy and various
edge intelligent methods in terms of the electricity cost, renewable
energy accommodation ratio, and carbon emission. In the non-
intelligent strategy, smart meters without edge intelligence cannot
provide any assistance or support for customers to schedule flexible
energy resources. The results clearly show that introducing edge
intelligence to smart meters can, on average, reduce electricity costs
by 31.79%, increase renewable energy accommodation by 35.38%, and

Fig. 5 | Effectiveness of the collaborative model training method.We compare
the model performance in terms of accuracy, training time, and communication
per round when the parallelism and knowledge distillation mechanisms are

removed. The mean accuracy with 95% confidence intervals is presented with five
independent experiments. Source data are provided as a Source Data file.

Fig. 6 | Effectiveness of the semi-asynchronousmodel aggregationmethod.We
compare the model performance in terms of the accuracy, total training time, and
communication overhead of the proposed method with the, synchronous,

asynchronous, and semi-asynchronous model aggregation methods. Source data
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-53352-9

Nature Communications |         (2024) 15:9044 7

www.nature.com/naturecommunications


reduce carbon emissions by 59.78% for each building. These
improvements brought to each house can be found at 35.42%, 40.38%,
and 49.31%, respectively. By adopting our approach, electricity cost
savings of $1,176.11 per building and electricity cost savings of $18.93
per household can be expected annually. Importantly, the proposed
method, which has the highest forecasting accuracy among all intelli-
gentmethods, also achieves a significant performance improvement in
individual energy management. Compared to the best-performing
benchmarks, our approach saves electricity costs, boosts renewable
energy consumption, and reduces carbon emission for buildings and
houses, reaching values of 3.08%, 1.38%, 5.42%, 2.41%, 0.76%, and 1.96%,
respectively. Interestingly, the prediction error is not strictly

monotone with the downstream decision cost. For instance, SFLV2
outperforms FedAvg-S in residential load forecasting, but its perfor-
mance in subsequent energy management is unsatisfactory.

Discussion
In this work, we have proposed a unified end-edge-cloud framework
that integrates the strengths of federated learning and split learning to
introduce edge intelligence into smart meters. The core of the pro-
posedmethod is to collaboratively train amodel deployed ondifferent
distributed entities with distributed data in a privacy-enhancing man-
ner, thus facilitating accurate energy analysis on resource-constrained
and data-scarce smart meters. This paradigm can increase the digital

Fig. 7 | Performance evaluation of the proposed model for different forecasting ranges.We present the accuracy improvement of our method compared with other
device-friendly methods for 12 h ahead and 24h ahead forecasting. Source data are provided as a Source Data file.

Fig. 8 | Impacts of different forecasting methods on individual energy man-
agement. a Schematic diagram of edge home energy management for flexible
energy resources. Edge intelligence enables smart meters to manage local energy
storage, controllable household appliances, electric vehicle charging, and energy
market participation based on predicted loads. b Comparison of the electricity

cost, renewable energy accommodation ratio, and carbon emission for a non-
intelligent strategy and various edge intelligent methods. The experiments were
conducted on 30 buildings and houses in the BDG2 and CBTs datasets for 180 test
days. Source data are provided as a Source Data file.
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intelligence of ubiquitous smart meters through synergy between
hierarchical grid devices. Moreover, with the implementation of cus-
tomized model splitting, model training, and model aggregation
strategies, our method can greatly improve the efficiency and practi-
cality of smartmeter intelligence in termsofmemory, communication,
and training time compared to existing decentralized methods, espe-
cially in large-scale heterogeneous scenarios. In summary, this work
provides a feasible, efficient, and adaptable approach for application
to existing smart meter systems without the need for additional
investment in computational facilities.

The effectiveness and practicability of the proposed method
have been validated by comprehensive experiments on two real-
world datasets on a hardware platform. The experimental results
demonstrate that our method can reduce the memory footprint by
95.5%, the training time by 94.8%, and the communication overhead
by 50% in the distributed learning framework and can achieve com-
parable or even superior forecasting accuracy to that of the server-
trained results. In addition, the proposed approach is a general
method that performs well in different forecasting ranges and with
different models as the backbone. More importantly, the forecasts
produced by the proposed method have been proven to provide
excellent support for energy management, achieving a 31.79%
reduction in electricity cost, a 35.38% increase in renewable energy
accommodation, and a 59.78% reduction in carbon emissions.

However, some aspects also need to be further explored. First,
devices with poor-quality data or unstable communication may
affect the accuracy and efficiency of the proposedmethod. Thus, it is
necessary to develop active device selection methods to choose
representative, well-conditioned devices for collaboration. Second,
smart meters collect new data continuously, and there is a need to
update the model frequently. For these reasons, online mechanisms
to ensure timely and efficient model updates are of interest for fur-
ther study. Third, the extensive use of smart meters will lead to
problems of data heterogeneity and device heterogeneity, where a
single global model with a fixed structure will be insufficient to meet
all conditions. Thus, it is of further interest to develop personaliza-
tion approaches for automatic model design and to improve model
performance on individual devices.

The work in this paper is the first attempt to achieve smart
meter-based intelligence in smart grids, laying the foundation for
broader EI applications. The proposed framework is not limited to
load forecasting tasks but also has wide applicability to on-device
monitoring and on-device control, which provides benefits for both
consumers and distribution system operators (DSOs). For con-
sumers, the proposed framework can be extended to enable smart
meters to carry out local energy management, household appliance
control, electric vehicle charging/discharging scheduling, autono-
mous energy market participation, etc. This will help consumers
better exploit flexible resources to reduce costs and accommodate
more distributed renewable energy. For DSOs, the proposed frame-
work has the potential to achieve on-device electricity theft detec-
tion and allocation, demand response, distributed renewable energy
management, etc. This will enable DSOs to better observe the sys-
tem’s status and manage the system to decrease operation costs and
improve the reliability of the energy supply. In addition, the pro-
posed framework can effectively help preserve data privacy, which
will increase consumers’ willingness to adopt smart meters, thus
promoting smart meter penetration and contributing to the digita-
lization and consequent decarbonization of smart grids.

This study provides the following takeaway messages. First,
implementing edge intelligence algorithms on smart meters should
primarily consider hardware resource availability for the feasibility of
grid applications. Second, smart meters can collaborate through fed-
erated learning to improve energy analytics performance in edge
intelligence by orchestrating the cooperation of distributed data

resources. Third, smart meters can split large-scale models with the
assistance of high-capacity servers to improve energy analytics per-
formance in edge intelligent systems by orchestrating the cooperation
of hierarchical computational resources. Finally, edge intelligence on
smart meters can substantially optimize energy management, pro-
mote sustainable energy development, and thereby advance the dec-
arbonization of power and energy systems.

Despite the end-edge-cloud framework bringing advancements in
smart meter intelligence, this study has two concerns that should be
addressed in industrial applications. First, the adopted clustering
algorithm is designed for the computing resources of heterogeneous
devices, without considering the geographical location and physical
connection characteristics of smart meters in smart grids. Second, the
established experimental platform only selects one representative
hardware configuration for the smart meter. Implementing smart
meter intelligence should consider the compatibility of devices
equipped with varying core models and communication technologies.

Methods
Efficiency-optimal model splitting
Let ∣�∣ denote the size of the parameters. Since the model is split and
allocated in the proposed method, we define α as the split ratio
between the number of network parameters for the model deployed
on the smart meter and that for the complete model, i.e., α = jwe j+ jwr j

jwj
(Fig. 2). α determines the peak memory footprint M of the model
deployed on smartmeters and also influences the overall training time
T. To this end, we aim to find an optimal split ratio α* thatminimizes T
subject to the memory constraintsMsm of smart meters, which can be
formulated as

minα TðαÞ
s.t. MðαÞ≤Msm

ð1Þ

Analysis of peakmemory footprintM(α). The peakmemory footprint
for training a neural network on smart meters consists of three main
components59.We analyze how these three types of sources contribute
to the memory footprint of the i-th layer as follows. Model memory is
the memory space allocated to store the fundamental network para-
meterswi, i.e., the weights and biases of each layer of the network. The
number of network parameters for various common layers can be
found in Supplementary Table. 1. Some nonparametric layers, such as
the activation layer, do not impose any burden on themodel memory.
In addition, intermediate memory comprises two parts: the memory
footprint required for the activations of each layer ai during the for-
ward pass, and the memory footprint required for the gradients of ai
and wi during the backward pass. Note that the same intermediate
memory needs to be assigned for each sample in batch B, and this
memory consumes most of the storage resources in model training.
The number of intermediate parameters for various common layers is
also provided in Supplementary Table 2. Furthermore, the optimizer
memory refers to the memory used to store the optimizer states. For
instance, the standard SGD needs to cache the momentum values of
wi, while the Adam optimizer requires buffer memory for the first- and
second-moment estimates of wi. In general, all parameters are stati-
cally allocated tomemory and stored as single precision floating point
numbers for smartmeters. Consider the example of a completemodel
with L layers using the Adam optimizer. Once we know the total
number of parameters for each layer of the end-side model, the peak
memory footprint M(α) can be calculated by multiplying this number
by 32-bit as follows:

M αð Þ= 32×
X αLb c

i= 1
∣B∣ð∣wi∣+2∣ai∣Þ+ 3∣wi∣
� � ð2Þ
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where αLb c denotes the maximum number of layers in the end-side
model, the network parameters of which do not exceed the α of the
complete model.

Analysis of training time T(α). The overall training time T includes the
computation time and communication time. We consider a colla-
boration setting involving one edge server and K smart meters. Let
Psm, Pes, and R denote the computational power of the smart meters,
the computational power of the edge server, and the transmission rate
of communication between the smart meters and the edge server
respectively. For simplicity, we assume that the dataset size ∣D∣ of each
smart meter and the number of neurons s in each split layer are
identical.

First, we analyze the time spent on computation, including for-
ward and backward propagation. The amount of computation
required for each parameter is assumed to be equal and is denoted as
n. Since ∣w∣ is typically much larger than ∣a∣ in (2), the computational
complexity of the complete model training can be represented as
Oð∣D∣∣w∣Þ for the entire dataset. Therefore, the total amount of com-
putation in the training process can be characterized as n∣D∣∣w∣. Let β
denote the fraction of computation used for forward propagation.
Initially, smart meters concurrently perform forward propagation on
their local models, which takes time of αβnjDjjwj

Psm
. Similarly, the edge

server then carries out forward propagation on the edge-side models
for each smart meter, which takes time of ð1�αÞβnjDjjwjK

Pes
. In our

training method detailed later, the smart meters and edge server
backpropagate their respective models in parallel. The parallel pro-
pagation time is determined by the maximum value for the model of
the smart meters and edge server, which can be expressed
as max αð1�βÞnjDjjwj

Psm
, ð1�αÞð1�βÞn∣D∣jwjK

Pes

n o
.

Second, we analyze the time spent on communication. In each
round, the smart meters communicate with the edge server to upload
and download the weights of the end-side model, with each process
requiring timeof αjwj

R . Since the completemodel is split into threeparts,
the intermediate activations of the split layers need to be transmitted
twice between the smart meters and edge server for forward propa-
gation, which will take time of 2sjDj

R . In our method detailed later, the
edge server no longer returns the gradient of the split layer to the
smart meters. Thus, the smart meters send the gradients of the acti-
vations of the split layer back to the edge server, taking the time of sjDjR .

In summary, the overall training time T(α) used per round can be
formulated as:

TðαÞ= 3sjDj+2αjwj
R

+
αβnjDjjwj

Psm
+
ð1� αÞβnjDjjwjK

Pes

+ max
αð1� βÞnjDjjwj

Psm
,
ð1� αÞð1� βÞnjDjjwjK

Pes

� � ð3Þ

Solution for optimal split ratio α*. First, we can calculate an upper
bound αupper for the split ratio that ensures that M(α) remains within
the memory constraints Msm, which can be formulated as:

αupper = inffα : MðαÞ≤Msmg ð4Þ

Second, asmentioned earlier, the input and output layers, i.e., the
first and last layers, must be deployed on the ED for load data pro-
tection, so we can calculate a lower bound αlower for the split ratio,
which can be formulated as:

αlower =
jw1j+ jwLj

jwj ð5Þ

To this end, we can solve the optimization problem (1) by piece-
wise dissection. Theorem 1 offers guidance for determining the
efficiency-optimal split ratio α*. The proof is provided as Supplemen-
tary Proof. 1.

Theorem 1. (Efficiency-optimal split ratio): If Pes >K
1

nR∣D∣ +
β

Psm

� ��1
, we

have

α* =αupper ð6Þ

If Pes <βK
2

nR∣D∣ +
1

Psm

� ��1
, we have

α* =αlower ð7Þ

If βK 2
nR∣D∣ +

1
Psm

� ��1
≤Pes ≤K

1
nR∣D∣ +

β
Psm

� ��1
, we have

α* =

αupper if Pes
KPsm

+ 1
� ��1

≥αupper

Pes
KPsm

+ 1
� ��1

if αupper ≥
Pes
KPsm

+ 1
� ��1

≥αlower

αlower if Pes
KPsm

+ 1
� ��1

≤αlower

8>>>>><
>>>>>:

ð8Þ

Collaborative model training
To perform collaborative training of the split model in our framework,
information needs to be exchanged between the smart meters and
edge servers during the forward and backwardpropagation processes.
However, the transmission of split-layer activations and gradients
results in a large amount of communication, and the sequential pro-
pagation severely limits computational efficiency. To address this, we
design a communication-efficient and computation-efficient training
method geared to the split learning setup with parallelism and
knowledge distillation mechanisms.

Parallelism. Distributed optimization enables parallel solving of sub-
problems across multiple computing nodes, thereby significantly
improving efficiency. Inspired by this, we parallelize the training pro-
cess of the end-side and edge-sidemodels. As shown in Fig. 9, an extra
auxiliary network wa is added as another regressor connected to the
feature extractor we. Thus two trainable models are formed, namely
the main modelws = ½we,wp,wr � and the auxiliary modelwc = ½we,wa�.
Let f(⋅) denote the output of the corresponding model. The smart
meter first utilizes historical data x as inputs to obtain the extracted
representation he = f(we, x). Next, the feature processorwp in the edge
server further refines the representations hp = f(wp, he), and the smart
meter then calculates the prediction ys of the main model as
ys = f(wr, hp). In tandem, the smart meter can directly calculate the
prediction of the local auxiliary model as yc = f(wa, he). Note that the

Fig. 9 | Illustration of the process and pipeline in collaborative model training.
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introduction of the auxiliary model produces an extra loss function ℓc
in addition to the loss function ℓs. In contrast to traditional split
training methods, the gradients of we in the proposed method are
calculated based on ℓc rather than ℓs. As a result, the backward pro-
pagationprocess is divided into twoparallel subprocesses: (1) themain
model ws except for we are propagated based on the loss ℓs through
the interaction between smart meters and edge servers; (2) the aux-
iliary model wc is locally propagated in the smart meter based on the
extra loss ℓc.

There are two distinct advantages of the proposed method. First,
the gradient computation of we is independent of that of wp. In other
words, the edge server does not have to send the returned gradient to
the smart meters, which eliminates a quarter of the communication
overhead. Second, the gradients of we and wr can be calculated in
parallel, which saves nearly half of the computation time required for
backpropagation (the vastmajority of computation inmodel training).
The auxiliary regressor introduces almost no memory footprint.

Knowledgedistillation. To achieve accurate forecasting, our goal is to
find the optimal parameters to minimize the loss LsðwsÞ of the main
model and the extra loss LcðwcÞ of the auxiliary model for dataset D,
which can be formulated as:

minwr ,wp
LsðwsÞ=minwr ,wp

1
∣D∣

X
x2D‘sðws, xÞ ð9Þ

minwa ,we
LcðwcÞ=minwa ,we

1
∣D∣

X
x2D‘cðwc, xÞ ð10Þ

There is a difficulty in solving this optimization problem. As a
shared component of the main model ws and the auxiliary model wc,
updating the feature extractor, we will change the results of ℓs and ℓc.
Thus, the parameter optimization we aims to minimize the objective
loss in both (9) and (10). However,we serve as a decision variable only
in (10). In otherwords,we areoptimizedbased on the loss ℓc in (10) and
is independent of the loss ℓs in (9). This lack of correlation means that
the converged optimal solution to we in (10) will generate a con-
siderable loss in (9). Generally, knowledge transfer promotes the
exchange of gainful information between multiple models60. Inspired
by this, we redesign the loss function by incorporating knowledge
distillation to introduce the convergence of (9) as an objective into the
optimization ofwe. The specific formulations of ℓs and ℓc are as follows:

‘sðws , xÞ= ‘ðy, ysÞ ð11Þ

‘cðwc, xÞ=μ‘ðy, ycÞ+ γ‘ðys, ycÞ|fflfflfflfflffl{zfflfflfflfflffl}
KnowledgeDistillation

ð12Þ

where y denotes the true label, μ and γ denote the weights of the label
loss and knowledge distillation loss, respectively. Here ℓ is the basic
loss function,which canbe L2 loss for deterministic load forecasting or
pinball loss for probabilistic load forecasting. Intuitively, knowledge
distillation brings the prediction of wc closer to that of ws.

In addition, as we can obtain the forecasting outputs ys and yc
from the main model and auxiliary model, respectively, our method
shows great adaptivity during the inference stage under different
communication conditions. When the communication network is
working properly, ys is preferred as the forecasting result because the
main model has more hidden layers and typically has better perfor-
mance than the auxiliary model. To further enhance the forecasting
robustness, an ensemble learning strategy can also be adopted for the
main and auxiliary models. When the communication network is poor
and hinders the parameter transmission of the main model, smart
meters can still make forecasts based on the local auxiliary model,
which can conduct inferences without communication.

Semi-asynchronous model aggregation
To train a global model with extensive data from distributed smart
meters, the network parameters of the end-side model and edge-side
model are aggregated in a federated manner. Due to the device het-
erogeneity of smart meters, the completion time of model training
may vary significantly. In addressing this problem, two widely used
aggregation methods have advantages and disadvantages. The syn-
chronous method realizes stable global model updates but causes
delays that depend on the smart meter with the longest arrival time.
The asynchronous approach virtually eliminates the waiting delay but
results in lower model accuracy due to the stochastic gradient of the
single end-side model. To overcome this dilemma, we combine the
advantages of the two methods and design a two-stage semi-asyn-
chronous method, which includes end-edge synchronous model
aggregation and edge-cloud asynchronous model aggregation.

End-edge synchronous aggregation. In our proposed framework
shown in Fig. 2, each edge server interacts with a certain cluster of
smart meters and aggregates their models to form the complete
model. Then, the powerful cloud server interacts with all edge servers
to update the final global model. To reduce the aggregation delay for
each cluster, we adopt a hardware configuration-based clustering
algorithm to designate smart meters with similar training times to the
same edge server. As analyzed in (3), the overall training time T is
related to two variables of smartmeters, namely, Psm and R. Therefore,
K smart meters can be grouped intoM clusters based on their feature
vectors 1

Psm
, 1
R

h i
, where the number of smartmeters designated to the i-

th edge server is denoted as Ki. Here, we recommend utilizing the
balanced k-means algorithm to ensure that the numbers of smart
meters in each cluster are similar and to avoid overloading and no-
loading of the edge server in any cluster. After all intra-cluster smart
meters have completed model training, the edge server aggregates
these models synchronously as follows:

wt + 1
ðiÞ =

1
Ki

XKi

k = 1
wt + 1

k ð13Þ

where wt + 1
ðiÞ denotes the aggregated model at the i-th edge server in

round t + 1 and wt + 1
k denotes the model of the k-th smart meter in

round t + 1.

Edge-cloud asynchronous aggregation. Although clustering-based
end-edge synchronous aggregation significantly reduces the delay in
intra-cluster aggregation, the training time still differs between clus-
ters. Therefore, asynchronous aggregation over edge servers is per-
formed on the cloud server to further minimize the delay time. Since
the designation of smart meters for each cluster is independent of the
data distribution, the aggregated gradient for each cluster can be
regarded as an unbiased estimator of the full gradient for all smart
meters. Thanks to the robustness of the intra-cluster aggregated
model, our method effectively mitigates the problem of accuracy
degradation in asynchronous aggregation. As soon as the aggregated
model is received from the i-th edge server, the cloud server updates
the global model asynchronously as follows:

wt + 1 = ð1� τiÞwt + τiw
t + 1
ðiÞ ð14Þ

wherewt denotes the aggregated model at the cloud server in round t
and τi =

Ki
K is the weight of wt + 1

ðiÞ in the asynchronous update phase.

Convergence analysis
As shown in (10),we update the parameters not based on the gradient
ofws. Therefore,wediscuss the convergence of twomodels,ws andwc,
respectively. In each round,wt

s, k takes the ht
e, k as input, which is time-

varying following the distribution of pt
kðhÞ. Let p*

kðhÞ denote the output
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distribution of w*
e with optimal parameters. We define the

squared Euclidean distance between two distributions as
dt
c, k =

R k pt
c, kðhÞ � p*

c, kðhÞ k
2
dh. Here three common assumptions are

considered for convergence analysis61.

Assumption 1. (Lipschitz continuity): The loss functions of the main
model and auxiliary model are L-smooth, i.e.,

Lðw1Þ≤Lðw2Þ+ ðw1 �w2ÞT∇Lðw2Þ+
L
2

w1 �w2

		 		2

for all w1 and w2.

Assumption 2. (Bounded gradient): The expected squared norm of
stochastic gradients is upper bounded, i.e.,

Ek ∇‘c, kðwc, k , xkÞ k2 ≤G1; Ek ∇‘s, kðws, k , xkÞ k2 ≤G2

for all k = 1,2, …,K.

Assumption 3. (Robbins-Monro conditions): The learning rates satisfy

XT

t = 1
ηt =1;

XT

t = 1
η2
t <1:

Theorem 2. (Model convergence): If Assumption 1, 2, and 3 holds, the
auxiliary model converges as

XT

t = 1
ηtE ∇Lcðwt

cÞ
		 		2h i

≤
1
τi

Lcðw0
c Þ � Lcðw*

cÞ
� �

+G1
L
2
τi
XT

t = 1
η2
t ð15Þ

and the main model converges as

XT

t = 1
ηtE ∇Lsðwt

sÞ
		 		2h i

≤
1
τi

Lsðw0
s Þ � Lsðw*

sÞ
� �

+G2

XT

t = 1
ηt

1
Ki

X
k2Ai

ffiffiffiffiffiffiffiffiffi
dt
c, k

q
+
L
2
τi
XT

t = 1
η2
t

� �
:

ð16Þ

The right-hand side of both (15) and (16) converge to a constant as
T grows, so our algorithm is convergent. The proof of Theorem 2 is
provided in Supplementary Proofs 2 and 3.

Data availability
The BDG2dataset is available at https://github.com/buds-lab/building-
data-genome-project-2. The CBTs dataset is available from the
ISSDA website https://www.ucd.ie/issda/data/commissionforenergy
regulationcer/ by emailing a form request. The above-mentioned
datasets have been processed and deposited in our GitHub repository
https://github.com/hkuedl/Make-Smart-Meter-Really-Smart. Source
data are provided with this paper.

Code availability
The code for the experiments is publicly available on our GitHub
repository https://github.com/hkuedl/Make-Smart-Meter-Really-Smart
and archived at the Zenodo https://zenodo.org/doi/10.5281/zenodo.
1377708062.
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