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Abstract 
We present genome assembly from individual female An. coustani 
(African malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae) 
from Lopé, Gabon. The genome sequence is 270 megabases in span. 
Most of the assembly is scaffolded into three chromosomal 
pseudomolecules with the X sex chromosome assembled for both 
species. The complete mitochondrial genome was also assembled and 
is 15.4 kilobases in length.
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Species taxonomy
Animalia; Arthropoda; Insecta; Diptera; Culicidae; Anophelinae;  
Anopheles; Anopheles coustani; Laveran, 1900 (NCBI 
txid:139045).

Background
Anopheles coustani (Laveran, 1900) belongs to the Coustani  
group together with the morphologically similar species  
An. crypticus, An. fuscicolor, An. namibiensis, An. paludis, 
An. symesi, An. tenebrosus, An. caliginosus and An. ziemanni1.  
Although this mosquito was first described from Madagascar2, 
it is widespread throughout the African continent. The larvae  
of An. coustani prefer to breed in natural clear water with  
aquatic vegetation while adults typically rest and feed  
outdoors3,4. The feeding preference of An. coustani is primarily 
zoophilic, including wild ungulates, but this zoophilic tendency  
greatly varies at a local scale from opportunistic to  
anthropophilic behaviour4–7. Regarding malaria transmission, 
An. coustani is considered a secondary vector, leading to the  
species being understudied. However, its epidemiological role 
in malaria transmission varies from minor importance to locally  
major vector, as in Madagascar8. The species has been found 
infected with various human Plasmodium species including  
P. falciparum, P. vivax and P. malariae5,9,10. In Madagascar  
and Cameroon, An. coustani was suspected to signifi-
cantly contribute to malaria outbreaks and sustain malaria  
transmission8,10. Apart from human Plasmodium species,  
An. coustani has been involved in the transmission of other  
Haemosporidian parasites (including Hepatocystis) and a variety  
of arboviruses, including Rift Valley fever and Zika virus11–13.

Early genetic works enabled distinguishing this species 
from its sister species, An. crypticus. This distinction was  
based mainly on a fixed chromosomal inversion of the  
X chromosome14. Very few studies have focused on the  
genetics of An. coustani, for example15 analysed the genetic 
diversity of An. coustani, using COI and ITS2 markers in  
50 samples from several locations across Africa. The authors 
highlighted the existence of two genetic groups with a  
structure that was not geographically dependent. However, 
the authors could not rule out the possibility that An. coustani  
and An. crypticus are two separate species. One of the most  
important genomic studies carried out on An. coustani is the 
publication of its complete mitogenome, making available an  
interesting resource for phylogenetic analyses based on  
mitochondrial DNA16. Nonetheless, research on the nuclear 
DNA sequence is currently lacking and will be greatly facilitated  
by this new chromosomal reference genome.

The genome of the African malaria mosquito, Anopheles 
coustani, was sequenced as part of the Anopheles Reference  
Genomes Project (PRJEB51690). Here we present a  
chromosomally complete genome sequence for Anopheles  
coustani, based on a single wild-caught female.

Genome sequence report
The genome was sequenced from a single female Anopheles  
coustani caught in Lopé, Gabon (-0.143, 11.610) in April  
201917. A total of 33-fold coverage in Pacific Biosciences  
single-molecule HiFi long reads (N50 11.273 kb) and  
78-fold coverage in 10X Genomics read clouds were generated. 
Primary assembly contigs were scaffolded with chromosome 
conformation Hi-C data from an unrelated female individual.  
Manual assembly curation corrected 3 missing joins or  
misjoins, reducing the scaffold number by 0.7%.

The final assembly has a total length of 270 Mb in 420 
sequence scaffolds with a scaffold N50 of 94.852 Mb  
(Figure 1–Figure 2; Table 1). The snail plot in Figure 1 provides 
a summary of the assembly statistics, while the distribution  
of assembly scaffolds on GC proportion and coverage is  
shown in Figure 2. 89.87% of the assembly sequence was 
assigned to three chromosomal-level scaffolds, representing 
two autosomes and the X sex chromosome (Figure 3; Table 2).  
Chromosomes were numbered and oriented against the  
An. atroparvus assembly AatrE418 (accession GCA_015501955.1) 
(Figure 4) and double checked by polytene chromosome 
arms lengths, where 2L and 3R arms are the longest, 2R has  
intermediate length, followed by 3L and, finally, X14. The  
assembled portion of chromosome 3RL is about 3Mbp longer 
than 2RL, which means the naming convention here of  
naming the longer chromosome as 2 is not precisely followed. 
The assembly has a BUSCO 5.3.219 completeness of 97.4%  
using the diptera_odb10 reference set. While not fully  
phased, the assembly deposited is of one haplotype, and 
also includes the circular mitochondrial genome. Contigs  
corresponding to the second haplotype have also been deposited.

Chromosome arms, candidate centromere sequences, and the  
rDNA regions were delineated based on the presence of  
characteristic tandem repeat arrays (Figure 5; Table 3).  
Candidate centromere regions of autosomes 2RL and 3RL 
comprised 52-53bp tandem repeat blocks with questionable 
sequence homology between chromosomes. On 3RL, a more  
pronounced tandem repeat region was found. Predicted  
centromere locations agree well with Hi-C signal (Figure 3) 
and synteny to An. atroparvus (Figure 4). In X chromosome 
assembly, no plausible centromere region was found. rDNA  
clusters were scattered across unlocalised X-linked scaffolds; 
they were often associated with tandem repeat blocks with  
unit length of 737 bp.

Gene annotation was performed with NCBI Eukaryotic  
Genome Annotation Pipeline and is available in the RefSeq20  
under the accession GCF_943734705.1. A total of 14,493 
genes were predicted, including 12,032 protein-coding genes  
and 2,426 non-coding RNAs. The genome assembly and gene 
annotations are hosted on VectorBase, www.vectorbase.org21  
under the identifier AcouGA1.
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Figure 1. Snail plot summary of assembly statistics for Anopheles coustani assembly idAnoCousDA_361_x.2. The main plot is divided 
into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 269,999,061 bp assembly. The distribution 
of sequence lengths is shown in dark grey with the plot radius scaled to the longest sequence present in the assembly (97,602,170 bp, 
shown in red). Orange and pale-orange arcs show the N50 and N90 sequence lengths (94,852,749 and 274,232 bp), respectively. The pale 
grey spiral shows the cumulative sequence count on a log scale with white scale lines showing successive orders of magnitude. The blue 
and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A 
summary of complete, fragmented, duplicated and missing BUSCO genes in the diptera_odb10 set is shown in the top right. An interactive 
version of this figure is available at https://blobtoolkit.genomehubs.org/view/Anopheles%20coustani/dataset/CALSDV01/snail.

Methods
Sample acquisition and nucleic acid extraction
Anopheles coustani female individuals were caught in Lopé,  
Gabon using an animal-bait catch22. A single female  
idAnoCousDA-361_x was used for Pacific BioSciences and 
10x genomics, an unrelated female idAnoCousDA-364_x was  
used for Arima Hi-C.

For high molecular weight (HMW) DNA extraction one 
whole insect (idAnoCousDA-361_x) was disrupted by manual  
grinding with a blue plastic pestle in Qiagen MagAttract 
lysis buffer and then extracted using the Qiagen MagAttract  
HMW DNA extraction kit with two minor modifications23. 
The quality of the DNA was evaluated using an Agilent  
FemtoPulse to ensure that most DNA molecules were  
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Figure 2. Blob plot of base coverage in a subset of idAnoCousDA_361_x 10x linked reads against GC proportion for An. coustani 
assembly idAnoCousDA_361_x.2. Chromosomes are coloured by phylum. Circles are sized in proportion to chromosome length. 
Histograms show the distribution of chromosome length sum along each axis. An interactive version of this figure is available at https://
blobtoolkit.genomehubs.org/view/Anopheles%20coustani/dataset/CALSDV01/blob.

larger than 30 kb, and preferably > 100 kb. In general, single  
mosquito extractions ranged in total estimated DNA yield  
from 200 ng to 800 ng, with an average yield of 500 ng.  
Low molecular weight DNA was removed using 0.8X  
AMpure XP purification. A small aliquot (less than ~5% of 
the total volume) of HMW DNA was set aside for 10X Linked 

Read sequencing and the rest of the DNA was sheared to an  
average fragment size of 12 to 20 kb using a Diagenode  
Megaruptor 3 at speeds ranging from 27 to 30. Sheared DNA 
was purified using AMPure PB beads with a 1.8X ratio of beads 
to sample to remove the shorter fragments and concentrate  
the DNA sample. The concentration and quality of the 
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Table 1. Genome data for An. coustani, idAnoCousDA_361_x.

Project accession data

Assembly identifier idAnoCousDA_361_x.2

Species Anopheles coustani

Specimen idAnoCousDA-361_x

NCBI taxonomy ID 139045

BioProject PRJEB53256

BioSample ID ERS10527346

Isolate information female, whole organism

Raw data accessions

PacificBiosciences SEQUEL II ERR9439496

10X Genomics Illumina ERR9356773, ERR9356774, ERR9356775, ERR9356776

Hi-C Illumina ERR9356772

PolyA RNA-Seq Illumina ERR9356777, ERR9356778

Genome assembly

Assembly accession GCA_943734705

Accession of alternate 
haplotype

GCA_943734715

Span (Mb) 269.999

Number of contigs 448

Contig N50 length (Mb) 27.992

Number of scaffolds 420

Scaffold N50 length (Mb) 94.852

Longest scaffold (Mb) 97.602

BUSCO* genome score C:97.4%[S:96.3%,D:1.1%], 
F:0.8%,M:1.8%,n:3,285

* BUSCO scores based on the diptera_odb10 BUSCO set using BUSCO 5.3.2. C=complete  
[S=single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in 
comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/
Anopheles%20coustani/dataset/CALSDV01/busco.

sheared and purified DNA was assessed using a Nanodrop  
spectrophotometer and Qubit Fluorometer with the Qubit 
dsDNA High Sensitivity Assay kit. Fragment size distribution 
was evaluated by running the sheared and cleaned sample on the  
FemtoPulse system once more. The median DNA fragment size 
for Anopheles mosquitoes was 15 kb and the median yield of  
sheared DNA was 200 ng, with samples typically losing about 
50% of the original estimated DNA quantity through the  
process of shearing and purification.

For Hi-C data generation, a separate unrelated mosquito  
specimen (idAnoCousDA-364_x) was used as input material for 

the Arima V2 Kit according to the manufacturer’s instructions 
for animal tissue. This approach of using a sibling was taken  
to enable all material from a single specimen to contribute to 
the PacBio data generation given we were not always able to  
meet the minimum suggested guidance of starting with > 300 
ng of HMW DNA from a specimen. Samples proceeded to the  
Illumina library prep stage even if they were suboptimal  
(too little tissue) going into the Arima reaction.

To assist with gene annotation, RNA was extracted from  
separate whole unrelated insect specimens (idAnoCousDA-54_x  
and idAnoCousDA-63_x) using TRIzol, according to the 
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Figure 3. Genome assembly of An. coustani, idAnoCousDA_361_x.2: Hi-C contact map. Visualised in HiGlass. Chromosomes order: 
3RL, 2RL, X, then remaining samples. Off-diagonal signal in 2L indicates a heterozygous inversion in the individual idAnoCousDA-364_x used 
for Hi-C. The interactive Hi-C map can be viewed at https://genome-note-higlass.tol.sanger.ac.uk/l/?d=TOv9LjXMTYKBy8dC3rTKgQ.

Table 2. Chromosomal pseudomolecules in the genome 
assembly of An. coustani, idAnoCousDA_361_x.2.

INSDC 
accession

Chromosome Size 
(Mb)

Count Gaps

OX030900.2 2RL 94.853 1 3

OX030901.1 3RL 97.602 1 5

OX030902.1 X 19.034 1 4

OX030903.1 MT 0.015 1 0

X Unlocalised 31.162 166 3

Unplaced 27.333 250 13

manufacturer’s instructions. RNA was then eluted in 50 μl  
RNAse-free water, and its concentration was assessed using  
a Nanodrop spectrophotometer and Qubit Fluorometer using 
the Qubit RNA Broad-Range (BR) Assay kit. Analysis of the  
integrity of the RNA was done using Agilent RNA 6000  
Pico Kit and Eukaryotic Total RNA assay. Samples were not 
always ideally preserved for RNA, so qualities varied but all  
were sequenced anyway.

Sequencing
We prepared libraries as per the PacBio procedure and  
checklist for SMRTbell Libraries using Express TPK 2.0 
with low DNA input. Every library was barcoded to support  
multiplexing. Final library yields ranged from 20 ng to 100 ng,  
representing only about 25% of the input sheared DNA.  
Libraries from two specimens were typically multiplexed 
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Figure 4. Alignment dotplot between genome assemblies of An. coustani, idAnoCousDA_361_x.2 and An. atroparvus, AatrE4. 
Visualised in D-Genies. Chromosome arms arrangement is the same for these representatives of Anopheles subgenus. 

on a single 8M SMRT Cell. Sequencing complexes were  
made using Sequencing Primer v4 and DNA Polymerase 
v2.0. Sequencing was carried out on the Sequel II system  
with 24-hour run time and 2-hour pre-extension. A 10X  
Genomics Chromium read cloud sequencing library was 

also constructed according to the manufacturer’s instructions  
(this product is no longer available). Only 0.5 ng of DNA was 
used and only 25–50% of the gel emulsion was put forward  
for library prep due to the small genome size. For Hi-C  
data generation, following the Arima HiC V2 reaction,  
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Figure 5. Sequence similarity heatmap for genome assembly of An. coustani, idAnoCousDA_361_x.2. Produced with StainedGlass, 
visualised in HiGlass. Chromosomes order: 2RL, 3RL, X - followed by the remaining scaffolds. Darker colours represent higher sequence 
similarity, notably at pericentric and intercalary heterochromatin as well as in unassembled X-linked scaffolds.

Table 3. Chromosome arms in the genome assembly of  
An. coustani, idAnoCousDA_361_x.2.

Chromosome Start End Chromosome 
arm

2RL 1 48,615,516 2R 

2RL 49,081,485 94,852,749 2L

3RL 1 57,704,850 3R

3RL 57,761,701 97,602,170 3L

X 1 19,033,788 X

samples were processed through Library Preparation using a NEB  
Next Ultra II DNA Library Prep Kit and sequenced aiming  
for 100x depth. RNA libraries were created using the  
directional NEB Ultra II stranded kit. Sequencing was per-
formed by the Scientific Operations core at the Wellcome Sanger 
Institute on Pacific Biosciences SEQUEL II (HiFi), Illumina  
NovaSeq 6000 (10X and Hi-C), or Illumina HiSeq 4000  
(RNAseq) instruments.

Genome assembly
Assembly was carried out with Hifiasm24; haplotypic dupli-
cations were identified and removed with purge_dups25.  
One round of polishing was performed by aligning 10X  
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Table 4. Software tools used.

Software tool Version Source

hifiasm 0.14 24

purge_dups 1.2.3 25

SALSA2 2.2-4c80ac1 28

longranger align 2.2.2 39

freebayes 1.3.1 26

Genomics read data to the assembly with LongRanger align, 
calling variants with FreeNayes26. The assembly was then  
scaffolded with Hi-C data27 using SALSA228. The assem-
bly was checked for contamination as described previously29. 
Manual curation was performed using gEVAL30, HiGlass31 and  
Pretext32. The mitochondrial genome was assembled using 
MitoHiFi33, which performs annotation using MitoFinder34.  
The genome was analysed and BUSCO scores were gener-
ated within the BlobToolKit environment35. Synteny analysis 
was performed with D-GENIES36. Repetitive sequences were  
visualised with StainedGlass37 and tandem repeats were anno-
tated with ULTRA38. Table 4 contains a list of all software tool  
versions used, where appropriate.

Ethics/compliance issues
The genetic resources accessed and utilised under this project  
were done so in accordance with the UK ABS legislation  
(Nagoya Protocol (Compliance) (Amendment) (EU Exit)  
Regulations 2018 (SI 2018/1393)) and the national ABS  
legislation within the country of origin, where applicable.

Data availability
European Nucleotide Archive: Anopheles coustani genome 
assembly, idAnoCousDA_361_x.2. Accession number  
PRJEB53256; https://identifiers.org/bioproject/PRJEB53256.

The genome sequence is released openly for reuse. The  
Anopheles coustani genome sequencing initiative is part of 
the Anopheles Reference Genomes project PRJEB51690.  
All raw sequence data and the assembly have been deposited  
in INSDC databases. Raw data and assembly accession  
identifiers are reported in Table 1.

Author information
Members of Wellcome Sanger Institute Scientific Operations: 
Sequencing Operations are listed here: https://doi.org/10.5281/ 
zenodo.12165051.

Software tool Version Source

MitoHiFi 2 33

gEVAL N/A 30

HiGlass 1.11.6 31

PretextView 0.1.x 32

BlobToolKit 3.4.0 35

BUSCO 5.3.2 19

D-GENIES 1.4 36

StainedGlass 0.5 37

ULTRA 1.0.0 beta 38
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