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A B S T R A C T

Pollen grains play a critical role in environmental, agricultural, and allergy research despite their
tiny dimensions. The accurate classification of pollen grains remains a significant challenge,
mainly attributable to their intricate structures and the extensive diversity of species. Traditional
methods often lack accuracy and effectiveness, prompting the need for advanced solutions. This
study introduces a novel deep learning framework, PollenNet, designed to tackle the intricate
challenge of pollen grain image classification. The efficiency of PollenNet is thoroughly evaluated
through stratified 5-fold cross-validation, comparing it with cutting-edge methods to demonstrate
its superior performance. A comprehensive data preparation phase is conducted, including
removing duplicates and low-quality images, applying Non-local Means Denoising for noise
reduction, and Gamma correction to adjust image brightness. Furthermore, Explainable AI (XAI)
is utilized to enhance the interpretability of the model, while Receiver Operating Characteristic
(ROC) curve analysis serves as a quantitative method for evaluating the model’s capabilities.
PollenNet demonstrates superior performance when compared to existing models, with an ac-
curacy of 98.45 %, precision of 98.20 %, specificity of 98.40 %, recall of 98.30 %, and f1-score of
98.25 %. The model also maintains low Mean Squared Error (0.03) and Mean Absolute Error
(0.02) rates. The ROC curve analysis, the low False Positive Rate (0.016), and the False Negative
Rate (0.017) highlight the reliability and dependability of the model. This study significantly
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improves the efficacy of classifying pollen grains, indicating an important advancement in the
application of deep learning for ecological research.

1. Introduction

Pollen grains are tiny fragments produced by plants as part of their reproductive process and have diverse shapes. Pollen
morphology often exhibits distinguishing characteristics that may be used to identify the family it belongs to. However, in some cases,
unique properties may be seen at the genus or species level. Pollen’s extensive array of morphological changes makes it significant in
several scientific disciplines since it facilitates the precise identification of the plants from which the pollen grains came [1]. Paly-
nology is the scientific field that specifically studies and analyzes pollen grains, spores, and other minuscule biological particles. This
area has many applications, including paleoclimate reconstruction [2], paleoecology [3], biodiversity [4], allergy research [5], studies
of flora [6], plant reproductive biology [7], petroleum exploration [8], establishing plant taxonomic connections [9], forensic science
[10], and more. The study of pollen grains, including their identification, monitoring, classification, and certification, has attracted
considerable attention because of their many applications. These applications include archeology and honey certification [11], pre-
dicting allergies caused by airborne pollen [12], and food technology [13]. Traditional pollen tests include the analysis of microscopic
images and the identification of pollen grains by comparing them to established species, a process performed by palynologists.
However, the analysis of pollen is a laborious and challenging procedure that necessitates the physical preparation of samples, the
microscopic identification and localization of pollen grains, and ultimately, the quantification of the abundance of various species
within a specific sample. This procedure is distinguished by its lengthy duration, susceptibility to human mistakes, and need for
substantial expertise in many tree species [14]. The categorization of pollen grains has developed into a costly analytical process that
requires the identification and classification of features by a licensed palynologist. Undoubtedly, it continues to be the most exhaustive,
precise, and dependable method. Nevertheless, it impedes scientific progress by wasting significant amounts of time and resources
[15].

Computer science, including techniques in image processing and machine learning analysis, has lately seen significant advances in
several fields of study. This achievement has facilitated a strong partnership between palynologists and computer scientists to tackle
the aforementioned issues. The progress in artificial intelligence, specifically in deep learning, combined with the use of image pro-
cessing, has enabled the execution of complex analysis with remarkable outcomes in several occupations [16]. Advanced Machine
Learning approaches, including deep neural networks, have produced impressive outcomes in addressing many problems across
several domains, all while maintaining cost-effectiveness [17]. A crucial determinant in attaining success in deep learning is the ex-
istence of a significant volume of annotated data. The efficacy of deep learning techniques is directly proportional to the amount of
data, promoting the development of comprehensive datasets across many scientific fields [18]. Research on automated systems for
identifying pollen grains will enable the development of tools that botanists and palynologists may use. These tools only need a normal
bright-field microscope, an image-capturing camera for data collection, and a computer for data processing. This will obviate the need
for specialist equipment. These gadgets possess the capacity to separate pollen grains from the images and assist researchers in
classifying them according to species. The contributions of this research are as follows.

1. Development of a novel deep learning model to precisely and effectively classify pollen grains.
2. Implementation of advanced image processing techniques, such as Non-local Means denoising for noise reduction and Gamma

correction for image improvement.
3. Employing nine metrics for evaluation, including ROC curves, confusion matrices and stratified 5-fold cross-validation to validate

the robustness and broad applicability of PollenNet.
4. Explainable AI (XAI) techniques such as Grad-CAM and Saliency Maps have been applied to enhance the interpretability and

transparency of PollenNet’s decision-making process.

2. Literature review

Over the last several decades, researchers have made significant advancements in creating automated techniques for classifying
pollen grains, a critical aspect of environmental and ecological research [30,31]. Traditional methods, although creative, generally
relied heavily on explicit rule-based algorithms, which often encountered challenges when handling the intricate and nuanced aspects
of pollen grain classification. The incorporation of machine learning and deep learning has profoundly revolutionized this domain.
Through data-driven learning, these advanced algorithms have greatly enhanced the efficiency and accuracy of the classification
process. Machine learning has shown exceptional adaptability and precision, particularly in pollen grain analysis. It has shown
expertise in identifying and categorizing various types of pollen, which is crucial for understanding changes in the environment,
monitoring allergies, and studying plant diversity. This technical innovation has not only accelerated research but also generated
potential for deeper comprehension in the realm of ecological and environmental studies.

Rebiai et al. [19] have introduced a system for classifying and automatically recognizing multi-focal microscopic pollen images.
The framework is meant to be adaptable and employs a strategy similar to brute force to achieve efficiency for different kinds and sizes
of pollen images. First, the best focus is selected using the absolute gradient technique. In the end, a standardized method is used to
extract and choose characteristics, and their classification is assessed using Hierarchical Cluster Analysis (HCA). Manikis et al. [20]
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acquired a classified dataset from the Hellenic Mediterranean University in another research. The collection included 564 microscopic
pollen images. The researchers devised a fully automated analysis procedure with the objective of classifying the images into six
distinct pollen categories. The task of image categorization was executed with the Random Forest (RF) classifier. The estimation of
generalization performance and avoidance of overfitting was conducted utilizing a repeating nested cross-validation (nested-CV)
template. The findings indicated an average accuracy rate of 88.24 %. The dataset supplied by Battiato et al. [21] contains more than
13,000 items. The identification of these items was achieved by a customized segmentation approach used to aerobiological samples to
classify pollen. The data has undergone preprocessing to reduce significant background noise in the digital slide scans. The experiment
is carried out using conventional Machine Learning techniques, such as Random Forest (RF), Support Vector Machines (SVM), Ada-
Boost, and Multilayer Perceptron (MLP). The item’s texture was analyzed using the Local Binary Pattern (LBP) and Histogram of
Oriented Gradient (HOG) methods. The research determines that the RBF-SVM model with HOG obtains the maximum performance
among all the models, with an accuracy of 86.58 %.

Similarly, Grant-Jacob et al. [22] proposed detecting and capturing moving pollen grains by shining three laser beams on them. The
inceptionV3 method was used to differentiate between two unique types of pollen grains and a category representing no pollen based
on their dispersion patterns. The prediction accuracy of this model reached 86 %. In addition, Xu et al. [23] proposed a collaborative
learning strategy to improve the precision of pollen segmentation and classification by using a weakly supervised method. The
detection model is used to discern regions of pollen in the unprocessed images. To improve the precision of the classification, the pollen
grains were partitioned into sections using a pre-trained U-Net model that leverages unsupervised pollen contour features. The
segmented pollen regions were fed into a Convolutional Neural Network (CNN) model to get the activation maps. The categorization
accuracy reaches a maximum of 86.6 %. Azari et al. [24] conducted research that employed the optical characteristics of pollen species
to identify them. The authors evaluated several categorization algorithms in the Python scikit-learn module, such as Logistic
Regression, SVM, Multi-layer Perception, and K-Nearest Neighbors. The authors opted for a Logistic Regression model among the
available choices since it is easier to understand. The investigation yielded memory ratings ranging from 70 % to 85 % for the majority
of classes, except for Corylus, which only attained a recall of 42 %.

In a comparable manner, Punyasena et al. [25] provide an automated methodology for examining pollen. This procedure involves
the automated scanning of slides holding pollen samples, followed by the use of CNN models to detect and classify various kinds of
pollen automatically. The researchers trained the data using the ResNet34 model. The average accuracy of the fine-tuned ResNet34
model, determined by computing the mean of the 25 separate per-class accuracies, is 89.5 %. Similarly, Menad et al. [26] showcased
the use of deep Convolutional Neural Networks (CNN) in categorizing images of pollen grains for the purpose of identification. The
neural network has 8 hidden layers. The first 5 layers comprise convolutional neurons responsible for processing image representa-
tions, while the following 3 levels are fully connected layers used for image classification. The model was subjected to a combined
process of training and testing that spanned 4000 epochs. The model reached its highest level of accuracy, 85.1 %, during the 200th
epoch and consistently maintained this level of performance throughout.

In addition, Romero et al. [27] explain a method for analyzing pollen that utilizes optical super-resolution microscopy and machine
learning to create a more accurate and efficient approach. The scientists developed three convolutional neural network (CNN) clas-
sification models, namely the Maximum Projection Model (MPM), Multislice Model (MSM), and Fused Model (FM). These models were
trained on a dataset including pollen samples from 16 distinct classes. The data was categorized, and the resulting average accuracies
for all models ranged from 83 % to 90 %, with the FM model obtaining the greatest accuracy of 90.30 %. Daunys et al. [28] developed
an approach to train many models, including as ConvNets, RepVGG, ResNet, EfficientNet, Vision transformer (ViT), ViT Compact
Convolutional Transformer (ViT-CCT), and VOLO, for the purpose of classifying distinct kinds of pollen. The efficacy of these models
was then assessed by comparing their outcomes on test sub-samples that were not used during the training phase. The fusion of
RepVGG, ResNet, and VOLO models achieved a peak classification accuracy of 72.4 %.

Our study introduces an innovative approach that utilizes deep learning models to tackle the challenges associated with accurately
classifying images of pollen grains. Traditional methods sometimes had difficulties in dealing with the intricate and irregular nature of
pollen images, resulting in limited accuracy and adaptability. To address these issues, we focused primarily on creating and using a
wide variety of sophisticated models, with a particular emphasis on our distinctive and customized development, PollenNet. Among
the models considered, including AlexNet [33], MobileNetV2 [34], VGG16 [35], and ResNet50 [36], this model was selected for its
exceptional capabilities in image processing and classification. These skills make it particularly suitable for the complex task of cat-
egorizing pollen. PollenNet exemplifies our dedication to advancing the field of pollen analysis. The integrated architecture of this
system is purposefully designed to use the capabilities of its components, leading to outstanding accuracy and efficiency in classifying
various types of pollen. This endeavor is not just focused on improving the precision of classification; it represents significant progress
in the capabilities of pollen grain imaging and analysis. We want to set a new standard in the classification of pollen grains by using
cutting-edge models. This will substantially contribute to environmental and ecological studies by providing crucial insights.

3. Research methodology and strategy

Our study’s methodology involves a methodical approach to data preparation, which ensures the integrity and clarity of infor-
mation fed into the deep learning framework. We begin by conducting thorough data preprocessing, utilizing techniques such as data
extraction and refinement to remove any redundancies and flaws, resulting in a polished dataset. Subsequently, advanced image
processing algorithms, such as non-local means denoising and gamma correction, are applied, which are crucial in reducing noise and
improving image fidelity. After this extensive preprocessing, our proposed model, PollenNet, was implemented, and its subsequent
responsibility was to classify pollen grains. Fig. 1 demonstrates the entire methodology of the proposed study.
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3.1. Data managing and processing techniques

The efficacy of deep learning models heavily depends on the quality of the input data. Considering this, our data preprocessing
phase was meticulously designed to improve the quality of the raw dataset. This study incorporates a sequence of cutting-edge
techniques, commencing with the essential preprocessing steps of data extraction, refinement, denoising, and enhancement. The
original dataset underwent a thorough process of data polishing, during which we systematically identified and eliminated duplicates,
unclear images, and distorted images. This comprehensive refinement was crucial in building an adequate framework for the suc-
ceeding steps of feature extraction, classification, and examining the hidden variables in our data. Furthermore, we employed Non-
local Means to reduce image noise while preserving essential structural details, thus refining the visual clarity of our data. Mean-
while, Gamma Correction was applied to adjust the intensity of the images, allowing our model to detect and learn from the nuanced
elements required for precise classification. These preprocessing steps are crucial in transforming raw data into a clean and reliable
format suitable for sophisticated analytical tasks.

3.1.1. Data extracting
The study used the New Zealand pollen dataset [29], including 19,667 samples of pollen grains. The dataset comprises dark field

microscopic images acquired using the Classifynder system, an autonomous system setup specifically tailored for automated pollen
analysis. Designed to function independently, the system leverages fundamental shape descriptors to pinpoint pollen grains on
standard microscope slides using a low-power objective lens. Upon identification, it engages a high-power objective lens to system-
atically capture high-resolution images of each pollen entity across multiple focal planes, creating a ’Z-stack’. The most sharply defined
sections of the Z-stack are carefully selected and combined into a single, comprehensive composite image. The final image undergoes a
segmentation process to separate the pollen grain from its background. Then, fake coloring techniques are applied to highlight the
depth of information, which improves the level of detail for future classification tasks. Fig. 2 shows the sample images from the pollen
dataset.

Fig. 1. The entire workflow of the proposed model for pollen classification.
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3.1.2. Duplicate image removal
This technique uses the MD5 hash function, a widely used cryptographic hash function that produces a 128-bit (16-byte) hash

value. For any given image I, the MD5 hash function H maps it to a hash value h, as shown in equation (1):

h=H(I) (1)

Since MD5 is a deterministic function, identical images will yield the same hash value, facilitating the identification of duplicates.

Algorithm 1. MD5-Based Duplicate Image Detection.

3.1.3. Repeating image removal
The Structural Similarity Index (SSIM) is employed for repeating image removal. For two images I1 and I2, SSIM is defined as shown

in equation (2):

SSIM(I1, I2)=
(
2μI1 μI2 + C1

)
(2σI1I2 + C2)

(
μ2
I1 + μ2

I2 + C1
)(

σ2
I1 + σ2

I2 + C2
) (2)

Fig. 2. Samples of the 46 classes retrieved from the selected pollen dataset.
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Where μI1 , μI2 are the average pixel values, σ2
I1 , σ2

I2 are the variances and σI1I2 is the covariance of the images. C1 and C2 are constants to
stabilize division with weak denominators.

Algorithm 2. Structural Similarity Index (SSIM) Based Repeating Image Removal Algorithm.

3.1.4. Unclear and distorted image removal
Blurriness is quantified using the variance

(
σ2) of the Laplacian

(
∇2) of an image. The Laplacian of an image I, denoted as ∇2I,

measures its second spatial derivative. The variance of the Laplacian is given by equation (3):

σ2(∇2I
)

(3)

Color variance is assessed by calculating the standard deviation (σ) of the pixel intensities across each color channel. For a color
channel C of an image I, the standard deviation can be derived using equation (4):

σ(C) (4)

A low mean of these standard deviations across all color channels indicates color uniformity, which is often a sign of distortion.
These procedures can be observed in Algorithm 3.

Algorithm 3. Quantitative Assessment of Image Quality Through Blurriness and Color Variance Evaluation.

3.1.5. Non-local means denoising
This study employs the Non-local Means Denoising technique to reduce noise within the pollen image dataset, which is categorized

into 46 groups. This method is chosen for its capability to diminish noise while preserving important image details effectively. The
underlying principle of Non-local Means Denoising is that the value of a pixel can be more accurately estimated by a weighted average
of all other pixel values in the image rather than only considering immediate neighbors. The denoised value D(x) of a pixel at position x
in a noisy image I is determined by the relationship presented in equation (5):

D(x)=
1

C(x)
∑

y∈I
w(x, y).I(y) (5)

Here, w(x, y) represents the weight determined by the similarity between small patches centered around the pixels at x and y,
respectively. Furthermore, C(x) is the normalization factor. Algorithm 4 provides a straightforward overview of the procedural steps
required to execute perform of Means Denoising.
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Algorithm 4. Efficient Implementation of Non-local Means Denoising for Enhanced Image Clarity.

3.1.6. Gamma correction
Gamma correction is a crucial non-linear process in image processing used to encode and decode the brightness, also known as

tristimulus values in images. The image brightness is adjusted by altering pixel intensity values, as described by the power-law formula
in equation (6).

Icorrected = Iγoriginal (6)

Here, ‘Ioriginal’ represents the original intensity of a pixel, γ denotes the gamma value, and Icorrected is the gamma-corrected intensity of
the pixel. The adjustment of the gamma value enables systematic supervision of image luminance. When the value of γ is less than 1,
the image is intensified, thereby enhancing visibility in regions with lower brightness. On the contrary, when the value of γ surpasses 1,
the image exhibits a decrease in brightness, hence enhancing the distinction in areas characterized by increased luminosity. Algorithm
5 represents the procedure of gamma correction.

Algorithm 5. Gamma Correction Procedure on pollen images.

Fig. 3 displays the original image, the image after preprocessed, and a third image that emphasizes the enhanced areas. The
‘Enhanced Area’ image will augment the visibility of the differentiations, especially in regions where noise has been effectively
reduced and enhanced the features. The histogram compares the distribution of pixel intensities across the channels before and after
image processing, illustrating the effect of enhancement techniques on image contrast and clarity.

3.1.7. Dataset split
This study initially divided the dataset into a training and validation set (90 %) and a testing set (10 %) to ensure robust model

evaluation. The total dataset consisted of 19,612 images after applying various preprocessing steps, including removing unclear and
distorted images, duplicate images, and repeating image techniques. This resulted in a final dataset distribution of 17,672 images for
training and validation and 1940 for testing.

To further ensure the robustness of the model evaluation, stratified 5-fold cross-validation [42] was applied to the training and
validation set. This method involves dividing the dataset into five equally sized folds while maintaining the class distribution in each
fold. Each iteration uses four folds for training and one for validation. This process is repeated five times, with each fold being used
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once as the validation set. This approach helps rigorously evaluate and tune the model, ensuring that the class distribution remains
consistent across all folds and reducing the risk of overfitting. The stratified 5-fold cross-validation ensures the proposed model is
tested on all data points while preserving the proportion of classes in each fold. This method comprehensively evaluates the model’s
performance, allowing for fine-tuning of hyperparameters and improving generalization. Fig. 4 depicts the distribution of the final
datasets, illustrating the balanced allocation of images across the training, validation and test sets.

3.2. Proposed model (PollenNet) structure and design

The PollenNet model is a customized Convolutional Neural Network (CNN) particularly developed for classifying pollen grains
based on microscopic images. The system architecture is designed to precisely capture the intricate characteristics of pollen grains,
which are crucial for proper classification.

The network accepts input images I of shape 128 × 128 × 3. The model includes four convolutional blocks, each comprising a
convolutional layer, a max pooling layer, and batch normalization. The first convolutional block, applies 32 filters F1, each of size 3 ×

3, to the input image I using the convolutional operation, as given in equation (7):

C1 =ReLU (I*F1 + b1) (7)

Where * denotes the convolutional operation, b1 is the bias vector, and ReLU is the activation function. Furthermore, reduces the
spatial dimensions by applying a 2 × 2 max pooling operation. Then, normalizes the output of the pooling layer.

Subsequent convolutional Blocks (2nd, 3rd and 4th), follow the similar pattern with the increasing number of filters F2, F3, F4 and
include dropout layers with a rate of 0.5 after the 2nd and 4th blocks. The output and final convolutional block is flattened into a single
vector V, transforming the 2D feature maps into 1D feature vector.

Fig. 4. Detailed overview of the final pollen dataset.

Fig. 3. Demonstrates the original image, its preprocessed version, and the enhancement map alongside a histogram detailing the pixel intensity
adjustments across the channels.
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Then, the flattened vector V is passed through dense layers. The first dense layer transforms the vector, as represented in equation
(8):

D1 =ReLU(Wd1V+ bd1) (8)

Where Wd1 and bd1 are the weights and biases of the dense layer, respectively.
The final dense layer with the SoftMax activation function classifies the image into 46 categories. To convert the linear output

(logits) into a probability distribution, the logits are computed by applying a linear transformation to D1, as indicated in equation (9):

Logits=WoD1 + bo (9)

Where Wo and bo are the weights and biases of the output layer.
The SoftMax function is then applied to these logits to obtain the probability distribution, as illustrated in equation (10):

O= Softmax (Logits) (10)

The SoftMax function itself is mathematically defined by equation (11):

Softmax (xi)=
exi

∑N
j=1exj

(11)

Where xi is the ith logit corresponding to the ith class, N is the total number of classes, and the index j iterates over each class in the
output layer, ensuring that the dominator is the sum of the exponential values of all class logits. Algorithm 6 illustrates the detailed
architecture of the proposed model.

Algorithm 6. PollenNet for Pollen Grain Classification.

In the Pollen Net model, each convolutional block is characterized by an increasing number of filters, denoted by Fk, where k
represents the block index. The quantity of filters doubles with each subsequent convolutional block to capture more complex features.
The output of each block is represented by Ck, with the subscript indicating the block’s sequential position in the network. The
convolutional layers are together with the ReLU activation function, max-pooling operations for spatial dimension reduction, and
batch normalization to standardize the inputs to each layer. Additionally, dropout is strategically applied after 2nd and 4th blocks to
prevent overfitting by randomly zeroing a subset of features.

Following the progression through the convolutional blocks, the final output is flattened into a one-dimensional vector V, providing
a format suitable for dense layer processing. The first dense layer, characterized by the weights Wd1 and biases bd1, transforms the
vector with a ReLU activation function to create D1, a representation that encapsulates the learned high-level features. The model then
computes the logits, a set of raw prediction values that are not yet normalized, using the weights Wo and biases bo of the output layer.

The final step in classification is the application of the softmax function, which converts the logits into a normalized probability
distribution O over the possible pollen categories, ensuring that the sum of probabilities for all classes equals one. This is achieved by
exponentiating each logit and dividing by the sum of all exponentiated logits, as encapsulated by the softmax operation in the network.
Table 1 illustrates the detailed specifications of the proposed model PollenNet.

Fig. 5 portrays the detailed architecture of the proposed model. The model comprised four convolutional blocks, each comprising a
Conv2D layer with a ReLU activation function. Following the convolutional operations, max-pooling layers are employed to reduce
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spatial dimensions and parameter counts, thus increasing the computational efficiency. Furthermore, Dropout layers are strategically
placed after specific convolutional layers to reduce overfitting by randomly deactivating a fraction of neurons during training. Then,
flattening the multidimensional convolutional features into a one-dimensional vector is a crucial step before the classification process.
The flattened vector is then fed into a dense layer with ReLU activation followed by a dropout layer to enforce the regularization
further. The final dense layer uses the softmax activation function to distribute the probabilities across 46 distinct pollen categories
where each neuron corresponds to one category.

4. Result and analysis

This section presents a comprehensive overview of the study’s findings. It begins with a performance analysis of the applied models,
highlighting their effectiveness and comparative advantages. The complexity of the model’s predictive abilities is further explored
through confusion matrices and ROC curves, serving as illustrative measures of classifier performance. The assessment approach is
supported by a robust stratified 5-fold cross-validation process, ensuring the results’ reliability and generalizability. Explainable AI
(XAI) is employed to provide clarity on the interpretative aspects of model predictions, offering a clear perspective on the underlying
decision-making processes. We deliberately selected four pre-trained distinct models in our analysis: AlexNet, MobileNetV2, VGG16,
and ResNet50. The models were chosen based on their distinct abilities and proficiencies in the domains of image processing and
classification. The proposed PollenNet model, specifically developed for this work, was intended to tackle the unique challenges of
categorizing pollen grain images. The selection of AlexNet, an early deep learning model, was based on its well-documented effec-
tiveness in image recognition tasks, which serves as a dependable benchmark for comparison. The MobileNetV2 model, known for its
effectiveness and speed, was chosen to assess performance in a resource-constrained setting. The decision to include VGG16 was based
on its renowned characteristics of simplicity and depth and its remarkable capacity to record visual textures and patterns. Ultimately,
ResNet50, which incorporates a residual learning framework, was selected to evaluate the effectiveness of more complex network
architectures in this particular domain. The integration of these models provided a comprehensive analysis of several architectural
techniques, extending from traditional to innovative, in the field of pollen grain image classification [32]. By implementing a varied

Fig. 5. Schematic representation of the PollenNet architecture models for grain classification, detailing the convolutional, pooling, dropout and
dense layer.

Table 1
Detailed layer-by-layer architecture and parameter specification of the PollenNet convolutional neural network model for pollen grain image
classification.

Layer (Name) Stride & Padding Output Shape Karnel Activation Function Dropout Parameters

Input Layer – 128 × 128 × 3 – – – 0
Conv 1 (Conv2D) Stride: 1, Padding: Same 128 × 128 × 32 3 × 3 ReLU – 896
Max Pooling 1 Stride: 2, Padding: Valid 64 × 64 × 32 2 × 2 – – 0
Conv 2 (Conv2D) Stride: 1, Padding: Same 64 × 64 × 64 3 × 3 ReLU – 18,496
Max Pooling 2 Stride: 2, Padding: Valid 32 × 32 × 64 2 × 2 – – 0
Conv 3 (Conv2D) Stride: 1, Padding: Valid 30 × 30 × 128 3 × 3 ReLU 0.5 73,856
Max Pooling 3 Stride: 2, Padding: Valid 15 × 15 × 128 2 × 2 – – 0
Conv 4 (Conv2D) Stride: 1, Padding: Same 15 × 15 × 256 3 × 3 ReLU 0.5 295,168
Max Pooling 4 Stride: 2, Padding: Valid 7 × 7 × 256 2 × 2 – 0.5 0
Flatten Layer – 12544 – – – 0
Dense (Fully Connected) – 512 – ReLU 0.5 6423040
Dense (Output) – 46 – softmax – 23598
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and comprehensive method, we successfully evaluated and compared many techniques, augmenting the scope and comprehensiveness
of our study’s findings and conclusions.

The research encompassed five algorithms, including the proposed PollenNet model and four existing transfer learning models. The
algorithms were implemented to carry out the crucial task of detecting and classifying images of pollen grains. The classification of
pollen grain images is essential in several scientific and environmental contexts, as it significantly influences the understanding of
pollen-related allergies, the monitoring of ecological changes, and the progress of agriculture and climatology. Accurately identifying
and categorizing pollen grains is essential for monitoring plant diversity and may aid in predicting allergic reactions, significantly
impacting public health and environmental studies. To fully evaluate these models, each one underwent intensive training for 100
epochs, and their performance was meticulously documented at every stage. The rigorous training procedure was essential for
accurately evaluating the ability of each model to analyze and classify complex pollen grain images, which display diverse
morphological characteristics. The effectiveness and efficiency of these models in classifying pollen grains were evaluated using
certain performance measures, calculated using equations (12)–(20). This approach provides a comprehensive comprehension of the
performance of each algorithm when used for the complex task of analyzing pollen grain images. This work is crucial for advancing our
understanding of environmental and ecological processes.

4.1. Environmental setup

The deep learning models used in our study were principally developed using the TensorFlow (version 2.0) frameworks and the
Keras library (version 2.10.0), both of which were coded in Python version 3.7. We used the Seaborn and Matplotlib tools to enhance
data visualization, which is renowned for creating detailed and intuitive graphical representations of our results. The computational
evaluation of these models was conducted utilizing a system equipped with high-performance computing capabilities. The machine
used an AMD Ryzen 7 CPU operating at a clock speed of 3.90 GHz. In addition, it had 32 GB of RAM, providing enough capacity for
processing large datasets and complex calculations. We used an AMD Radeon RX 580 series GPU for graphic processing, which confers
significant benefits for deep learning tasks. To ensure the stability and compatibility of all software components used in our inves-
tigation, we conducted the whole operation inside a Windows 10 environment.

Fig. 6. Performance comparison among all applied models for pollen grain classification.
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4.2. Evaluation metrics

We used a range of statistical measures, including Accuracy, Specificity, Recall, Precision, False Positive Rate (FPR), F1-score, Mean
Squared Error (MSE), and Mean Absolute Error (MAE), to thoroughly evaluate our model’s performance in classifying pollen images
[37].

The model’s accuracy is defined as the ratio of accurate predictions to the total number of predictions produced.

Accuracy=
TP+ TN

TP+ FP+ TN+ FN
(12)

Here, TP = True Positives, TN = True Negatives, FP = False Positives and FN = False Negatives.
Denotes the proportion of pertinent instances out of the total instances that were predicted as positive by the model. It offers

valuable insight regarding the accuracy of positive predictions.

Precision=
TP

TP+ FP
(13)

The parameter denotes the percentage of true positive instances that the model successfully predicted, thereby showcasing its
capability to identify positive cases.

Recall=
TP

TP+ FN
(14)

This metric quantifies the true negative rate, which serves as an indicator of the model’s efficacy in precisely classifying the
negative instance among all other instances.

Specificty=
TN

TN+ FP
(15)

The percentage of negative instances that are erroneously categorized as positive.

FPR=
FP

FP+ TN
(16)

Achieves harmony between Precision and Recall through their integration into a single metric. Additionally, this metric evaluates
the capability of a model to distinguish between positive and negative data.

F1 − score = 2 ×
Precision× Recall
Precision+ Recall

(17)

The FNR is a metric that measures the proportion of actual positive instances that were incorrectly classified as negative by the
model.

FNR=
FN

FN+ TP
(18)

The difference between the estimator and what is estimated is calculated as the average of the squares of the errors or deviations.

MSE=
1
n
∑n

i=1
(yi − ŷi)2 (19)

Fig. 7. Demonstrates the (a) accuracy and (b) loss of the proposed PollenNet model.
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Where yi is the actual value, ŷi is the predicted value and n is the number of observations.
Evaluates the average magnitude of the errors in a set of predictions without considering their direction. It’s the mean over the test

sample of the absolute differences between prediction and actual observation, where all individual differences have equal weight.

MAE=
1
n
∑n

i=1
|yi − ŷi| (20)

4.3. Performance evaluation of all applied models

This study thoroughly evaluated five distinct models to determine their efficacy in precisely classifying pollen images with high
dependability. Fig. 6 displays the performance of all the models. After analyzing the models ’PollenNet,’ ’AlexNet,’ ’MobileNetV2,’
’VGG16,’ and ’ResNet50,’ we have identified significant attributes and benefits in their performance metrics. PollenNet demonstrates
outstanding accuracy, earning an impressive test accuracy of 98.45 %, validation accuracy of 98.60 % and a precision of 98.20 %.
PollenNet’s exceptional precision is shown in its ability to classify positive instances when accurately categorizing pollen grains.
Furthermore, the impressive specificity of 98.40 % showcases its strong ability to precisely identify negative samples, which is essential
for reducing the occurrence of false positives in critical classification tasks.

In comparison, the other models, such as AlexNet, MobileNetV2, VGG6 and ResNet50, demonstrated varying but typically lower
performance levels. AlexNet, despite showing a decent recall of 74.30 %, lacked test accuracy at 74.80 %, indicating problems in
consistently detecting true positive instances. Furthermore, MobileNetV2 and VGG6, with test accuracies of 81.60 % and 72.68 %,
respectively and moderate F-scores, exhibited a balance between precision and recall but failed to match PollenNet’s balanced and
high-performance results. ResNet50, achieving test accuracy of 73.85 % and specificity of 74.10 %, demonstrated the lack of capacity
during pollen grain classification. All models have F1 scores, demonstrating an appropriate compromise between accuracy and recall.
Among them, PollenNet has the highest score of 98.25 %. The models demonstrate different performance levels when assessed using
Mean Squared Error (MSE) and Mean Absolute Error (MAE) as measures of error rates. PollenNet has a Mean Squared Error (MSE) of
0.03 and a Mean Absolute Error (MAE) of 0.02, indicating a significant degree of precision in its predictive capabilities. PollenNet
excels in the crucial aspect of the False Positive Rate, with a very low FPR of 0.016 and False Negative Rate (FNR) of 0.017. This
demonstrates its effectiveness in decreasing incorrect positive classifications.

PollenNet stands out because of its remarkable accuracy, precision, and low false positive rate. These specific features make it ideal
for the complex and precise task of classifying pollen grains. While the different models have distinct advantages, they also have areas
that might be improved, such as reaching an acceptable balance between accuracy, recall, and reducing error rates. Fig. 7 illustrates
the performance metrics of the proposed PollenNet model during the training and testing phase. Subfigure (a) depicts the model’s
training and test accuracy over 100 epochs, displaying an upward trend in accuracy that eventually levels off at a high level, indicating
the model’s effective learning from the data. Subfigure (b) illustrates the training and test loss. The training loss decreases rapidly and
maintains a low value as the epochs of number increase, indicating effective learning by the model. The test loss also decreases initially
but begins to fluctuate as the epoch progresses, a typical occurrence during performance on new, unseen data.

These results provide valuable insights into each model’s pros and cons in identifying pollen grain images. By analyzing these
patterns, we may get a more thorough knowledge of the model’s ability to distinguish distinct types of pollen. This component is
crucial in environmental monitoring, allergy prediction, and plant biodiversity studies. Furthermore, Table 2 summarizes the per-
formance metrics of the five models used in the investigation. Here, the training accuracy is denoted as ‘T_Acc’, validation accuracy is
denoted as ‘V_Acc’ and test accuracy is denoted as ‘T_Ac’.

The results of our study demonstrate that the PollenNet model showed significant promise, as it successfully categorized images of
pollen grains. PollenNet had an impressive test accuracy rate of 98.45 %, combined with a precision of 98.20 %, indicating its strong
ability to categorize various types of pollen precisely. The model demonstrated a remarkable degree of specificity, achieving a rate of
98.40 %, and a recall rate of 98.30 %, indicating its ability to reliably classify positive instances while minimizing the incidence of false
negatives. The F1-score, a metric that captures the compromise between accuracy and recall, was calculated to be 98.25 %, showing
the model’s overall robustness. When analyzing error measurements, PollenNet demonstrated outstanding accuracy with a low Mean
Squared Error (MSE) of 0.03 and Mean Absolute Error (MAE) of 0.02. The model exhibited an impressively low False Positive Rate
(FPR) of 0.016 and a False Negative Rate (FNR) of 0.017, indicating its exceptional accuracy in accurately classifying and differen-
tiating various pollen types. Throughout the 5-fold cross-validation process, PollenNet excelled consistently, showcasing its robustness
and reliability. Eventually, the model outperformed all applied pre-trained models in the comparison and demonstrated its superiority
in the given classification task.

Table 2
Final overview of findings of all applied models for pollen image classification.

Model T_Acc V_Acc T_Ac Precision SPE Recall F1-S MSE MAE FPR FNR

PollenNet 99.50 % 98.60 % 98.45 % 98.20 % 98.40 % 98.30 % 98.25 % 0.03 0.02 0.016 0.017
AlexNet 80.47 % 75.20 % 74.80 % 73.90 % 74.80 % 74.30 % 74.10 % 0.23 0.15 0.26 0.25
MobileNetV2 84.91 % 82.10 % 81.60 % 81.10 % 82.00 % 81.60 % 81.35 % 0.19 0.12 0.19 0.18
VGG16 77.35 % 73.00 % 72.68 % 72.25 % 73.10 % 72.50 % 72.37 % 0.25 0.16 0.28 0.29
ResNet50 79.50 % 74.00 % 73.85 % 73.50 % 74.10 % 73.70 % 73.60 % 0.24 0.16 0.27 0.26
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Fig. 8. Confusion Matrix for PollenNet model Classification. The matrix illustrates the prediction distribution across actual classes with a pro-
nounced diagonal indicating a high rate of correct classifications and minimal off-diagonal entries signifying few misclassifications.

Fig. 9. Analysis of ROC curve and AUC scores for multi-class classification of the proposed model where each curve represents one of the classes.
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4.4. Confusion matrix and ROC curve

During the testing phase of our research, we evaluated the effectiveness of the models by utilizing confusion matrices to analyze the
patterns of accurate categorization and inaccurate categorization for images of pollen grains. The models were assessed using a
comprehensive test dataset comprising 1940 samples across 46 distinct classes of pollen. Fig. 8 presents the confusion matrix of the
PollenNet model, which provides a detailed summary of its classification performance for the various types of pollen grains.

The axes of the confusion matrix correspond to the actual and predicted class labels. Diagonal entries in the matrix represent
correctly classified samples, highlighted by darker shades, while off-diagonal cells represent instances of misclassification, with lighter
shades indicating a lower frequency of occurrences. A prominent dark diagonal line is observed in the matrix, reflecting PollenNet’s

Fig. 10. Each graph (a–e) represents one of the 5-folds, showing training and validation accuracy over epochs.
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high accuracy in correctly classifying the majority of samples.
For instance, the class “Kunzea” had 169 test samples, of which 166 were correctly classified, reflecting the model’s high precision

for this class. Similarly, “Lepto” had 169 test samples, with 166 correctly classified. The “Citrus” class had 117 test samples, and the
proposed model accurately identified 115. Classes such as “Alectryon”, with 31 samples, and “Astelia”, with 81 samples, also show
high correct classification rates, further emphasizing the model’s precision and recall capabilities. These high numbers and the di-
agonal for most classes signify PollenNet’s robustness in correctly identifying pollen grains. The lighter shades in off-diagonal cells
indicate fewer misclassifications, such as in the “FuscosporaFusca” and “Pseudopanax” classes, where the misclassification was
negligible. Overall, the confusion matrix shows that PollenNet achieved an impressive accuracy rate of 98.45 %. This high accuracy is
crucial for applications requiring precise identification of pollen grains, underscoring PollenNet’s effectiveness and reliability.

Fig. 9 shows the comprehensive ROC curves for the PollenNet model, evaluating its classification performance across 46 different
pollen grain classes. Each curve represents the trade-off between the True Positive Rate (Sensitivity) and False Positive Rate (1-

Fig. 11. Training and validation loss across 5-fold (a–e) in PollenNet’s cross-validation.
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Fig. 12. ROC curves and AUC scores across stratified 5-fold (a–e) cross-validation for PollenNet.

Table 3
Performance metrics for proposed PollenNet across five validation folds.

Model T_Acc V_Acc Precision SPE Recall F1-S FPR FNR

Fold 1 98.68 % 96.00 % 95.50 % 95.70 % 95.60 % 95.55 % 0.05 0.04
Fold 2 98.90 % 97.00 % 96.50 % 96.60 % 96.60 % 96.55 % 0.04 0.03
Fold 3 98.00 % 95.00 % 94.10 % 94.30 % 94.20 % 94.15 % 0.06 0.05
Fold 4 98.75 % 96.50 % 95.85 % 96.00 % 95.90 % 95.88 % 0.04 0.04
Fold 5 98.99 % 97.20 % 96.70 % 96.80 % 96.75 % 96.72 % 0.03 0.03
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specificity) for a specific class. Particularly, classes such as Betula, Manoao, and Metrosideros exhibit exceptionally high AUC values of
1.00, indicating perfect or near-perfect discrimination between positive and negative instances. Other classes, including Actinidia and
Citrus, display slightly lower AUC values, such as 0.99, reflecting strong but slightly less than perfect classification performance.

The AUC values are remarkably consistent, with most classes having AUCs close to 1.00, showcasing the model’s robustness. The
lower AUC values, such as 0.98 for FuscosporaFusca and Santalum, were observed, still indicating a strong performance. The diagonal
dashed line in the plot represents the performance of a random classifier, with a 50 % chance of correct classification. The distance of
the PollenNet curves from this line underscores its superior performance. The ROC analysis in this figure further confirms PollenNet’s
ability to accurately distinguish between various pollen grains accurately, maintaining high precision and recall across a diverse set of
classes. This detailed evaluation of class-specific AUC values highlights the model’s effectiveness in multi-class classification tasks,
ensuring reliable identification across all categories.

4.5. Stratified 5-fold cross-validation

Fig. 10 represents the Stratified 5-fold cross-validation accuracy of PollenNet. The figure illustrates the training and validation
accuracy of PollenNet across five distinct cross-validation folds. Recent studies have employed the method of monitoring each fold
during k-fold cross-validations by tracking training and validation accuracy and losses across epochs [43,44]. This approach is widely
used in deep learning research to gain deeper insights into the model’s learning dynamics and ensure robust performance evaluation
across different data splits. Each subplot (a-e) corresponds to a separate fold, depicting the model’s performance over 100 training
epochs. The blue lines represent the training accuracy, while the orange line denotes validation accuracy for each fold. The plots
collectively indicate a consistent achievement of high accuracy, with training and validation accuracies maintaining above 98 % and
95 %, respectively, across all folds. This performance pattern underscores the robustness and generalizability of PollenNet, demon-
strating its capacity to maintain high predictive accuracy even with varying subsets of data.

Fig. 11 depicts loss metrics during the stratified 5-fold cross-validation of PollenNet. Subfigures (a-e) illustrate the training and
validation loss as a function of epochs for each fold. The red line represents the training loss, decreasing steadily as the model learns
from the data. The blue line depicting the validation loss shows an overall drop with some fluctuation, indicating that the model is
encountering and adjusting to new patterns within the validation set. The consistency of this pattern across all 5-folds demonstrates

Fig. 13. Grad-CAM heatmaps demonstrate PollenNet’s accurate feature detection across various correctly classified pollen grains.
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PollenNet’s effective learning and generalization capability across folds under the cross-validation framework.
The Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) scores serve as essential indicators in the

attempt to gain a deep comprehension of a model’s performance across different classifications. Fig. 12(a–e) exhibits the ROC curves
and AUC scores for each fold in the 5-fold cross-validation of PollenNet. The ROC curves for Fold 1 through Fold 5 are displayed, with
AUC values of 0.96, 0.97, 0.95, 0.96, and 0.97, respectively. Each curve, accompanied by its shaded area, indicates the model’s ability
to classify different classes across all folds correctly. The shaded areas under each curve visually represent the AUC, providing an
intuitive understanding of the model’s performance. The curves trending towards the upper left corner confirms the higher true
positive rates and low false positive rates, signifying the model’s reliable performance. The consistency in the AUC scores across all
folds demonstrates PollenNet’s robustness and effectiveness in accurately handling the diverse and complex nature of the dataset
despite any class imbalances or morphological variations. These results affirm the model’s generalizability and ability to maintain high
predictive accuracy across varying validation sets.

Furthermore, Table 3 provides a comprehensive overview of PollenNet’s performance across five validation folds, illustrating the
model’s consistency and robustness. Each fold demonstrates high training accuracy (T_Acc), ranging from 98.00 % to 98.99 %,
indicating the model’s effectiveness in learning from the training data. The validation accuracy (V_Acc) range of 95.00 %–97.20 %
demonstrates the model’s robust generalization capabilities on unseen data. Precision values, which measure the proportion of
relevant instances correctly identified, remain consistently high between 94.10 % and 96.70 %, reflecting the model’s accuracy in
retrieving relevant data. Specificity (SPE), which evaluates the model’s ability to identify negative results correctly, is uniformly high
across all folds, underscoring the model’s efficacy in minimizing false positives. Recall values ranging from 94.20 % to 96.75 % further
indicate the model’s strong capability to identify relevant instances. The F1-Score (F1-S), which balances precision and recall, is
consistently high across all folds. Additionally, the False Positive Rates (FPR) and False Negative Rates (FNR) are low, reinforcing the
model’s effectiveness in minimizing errors. Overall, the results demonstrate that PollenNet performs reliably across different folds,
maintaining high accuracy, precision, and low error rates, which underscores the model’s robustness in classification tasks.

5. Explainable AI (XAI) for model prediction analysis

In the field of Explainable AI (XAI) [39], visualization techniques such as Gradient-weighted Class Activation (Grad-CAM), saliency
maps, and misclassification analysis play a pivotal role in demonstrating the internal mechanisms of neural networks such as

Fig. 14. Saliency maps highlight the focus area utilized by PollenNet to successfully classify different pollen grain classes.

F.M.J.M. Shamrat et al. Heliyon 10 (2024) e38596 

19 



PollenNet. Grad-CAM generates heatmaps that reveal the region’s most influence on the model’s predictions, while saliency maps
detail the specific pixels that capture the model’s attention. In addition, carefully examining misclassified images may indicate subtle
anomalies in the dataset or identify areas where the model may benefit from further training. Together, these methods enhance our
understanding of PollenNet’s decision-making process.

5.1. Grad-CAM analysis for visualizing decision-making patterns

Fig. 13 depicts Grad-CAM [38,40] visualization of PollenNet’s classifications. Displayed heatmaps for correctly classified pollen
grains by PollenNet, indicating the image’s most influential areas for the classification. The levels from blue to red on the heatmaps
represent the model’s focus from least to most influential, with red areas being key to the correct class identification. These visuali-
zations confirm PollenNet’s capability to successfully recognize and leverage distinct features for each class, such as the central pollen
structure in ‘FucosporaFusca’ and the defining edges in ‘Kunzea’. The consistency in PollenNet’s attention to relevant features across
various classes underlines its exceptional performance in comprehensive feature extraction for accurate pollen image classification.

5.2. Saliency map analysis for feature visualization

Fig. 14 displays the saliency maps [41] generated by PollenNet for the purpose of classifying pollen grain images. The presented
saliency maps highlight the precise areas inside each image that were identified as the most significant by PollenNet during the
categorization procedure. Saliency maps are a form of visual explanation that illuminates the gradient of the model’s attention, where
brighter regions indicate a higher contribution to the model’s predictive conclusion. These particular maps correspond to various
classes of pollen grains where the model’s focus is clearly on identifying specific textural and structural features that are crucial for
recognizing each category. The saliency maps produced by PollenNet effectively highlight important regions, demonstrating its
advanced ability to discover distinctive features and accurately distinguish across intricate categories in the dataset.

6. Study limitations (interpreting model misclassifications with Grad-CAM)

Fig. 15 illustrates the use of Grad-CAM to identify PollenNet’s areas of focus that resulted in misclassification. Despite achieving an
impressive accuracy in training, testing and validation the PollenNet occasionally misinterprets images. Each subfigure, with a red
circle, depicts an input image superimposed with a heatmap that outlines the regions deemed critical by PollenNet during the pre-
diction phase. The warmer colors highlight segments that significantly influenced PollenNet’s decision-making process. The model’s
significant accuracy across a diverse dataset with 46 classes and more than 17000 images indicates that the misclassification shown
may be attributable to nuances within the dataset. Such nuances could intrinsically class ambiguities, subtle variations within class
instances or imbalances in representative features. These visual examinations imply that, while PollenNet demonstrates exceptional
performance, there remains an opportunity for further fine-tuning and dataset augmentation to address these edge cases, thereby
enhancing the boundaries of its classification capabilities.

7. Conclusions

The study presents ’PollenNet’ as a novel approach for categorizing images of pollen grains. It exhibits exceptional accuracy (98.45
%) and effectiveness. The instrument has substantial promise in ecological research, particularly in environmental studies and

Fig. 15. Grad-CAM heat maps on specific misclassified images by PollenNet showing regions impacting its predictions.
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agricultural applications, as shown by its accuracy, specificity, recall, and F1 score. The minimal error statistics provide further
validation of its reliability. PollenNet’s future possibilities include augmenting the dataset to encompass a broader spectrum of pollen
varieties and exploring novel image processing techniques. These efforts have significant potential to enhance PollenNet’s depend-
ability and usefulness. Additional investigation might also focus on the use of PollenNet in real-world scenarios to aid with agricultural
planning and allergy forecasting. Furthermore, the methodologies used in this study have the potential to be adapted for similar
challenges in several scientific disciplines, hence promoting interdisciplinary progress. PollenNet is a significant advance in the
classification of pollen, facilitating broader scientific inquiries and practical applications. This underscores the pivotal significance of
machine learning in advancing environmental and botanical studies.
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