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disease progression [6]. The complexity of tau cleavage 
and PTMs emphasizes the significance of epitope selec-
tion, especially in the context of low brain penetration of 
antibodies, to effectively bind seed-competent forms and 
counteract propagation.

To investigate this issue, the potency of various anti-
tau antibodies under clinical trials was compared using 
sarkosyl-insoluble fractions isolated from AD patient 
brains. Inhibition of tau seeding by antibodies targeting 
the N-terminus (antibody A), mid-region (antibody B), 
and MTBR (antibody C and D) (Fig. 1a and table S1) was 
tested using tau fluorescence resonance energy transfer 
(FRET) cells. Initial study using fraction from a single 
patient to determine adequate concentration yielded 
dose-dependent inhibition of tau seeding with anti-tau 
antibody treatment. Cells treated with anti-acetylated 
lysine-280 (acK280) antibody, antibody C, showed the 
most significant decrease in FRET signal at 1 µg/mL (Fig. 
S1a). Using this concentration as baseline, subsequent 
tests with insoluble tau fractions from the entorhinal cor-
tex (n = 4) or hippocampus (n = 5) of AD patients revealed 
that antibody C induced a statistically significant inhibi-
tory effect on tau seeding (Fig.  1b and c, and table S2). 
With the entorhinal cortex, both antibodies targeting the 
MTBR, C and D, inhibited tau seeding, with antibody 
C showing superior effects (Fig.  1b). With the hippo-
campus, only antibody C was effective (Fig. 1c). Further 
analysis by Braak stages showed that only antibody C 
significantly reduced tau seeding in both Braak 3–4 (Fig. 
S1b) and Braak 5–6 (Fig. S1c). These results indicate that 
the anti-tau antibody targeting acK280 on MTBR was 
most potent in inhibiting tau seeding from AD brain 
extracts.

To the Editor,
Tauopathies, including Alzheimer’s disease (AD), are 

characterized by the accumulation of abnormal tau pro-
tein deposits in the brain. Tau exists in multiple het-
erogenous forms of various polypeptide fragments by 
enzymatic cleavage and post-translational modifications 
(PTMs) [1]. Insights from clinical trials of anti-β-amyloid 
(Aβ) antibodies highlight the importance of epitope 
selection, as targeting Aβ protofibrils or N-terminus 
influenced both target engagement and downstream 
pathogenic processes [2]. Initially, anti-tau antibodies 
targeting the N-terminus were developed because these 
N-terminal fragments predominated in AD cerebrospinal 
fluid (CSF) and were implicated in tau spread [3]. How-
ever, these trials ultimately failed [4], aligning with ear-
lier findings that indicated insufficient inhibition of tau 
seeding [5]. Although other epitopes, such as mid-region, 
microtubule-binding region (MTBR) and C-terminus, 
are being explored, the most effective target remains 
unclear. Certain tau fragments are suggested to play criti-
cal roles in tau pathology development [1] and studies in 
the interstitial fluid (ISF) of tau transgenic mice brains 
show that secreted tau is primarily truncated during 
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Fig. 1 (See legend on next page.)
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Since tau acetylation is proposed to contribute to accel-
erated tau aggregation and AD pathology [7] and showed 
similar FRET signal to AD brain extracts (Fig. 1c), acety-
lated full-length tau (acTau) was used to illustrate the dif-
fering effect of anti-tau antibodies on tau seeding of AD 
brain extracts, their effect on acTau seeding and aggre-
gation was evaluated with FRET assay and Thioflavin T 
(ThT) assay. While anti-tau antibodies reduced ThT sig-
nal in dose-dependent manner, antibody C showed the 
greatest inhibition of tau aggregation, reaching near to 
full removal of amyloid formation, albeit at high concen-
tration of 1000 µg/mL (Fig. 1d). Additionally, tau seeding 
showed a treatment dose-dependent decrease by anti-tau 
antibodies. The reduction in tau seeding with antibody C 
was significantly greater compared to the other antibod-
ies, with increasing treatment concentration (Fig. 1e).

As various sized tau fragments exist in brains and ISF 
among which few may constitute key tau pathogen [6], 
we speculated differing effects of antibodies inhibiting 
tau seeding could be derived from each antibody’s ability 
to target minimal tau fragments acting as seeding cata-
lyst. We hence generated tau epitope peptides for each 
anti-tau antibodies targeting near or MTBR itself (Fig. 1a 
and table S1) to compare the tau aggregation or seed-
ing potency of target epitopes. Aggregation of each epi-
tope peptides was induced with addition of heparin and 
monitored by ThT assay. Only 275-acK280-286 exhibited 
an accelerated aggregation curve on ThT assay (Fig.  1f ) 
and FRET intensities were significantly increased in cells 
treated with 275-acK280-286 (Fig.  1g), suggesting it is 
the most aggregation-prone and seed-competent spe-
cies among the epitope peptides tested. Since the target 
sequence of antibody D, HVPGG, is relatively shorter 
than other peptides tested, longer tau peptides 295–311 
and 358–372 were generated with HVPGG positioned 
in the middle (Fig. S2a) but these also showed little amy-
loid formation (Fig. S2b) and seeding (Fig. S2c). Also, as 
MTBR forms the core of tau aggregates in tauopathies [8] 
and MTBR fragments were recently detected in patient 
CSF [9], these fragments might represent the extracel-
lularly released seed-competent tau species, potential 

targets of therapeutic antibodies (Fig. S2a). We hence 
investigated whether the MTBR fragments found in 
tauopathy CSF could aggregate or induce tau seeding. 
However, MTBR peptides did not induce amyloid forma-
tion (Fig. S2d) and seeding (Fig. S2e). These results show 
that peptide containing acetylated lysine-280 yield high-
est propensity for aggregation and seeding among the 
tested tau fragments, suggesting as an appealing target to 
remove via immunotherapy.

While the antibodies used are not from the exact same 
batch as those used in clinical trials and may exhibit dif-
ferences in characteristics such as affinity, the direct 
comparison of the antigens targeted by the different 
antibodies (Fig.  1f, g) still supports our conclusion that 
acK280 is a more efficient target compared to others. 
MTBR forms a critical component of the β-sheet core of 
tau tangles [8] and contains the amyloid-forming motifs 
VQIINK and VQIVYK [10]. Our results also suggest 
that MTBR antibodies are more effective at inhibiting 
tau seeding and aggregation than N-terminus antibody, 
aligning with recent development trends focused on tar-
geting MTBR. The P-G-G-G motif regulates tau aggre-
gation by engaging in β-turn interactions with adjacent 
VQIINK and VQIVYK motifs, and its perturbation, such 
as via lysine acetylation, can lead to formation of seed-
competent monomers [10]. Lysine deletion or acetyla-
tion may neutralize the positive charge within this region, 
yielding pathogenic neurodegenerative phenotypes [11]. 
Acetylation of K280, the lysine of VQIINK motif located 
in the second repeat, plays a key role in tau secretion 
and propagation. Its inhibition by immunotherapy ame-
liorated cognitive impairment and tau pathology in tau 
transgenic mice [12], further validating toxicity of this 
region. Limitations remain in identifying the exact tau 
fragments and PTMs that are key pathogens in AD brain 
ISF. While antibodies targeting the phosphorylated tau, 
which is also key pathologic tau PTM, are not included in 
this study [13] as well as preclinical antibodies targeting 
other acetylation sites [14], this study suggests that tar-
geting acK280 in the MTBR region presents a promising 
approach among the latest clinical trial-stage antibodies 

(See figure on previous page.)
Fig. 1 a A schematic domain map of tau 2N4R isoform and target epitopes of various anti-tau antibodies and epitope peptides. Relative location on the 
tau isoform of antibodies’ epitope sequences is represented by the antibody’s name and amino acid residue numbers within brackets
b, c FRET signal of human Alzheimer’s disease insoluble tau fraction extract co-incubated with various anti-tau antibodies (1 µg/mL) at endpoint. Tau-FRET 
cells were treated with entorhinal cortical (n = 4) (b) or hippocampal (n = 5) (c) extract from Alzheimer’s disease patients and various anti-tau antibodies
d ThT signal of acetylated tau aggregates co-incubated with various anti-tau antibodies at endpoint. Acetylated tau aggregates were incubated with ThT 
fluorescent dyes (1:1 ratio) and anti-tau antibodies at various concentrations for 70 h
e FRET signal of acetylated tau aggregates co-incubated with various anti-tau antibodies at endpoint. Tau-FRET cells were treated with acetylated tau 
aggregates and anti-tau antibodies at various concentrations
f ThT fluorescence signal of peptides corresponding to target epitope sequences of anti-tau antibodies. Each peptide was incubated with ThT fluorescent 
dyes (1:1 ratio)
g FRET signal of peptides corresponding to target epitope sequences of anti-tau antibodies. Tau-FRET cells were treated with peptides corresponding to 
target epitope sequences of anti-tau antibodies at endpoint
 Two-way ANOVAs (d, e) and one-way ANOVAs were used for statistical analysis followed by Tukey’s multiple comparisons test. Line graphs present the 
mean ± SE determined from independent experiments represented by dots, each performed in triplicate. *p < 0.05, **p < 0.01, ***p < 0.001
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tested. Future studies could explore comparative effica-
cies using additional antibodies, possibly in the context of 
targeting diverse PTM profile of tau pathologies [1].
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ThT  Thioflavin T
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