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Abstract

Multiplexed spatial proteomics reveals the spatial organization of cells in tumors, which is associated with important clinical outcomes
such as survival and treatment response. This spatial organization is often summarized using spatial summary statistics, including
Ripley’s K and Besag’s L. However, if multiple regions of the same tumor are imaged, it is unclear how to synthesize the relationship with
a single patient-level endpoint. We evaluate extant approaches for accommodating multiple images within the context of associating
summary statistics with outcomes. First, we consider averaging-based approaches wherein multiple summaries for a single sample are
combined in a weighted mean. We then propose a novel class of ensemble testing approaches in which we simulate random weights
used to aggregate summaries, test for an association with outcomes, and combine the P-values. We systematically evaluate the perfor-
mance of these approaches via simulation and application to data from non-small cell lung cancer, colorectal cancer, and triple negative
breast cancer. We find that the optimal strategy varies, but a simple weighted average of the summary statistics based on the number
of cells in each image often offers the highest power and controls type I error effectively. When the size of the imaged regions varies,
incorporating this variation into the weighted aggregation may yield additional power in cases where the varying size is informative.
Ensemble testing (but not resampling) offered high power and type I error control across conditions in our simulated data sets.

Keywords: multiplexed spatial proteomics; spatial point process; regions-of-interest; multiplexed immunofluorescence; single-cell
data

Introduction
The spatial architecture of immune cells in the tumor microenvi-
ronment (TME) is an important driver of patient-level outcomes in
oncology, such as survival [1–4] and treatment response [5, 6]. This
architecture can be revealed by multiplexed spatial proteomics
imaging platforms, such as codetection by imaging (CODEX) [7]
and multiplexed ion beam imaging [8]. These platforms generate
high-resolution images illustrating the spatial expression of pro-
teins which, in turn, can be used to derive the phenotype (e.g. CD8
T cell) and function (e.g. initiating an immune response) of cells
residing within the TME [9]. Spatially-resolved imaging of the TME
allows investigators to study how cellular organization within and
around tumors influences patient-level outcomes in the clinic.

To comprehensively characterize the composition of the TME,
multiple regions-of-interest (ROIs) may be imaged from the same
tumor biopsy (Fig. 1) [10]. These ROIs, however, may not be adja-
cent so they cannot be treated as a single image [9]. To handle
multiple ROIs in an associative analysis with clinical outcomes,
one solution is to select the ROI from each patient with the most
cells (or any other characteristic) [11]. An alternative is to use a
spatial summary statistic, like Ripley’s K [12], Besag’s L [13], or
the g-function [14], to quantify the spatial distribution of cells in
each ROI and then compute an average within each individual
[15]. Unfortunately, selecting an image that does not well charac-
terize the association with outcomes or using a sub-optimal set

of weights in constructing the average leads to reduced power.
Following more standard spatial analysis literature [16, 17], others
have used random effects (e.g., within a linear mixed model)
for multiplexed imaging [18, 19]. These studies treat a summary
statistic for each image as the outcome variable. However, these
methods can be difficult to generalize to more sophisticated clin-
ical outcomes: it is unclear how to use censored survival data as
a predictor. Reversing the models to keep the clinical outcome as
the dependent variable requires use of specialized random effects
models for each type of outcome and, more problematically, may
have difficulties in controlling type I error in practice, e.g. due to
incorrect specification of mixing distributions.

The main objective of this article is to compare approaches
for aggregating multiple spatial summary statistics into a single
value that is used in testing for an association with clinical
outcomes. The goal is to describe whether there is an association
between the spatial distribution of cells across ROIs with patient-
level outcomes. We consider the power and validity (false posi-
tive control) of testing for this association using three different
weighted averages of spatial summaries. In addition, given that
the optimal (most powerful) set of weights is unknown a priori,
we further consider three new ensemble testing approaches that
hedge against different scenarios and work well in the omnibus.
These approaches simulate random weights used to construct an
average summary for each sample, test for an association with
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Figure 1. Five ROIs from a non-small cell lung cancer tumor biopsy. Each ROI shows a unique pattern of immune (CD14+ cells, CD19+ B cells, CD4+ T
cells, CD8+ T cells), tumor, and other cell types.

a sample-level outcome, and combine the P-values across many
ensemble replications. We narrow our scope to hypothesis testing,
given a survival and a binary outcome as clinical outcomes are
often in these forms, such as case vs. control status or overall
survival. We examine the performance of these methods via sim-
ulation studies and also consider three multiplexed spatial pro-
teomics data applications in non-small cell lung cancer, colorectal
cancer (CRC), and triple negative breast cancer (Supplementary
Materials).

Methods
In this section, we first describe our notation and review exist-
ing spatial summary metrics that are commonly used. We then
discuss possible aggregation and averaging approaches before
presenting additional proposed ensemble approaches.

Consider a dataset with N samples. For each sample, we have
Ri, i = 1, . . . , N single cell images of different ROIs from a tissue
biopsy, e.g. tumor sample. Let nir represent the number of detected
cells in image r and Air represent the area of image r, where
r = 1, . . . , Ri. The analytic objective is to determine whether
global spatial characteristics of the images are associated with a
generally specified outcome y.

Review of spatial summary statistics
Many multiplexed imaging methods rely on the spatial point
process model to describe the spatial distribution of cells in tissue
[9]. The spatial point process model is a probability model that
gives rise to the random arrangement of points in space, often in
2D or 3D. A realization of a spatial point process is termed a point
pattern, i.e. the distribution of cells observed in a multiplexed
spatial proteomics image [14]. The point pattern may be ‘marked’,
meaning we possess attributes associated with each point or,

in our case, cell [14]. These could be categorical cell pheno-
types, e.g. CD8 T cell, or continuous marker expression, e.g. the
expression level of the CD8 protein. We focus here on categorical
marks as it is often of interest to relate the spatial distribution
of specific cell types to patient outcomes. A common spatial
point process model (marked or unmarked) is the homogeneous
Poisson point process. This model is characterized by exhibiting
a homogeneous intensity, meaning the expected number of cells
per unit area is the uniform across locations, and exhibiting
complete spatial randomness or CSR [14]. CSR implies that the
regions within the observed point pattern are independent of
each other and the point locations may be anywhere within
the image.

It is often of interest to test whether a point pattern arises from
a point process exhibiting CSR. Deviations from this hypothesis
imply that the pattern exhibits clustering (cells are more clustered
together than expected by random chance) or dispersion (cells are
further apart than expected by random chance). To test whether
the whether point process exhibits CSR, it is common to use
spatial summary statistics, such as Ripley’s K [12] or Besag’s L [13],
which quantify the degree of adherence or deviation to CSR at a
specific radius t. For a point pattern X in ROI r of sample i, Ripley’s
K function is defined as follows:

K(t) = 1
λ
E

(
# of points within distance t of u | X has a point at u

)

(1)

where λ is the intensity of the image. Under CSR, the empirical
Ripley’s K for a single cell type a is defined as follows:

Ka
ir(t) = 1

λa
ir

nir∑
j=1

∑
j′ �=j

w−1
jj′

1(djj′ ≤ t)

na
ir

(2)
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where λa
ir = na

ir/Air is the estimated intensity of ROI r and djj′ is
the distance between the jth and j′th cells of type a. wjj′ is an edge
correction used to adjust the contribution of 1(djj′ ≤ t) when the
radius t crosses the edge of the image. The value of K(t) implies
whether the point pattern exhibits CSR: if the value of Ka

ir(t) across
a range of t is approximately equal to πt2 then we conclude affir-
matively. If Ka

ir(t) > πt2, then we conclude it exhibits clustering,
and if Ka

ir(t) < πt2, then it exhibits dispersion. Ripley’s K can
be generalized to describe the bivariate colocalization patterns
between two cell types, a and b:

K̂ab
ir (t) =

(
λ̂a

irλ̂
b
irAir

)−1
na

ir∑
j

nb
ir∑
j′

w−1
ajbj′

I(daj ,bj′ < t) (3)

Besag’s L is a transformed version of Ripley’s K: L(t) = √
K(t)/π

for both univariate and bivariate scenarios. It has a similar inter-
pretation as K(t): if L(t) ≈ t, the point process exhibits CSR, if
L(t) > t, it exhibits clustering, and if L(t) < t, it exhibits dispersion.
In addition to testing CSR, K(t) and L(t) may be used to describe
the spatial distribution of cells at a radius t. This has been shown
to be clinically meaningful in several applications [15, 19, 20].

When using Ripley’s K and Besag’s L descriptively, these statis-
tics may be treated as covariates in an outcome model. A chal-
lenge arises when multiple ROIs per tissue sample are collected.
In this case, we can compute multiple estimates of the spatial
summary for the same sample. To accommodate multiple sum-
maries and relate them to a single outcome measurement, we can
aggregate the summaries into a single value. We now review three
aggregation recipes to combine spatial summary statistics.

Aggregation methods for multiple spatial
summary statistics
It is common in spatial proteomics imaging studies for multiple
regions of a tissue to be imaged. Obtaining multiple images per
sample yields multiple spatial summary statistics characterizing
the level of clustering or dispersion within each image. When
using spatial summary statistics, like Ripley’s K, to describe the
spatial distribution of cells in each ROI, one must decide how to
associate the summaries to an outcome when there is a single
endpoint per sample. A straightforward option is to aggregate the
spatial summaries within a sample into a single value using a
weighted average.

Diggle et al. (1991) [21], Baddeley et al. (1993) [22], and Landau
et al. (2004) [23] each proposed an approach to aggregating multi-
ple Ripley’s K summaries:

K̂i(t) = 1∑Ri
r=1 nir

Ri∑
r=1

nirK̂ir(t) Diggle et al. (1991) (4)

K̂i(t) = 1∑Ri
r=1 n2

ir

Ri∑
r=1

n2
irK̂ir(t) Baddeley et al. (1993) (5)

K̂i(t) =
∑Ri

r=1 Air(∑Ri
r=1 nir

)2

Ri∑
r=1

n2
ir

Air
K̂ir(t) Landau et al. (2004) (6)

The motivation behind these aggregation recipes is to weight the
Ripley’s K statistics by their sampling variances. The sampling
variance of Ripley’s K, however, is difficult to write down explicitly,
so the weights are chosen to be proportional to this expression.
When the intensities of each image are assumed to be the same
(i.e., λir = nir/Air ≈ nir′ /Air′ = λir′ , where r �= r′), Equations 4, 5, and 6

are equivalent. Conditional on the nirs and assuming the sampling
variances of K̂ir(t) are proportional to n−2

ir , Equation 5 was shown
to be the best linear unbiased estimator of Ki(t) [22, 23]. This is
a reasonable assumption if the image areas are the same [24]. If
the intensities differ across images, then the sampling variance of
K̂ir(t) is proportional to λ−1

ir n−1
ir [24]. In this case, Equation 6 should

account for the variation in intensity, as nir/Air is an estimate of
the intensity in ROI r of image i.

The aggregations given in Equations 4, 5, and 6 were originally
described to combine estimates of univariate Ripley’s K derived
from replicated spatial point patterns. Replicated point patterns
arise from repeated observations of the same experiment [14]
which in our case could be thought of as imaging the same tissue
region multiple times. In our context, the ROIs do not necessarily
reflect replicated spatial point patterns since they arise from
different locations within the same sample. Despite that, they
may exhibit spatial correlation, which motivates our use of these
aggregation methods. Moreover, it is often of interest to describe
the spatial colocalization of two cell types in spatial proteomics
imaging. We consider applying these aggregation methods to
multiple bivariate Ripley’s K statistics and describe the operating
characteristics thereof. For clarity, we treat the total number of
cells and the total image area as the weights in the above weighted
aggregations.

Ensemble testing using randomly-weighed
averages
Weighted aggregation methods are a straightforward avenue for
combining multiple estimates of a spatial summary statistic.
However, they were largely developed with the understanding
that multiple images were simply repeated measures and assume
some degree of homogeneity. When images are very disparate,
averaging may be less desirable and may reduce power due to
relying on an inadequate set of weights to combine spatial sum-
mary estimates. For these situations, we also consider the use
of ensemble approaches for testing associations with clinical
outcomes.

Ensemble approaches for prediction have grown in popularity
and demonstrated impressive performance [25]. Liu et al. (2023)
[26] recently brought the idea of ensemble prediction to hypoth-
esis testing. The idea of ensemble testing is to combine multiple
weak test statistics to form a more powerful test for a global null
of the form H0 : β = 0, where β = (β1, . . . , βP)

T. The authors
proposed simulating random weights to combine the score test
statistics used to test each marginal hypothesis, H0 : βp = 0 for
p = 1, . . . , P, into a single global test. They suggested to repeat this
process many times and combine the resulting P-values using the
Cauchy combination test [27]. We adapt this idea to our context
by generating random weights used to construct an aggregation
of multiple spatial summary statistics across ROIs. We repeat
this process multiple times, each time testing for an association
between each random aggregation and clinical outcomes. At the
end, we combine the resulting P-values using the Cauchy combi-
nation test to yield a global, omnibus test of association.

We consider three variations of ensemble testing in our study.
We refer to our first approach as the general ‘ensemble’ test as
it most closely mirrors the framework used in Liu et al. (2023).
For each person with Ri ROIs, we randomly sample a vector
of weights ω = (ω1, . . . , ωRi ) iid from a standard normal dis-
tribution, N(0, 1). We take the absolute value of each weight
and scale the weights to sum to one, i.e. ω∗ = (ω∗

1, . . . , ω∗
Ri

) =
(|ω1|/||ω||, . . . , |ωRi |/||ω||). We then compute a weighted aggregation
based on this random sequence of weights for each person:
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K̂ensemble
i (t) = 1∑Ri

r=1 ω∗
r

∑Ri
r=1 ω∗

r K̂ir(t). We perform this procedure for

each sample to yield a single aggregated spatial summary statistic
for each sample i. Given ω∗, we test for an association between
K̂ensemble

i (t), i = 1, . . . , N with the outcome and store the resulting
P-value. We repeat this procedure B times (e.g. 1000 times) to
generate B P-values which are then combined using a truncated
Cauchy combination test. To truncate the P-values, we round all P-
values greater than 0.5 down to the nearest 0.1 to increase power.
We denote these truncated P-values as p∗

i . Then, the Cauchy
combination test statistic is

Tomni =
B∑

i=1

αi tan
[
π(0.5 − p∗

i )
]

(7)

Under the null, Tomni ∼ Cauchy(0, 1), which we use to calculate an
omnibus P-value. For simplicity, we fix the weights αi = 1/B.

We also consider a ‘resampling’ approach in which we
randomly select one spatial summary statistic to represent each
sample. Effectively, we perform the process described in the
‘ensemble’ approach but fix the weights at 1 or 0 and require
exactly one ωr = 1 and ωr′ = 0 for r �= r′ and r, r′ = 1, . . . , Ri.
We repeat this process many times, e.g. 1000 times. Within
each replication, we test for an association between the vector
of K̂resample

i (t) for each sample and the outcome-of-interest. The
resulting P-values are aggregated using the truncated Cauchy
combination test described above.

Finally, we consider a blend of the Diggle aggregator given in
Equation 4 and the ‘ensemble’ approach. We refer to this as the
‘combination’ or ‘combo’ test. As with the general ensemble test,
we randomly generate a set of weights, ω = (ω1, . . . , ωRi ), for the
images within each sample from a standard normal distribution
and scale the weights to sum to one, yielding ω∗ = (ω∗

1, . . . , ω∗
Ri

). In
addition, we add a weight for the number of cells in each image.
Our final aggregator is then K̂combo

i (t) = 1∑Ri
r=1 ω∗

r nir

∑Ri
r=1 ω∗

r nirK̂ir(t). As

before, for each replication, we test for an association between
K̂combo

i (t), i = 1, . . . , N and the outcome-of-interest and aggregate
the resulting P-values using the truncated Cauchy combination
test.

Simulation study
We use simulation studies to compare the power and type I error
rates of each of the aggregation methods described above: the
Diggle et al. (1991) mean (Equation 4), the Baddeley et al. (1993)
mean (Equation 5), the Landau et al. (2004) mean (Equation 6),
the ensemble approach, the resampling approach, and the combo
approach. In addition, we consider a standard arithmetic mean
of the spatial summary statistics, henceforth referred to as the
‘mean’ approach. While not a recommended strategy, we also
considered treating each image as independent, ignoring repeated
measures among the samples, and test for an association between
the images and the sample-level outcome. We refer to this method
as the ‘no aggregation’ approach.

In our simulation study, we varied the spatial distribution of
cells as represented by a spatial summary statistic, the area of
each image, and the number of cells per image. To generate
realistic spatial summary statistics, image areas, and numbers
of points, we based our simulation study on a real dataset from a
study of non-small cell lung cancer (NSCLC) [28]. In this study of
153 participants, multiple regions of lung adenocarcinoma tumor
biopsies were imaged using multiplexed immunohistochemistry.
This yielded between four and six images per person for a total
of 761 images across participants. To generate data for our

simulation study, we estimated Besag’s L at a radius of 10 for each
image using the tumor cells detected in the tumor compartment
of each sample. The spatial summaries were highly right-skewed
so we used a log(1 + x) transformation to normalize the values.
We removed three images in which there were zero tumor cells or
only one detected tumor cell. This yielded 758 spatial summaries
to use in our simulation study. We also retained the area and
number of tumor cells in each of these 758 images.

To simulate spatial summaries, we fixed the total sample size
of our simulation study at n = 153 to mimic the original NSCLC
study. For each sample, we randomly chose to simulate between
5 and 10 images. We then generated spatial summary statistics,
image areas, and numbers of cells independently from an inter-
polated empirical cumulative distribution function (eCDF) for
each of these three parameters. The interpolated eCDF was con-
structed based on values unique to each sample. This was done
to yield spatial summaries similar to what was truly observed
with some random variation. For each sample and simulation
replication, we simulated spatial summaries denoted L∗

ir, n∗
ir, and

A∗
ir, where i indexes the sample and r indexes the ROI within that

sample.
We considered survival as the sample-level outcome as it is

often used as the clinical endpoint in TME studies in cancer. We
simulated survival times from an exponential distribution via

S∗
i = − log(Ui)

exp(1 + βL̄∗
i )

(8)

where Ui ∼ Uniform(0, 1), β is an effect size that was varied
throughout the study and L̄∗

i represents the mean of the simulated
spatial summaries for sample i. We varied the mean aggregation
used to compute L̄∗

i : an arithmetic mean, the Diggle mean, the
Baddeley mean, and the Landau mean. We varied the effect
size across β = −3, −2.5, −2, −1.5, −1. We report the power for
1, 000 simulation replications and type I error rates for 10 000
simulation replications of the seven aggregation methods and
treating each ROI independently (‘no aggregation’). For the ensem-
ble approaches, we use 1000 ensemble replications.

Results
Simulation study
The power of each aggregation method is shown in Fig. 2. We
found that across a range of true aggregators (the aggregation
method associated with survival) and effect sizes, the arithmetic
mean, the Diggle mean, the Baddeley mean, ensemble testing,
resampling, and the combo approach all provided the highest
power. Only when the Landau mean was the true aggregator did it
outperform the other approaches. This suggests the Landau mean
performs best when the intensity of the images is informative
in aggregating the spatial summary statistics. This may be the
case in settings where the intensity varies across ROIs within
a sample.

The type I error rate of each aggregation method under simu-
lation is shown in Fig. 3 for a significance level of 0.01 and 0.05. At
both levels, an arithmetic mean, the Diggle mean, the Baddeley
mean, the Landau mean, the ensemble approach, and the combi-
nation approach controlled the type I error rate at approximately
the nominal level. Surprisingly, at both levels, resampling exhib-
ited slightly elevated type I errors around 2% for the 0.01 level and
8% for the 0.05 level, suggesting it may not be a valid hypothesis
test. As expected, treating each image independently resulted in
an excessively high type I error.
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Figure 2. Power of each aggregation method in testing for an association between spatial summaries across images and survival. Each panel illustrates
results for a different ‘true’ aggregator associated with the outcome. ‘No Aggregation’ refers to treating each spatial summary independently within a
sample. Line corresponding to ‘No Aggregation’ is dashed to indicate that this is not a recommended approach to handling multiple spatial summaries.

Figure 3. Type I error rates of each aggregation method in testing for an association between spatial summaries across images and survival. ‘No
Aggregation’ refers to treating each spatial summary independently within a sample. As illustrated, it is not a reasonable approach to handling multiple
spatial summary statistics because of its high type I error rate.

We also compared the ensemble approaches based on their
computational speed. For 1000 ensemble replications, on average,
the ensemble method took 3.2 seconds, the resampling method
took 6.1 seconds, and the combination approach took 3.3 seconds.

As a result of the elevated type I error rate exhibited by the
resampling approach, we exclude it from the data analyses
described in Section 3.2, Section 4, and in Section 1 of our

Supplementary Materials. We retain ‘no aggregation’ in these
analyses as a baseline for comparison.

NSCLC application
We now compare the performance of the seven aggregation
approaches on the NSCLC dataset described previously in
Section 2.4 [28]. This dataset consisted of 153 participants, each
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Table 1. SPOT P-values testing the association between bivariate cell type colocalizations and MHCII-high status. An asterisk by ‘No
Aggregation’ indicates this method is not a recommended approach to handling multiple spatial summary statistics. Note that these
P-values are not adjusted for multiple testing.

SPOT P-Value

Mean Tumor-Immune Tumor-CD4 T cell Tumor-CD8 T cell

No Aggregation∗ 0.1842 0.0040 0.2209
Mean 0.4017 0.0808 0.3435
Baddeley 0.0698 0.0320 0.0403
Diggle 0.1302 0.0413 0.0576
Landau 0.2009 0.0948 0.0582
Ensemble 0.4155 0.0648 0.2288
Combo 0.1295 0.0347 0.0621

of whom had between four and six ROIs imaged. Each sample
was labeled as exhibiting high or low major histocompatibility
complex II (MHCII). A sample was labeled ‘high’ if greater than
5% of lung cancer cells expressed MHCII.

We treated MHCII-high status as a binary outcome and tested a
specific set of hypotheses generated by the original study. Johnson
et al. found that in tumors labeled MHCII-high, immune cells were
closer to tumor cells than in MHCII-low samples. They also found
that CD4 T cells and CD8 T cells more frequently colocalized
with tumor cells in MHCII-high samples. We tested these three
hypotheses using seven of the eight aggregation methods consid-
ered in our simulation study to assess which approach provided
the most significance. Following the original analysis, we adjusted
for patient age.

For testing, we used the SPatial Omnibus Test (SPOT) [15] to
avoid having to select a radius at which to quantify the spatial
summary. Instead, this test computes a spatial summary statistic,
e.g. Ripley’s K, at a sequence of radii for each image. The asso-
ciation between the spatial summary and outcome is tested at
each radius, yielding a sequence of P-values that are combined
using the Cauchy combination test to yield an overall omnibus
P-value. For each radius and each sample, we aggregated the
spatial summaries across ROIs using an arithmetic mean, each of
three weighted means, and two of the three ensemble approaches.
We also considered treating each ROI independently for illus-
tration. We used Ripley’s rule (the default in spatstat [29]) to
generate a sequence of radii to consider. We considered 100 radii
between 0 and 123.625.

The results are shown in Table 1. Across all hypotheses,
the Baddeley mean provided the smallest P-values. This may
be because there was not considerable variation in intensity
across ROIs for tumor-immune cells, tumor-CD4 T cells, and
tumor-CD8 T cells. The P-values for the Diggle mean and combo
approach were similar in value and, in turn, suggested similar
interpretations of the results (i.e., there may be significant
associations between tumor-CD4 T cell colocalizations and
MHCII-high TME. Note that these P-values are not adjusted for
multiple testing and are intended to illustrate the variety of
results each method provides.

Colorectal cancer application
We next compared the performance of the aggregation approaches
in analyzing codetection by imaging (CODEX) of advanced-stage
CRC tissue samples [30]. The dataset consisted of 140 images
collected from 35 participants. Each sample was labeled as
either exhibiting ‘Crohn’s-like reaction’ (CLR) (n = 18) or ‘diffuse

inflammatory infiltration’ (DII) (n = 17). We treated the CRC type
(CLR vs. DII) as a binary outcome with CLR as the reference level.
We considered a range of radii between 0 and 100 with a step size
of 10 in accordance with previous analyses of this dataset [18].
We considered the spatial distribution of pairs of immune cells
and tested their association with the log-odds of DII. We took
a hypothesis-generating approach and tested all cell type pairs
using the SPOT framework.

The results are shown in Fig. 4 for only cell type pairs with
at least one significant P-value. Across most cell type pairs, the
Landau mean provided the smallest P-values, suggesting a gain
in power as a result of accounting for varying intensity across
images. For the B cell–CD68 CD163 macrophage pair, the Baddeley,
Diggle, and combo aggregators also showed significance.

Discussion
The goal of our article was to examine the power and validity of
aggregating spatial summary statistics across multiple ROIs using
weighted means and ensemble testing in multiplexed spatial
proteomics studies. In these studies, it is common for multiple
regions of the tissue to be imaged to provide a more complete
picture of the tumor microenvironment. A challenge is how to
accommodate multiple spatial summary statistics estimated for
the same sample. Standard weighted aggregations weight each
spatial summary statistic based on either the number of cells or
the estimated spatial point process intensity of each image. These
are straightforward to implement and have a low computational
burden. Ensemble tests, on the other hand, repeatedly generate
many random weights and test for an association with the out-
come using each of the resulting random means. This approach
may better recover the optimal set of weights that reflects the
true relationship between the spatial summary statistics and
clinical outcomes. A drawback, however, is that these ensemble
approaches require more computational time.

Overall, we found that ensemble testing performed no better
in terms of power and validity than standard weighted averages,
with the exception of resampling which had elevated type I error.
Across the methods, we found if the intensity of the image is
constant across images or is non-informative, using an arithmetic
mean, the Diggle mean [21], the Baddeley mean [22], an ensemble
testing approach, or a combination approach all offered high
power and controlled type I error in simulations. If the intensity
of each ROI varied or was informative for estimating the overall
spatial summary statistic, the Landau mean [23] performed best.
In practice, the Baddeley and Landau means offered the lowest
P-values in our analysis of a non-small cell lung cancer study and
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Figure 4. P-values for the association between the Ripley’s K as a measure of spatial colocalization between immune cells and log-odds of a sample
exhibiting diffuse inflammatory infiltration CRC. The red dashed line corresponds to a P-value of 0.05 and P-values above this line are deemed significant.
Note that these P-values have not been adjusted for multiple testing.

of a CRC study. The Diggle mean and the combination ensemble
test showed similar P-values and similar interpretations, high-
lighting their similarities.

Aggregating spatial summary statistics estimated from multi-
ple ROIs of the same sample is straightforward. It allows us to
obtain a single summary value for the spatial distribution of cells
in each sample. We can treat this individual summary statistic
as a covariate in any regression or outcome model suitable to
our research questions. Another class of method that we did
not examine include methods using random effects to account
for intra-sample heterogeneity [18, 19]. These approaches treat
the spatial summary statistic as the outcome and incorporate
the clinical outcome as a covariate (e.g. treatment arm), but
are difficult to generalize to survival outcomes. One could reverse
the model and treat the clinical outcome as the dependent vari-
able, but accommodating each type of clinical outcome would
require a specially tailored random effects model with strong
assumptions, e.g. on the mixing distribution, which could be

far from the truth. Accordingly, this class of approach remains
outside the scope of the present work.

In terms of selecting an approach to handling multiple ROIs,
we found that the general ensemble and combination approaches
performed comparably to the weighted means. Therefore, the
choice may come down to computational burden: the ensem-
ble approaches require more computing time than the weighted
means. If opting for an ensemble approach, the number of ensem-
ble replications will depend on the number of images in the study.
More images would require more ensemble replications. On the
other hand, among the weighted mean options an arithmetic
mean performed no worse than the weighted means considered,
though it is reasonable to consider a weighted mean that accounts
for the number of cells in each image. With fewer cells, the spatial
summary statistic may be less precise. As observed in our data
applications, the Baddeley mean outperformed the Diggle and
Landau means in the NSCLC application. In the CRC application,
the Landau mean performed best, suggesting that the intensity
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of each image was an important factor in relating the spatial
distribution of cells to the odds of DII-type CRC. In some cases, all
methods provide the same results, as shown in the triple negative
breast cancer application (Supplementary Materials).

We focused on the operating characteristics of using weighted
means and ensemble testing approaches when describing the
spatial qualities of cells using Ripley’s K [12]. However, we did
not consider aggregating other spatial summary statistics, like the
g-function [14], used for categorical marks, nor spatial summaries
used for continuous marks like Moran’s I [31]. We also did not con-
sider permutation-based approaches for handling gaps or tears in
the tissue [10]. This is a common challenge in spatial proteomics
imaging and violates the assumptions of homogeneity underlying
popular spatial summary statistics, like Ripley’s K. To handle
these situations, permuting the cell type labels to construct a null
distribution and comparing the observed spatial summary statis-
tic against this distribution is a suitable approach [32]. Aggrega-
tion within this permutation testing framework could be done to
ensure robustness against deviations from homogeneity due to
gaps in the images.

Key Points

• In multiplexed spatial proteomics studies, several dis-
parate regions of the same tissue are often imaged to
comprehensively describe the spatial arrangement of
cells in a sample.

• We examined the operating characteristics of weighted
aggregation methods and novel ensemble approaches
for combining multiple spatial summary statistics esti-
mated from the same sample when testing for an asso-
ciation with a sample-level endpoint.

• We found that a weighted average of the spatial sum-
mary statistics based on the number of cells in each
image is a reasonable strategy for accommodating mul-
tiple spatial summaries that offers high power and effec-
tively controls type I error.

• When the spatial intensity across images within the
same sample varies, incorporating this information into
the weighted aggregation of spatial summaries may
yield additional power while still controlling type I error.

• A resampling approach, when a random image is
selected from each tissue sample to use for association
testing and the resulting P-values are combined across
ensemble replications, is not recommended because it
does not properly control type I error.

Funding
This work was supported in part by NIH Grant U10 CA180819 and
The Hope Foundation for Cancer Research.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.

Data Availability
The data for the non-small cell lung cancer dataset was retrieved
from http://juliawrobel.com/MI_tutorial/MI_Data.html. The data
for the colorectal cancer application was retrieved from https://git
hub.com/sealx017/SpaceANOVA/blob/main/Data/MIF_CRC.rda.

The data for the triple negative breast cancer application was
retrieved from https://zenodo.org/records/7990870.

Software
An R package implementing these approaches is provided at
https://sarahsamorodnitsky.github.io/spagg/index.html.
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