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Introduction

Breast cancer is the most common cancer among women 
and is increasing globally, including in Korea [1-3]. Recent 
research has led to significant advances in new therapeu-
tics and precision medicine, and active clinical applications 
of the novel approaches resulted in improved prognosis of 
patients with breast cancer [4-6]. 

Despite these advances, triple-negative breast cancer 
(TNBC) remains the most challenging subtype due to its 
aggressive and high metastatic potential even after a good 
response to standard systemic chemotherapy [7]. Since the 
first classification of TNBCs to six molecular subtypes based 

on mRNA expression, significant efforts have been made to 
elucidate subtypes of the highly heterogeneous cancer using 
new technologies [8-10]. Multi-omic analyses and new sys-
tematic approach were utilized for the better classification 
and more sophisticated therapeutic strategy in the recent 
studies [11-16]. Nonetheless, only a few biomarkers have 
been identified to accurately predict prognosis and guide 
treatment decisions [17]. 

In this study, we aimed to develop a clinically applicable 
prognostic gene signature for patients with TNBC using 
whole transcription sequencing to classify the highly het-
erogeneous cancer more accurately. We combined weighted 
genes related to prognosis and validated the results using 
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the only independent factor for invasive disease-free survival in multivariate analysis when compared to other potential biomarkers of 
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biomarker for risk-based patient care.
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statistical analysis and meta-analysis. We also validated the 
discovered gene signature in a cohort of patients with TNBC 
at another institution.

Materials and Methods

1. Patients and specimens 
The study included 184 patients with early-stage TNBC; 76 

patients in the training cohort were from the National Can-
cer Center Korea (NCC, Goyang, Korea), and 108 patients in 
the validation cohort were from Samsung Medical Center 
(SMC, Seoul, Korea). All patients were eligible if they were ≥ 
18-years-old with early-stage TNBCs (stage I-III), for whom 
a histological biopsy could be safely obtained and standard 
systemic chemotherapy (anthracycline and taxane) and loco-
regional treatment including surgery and radiation were 
applied. Tumor samples were identified as TNBCs accord-
ing to the American Society of Clinical Oncology/College 
of American Pathologists (ASCO/CAP) guidelines [18,19]. 
The training cohort consisted of 15 patients who received 
neoadjuvant chemotherapy and 61 patients who underwent 
primary surgery followed by adjuvant chemotherapy for 
early-stage TNBC between March 2002 and August 2018. 
The validation cohort included 73 patients who had received 
neoadjuvant chemotherapy and 35 patients who received 
adjuvant chemotherapy after surgery between July 2011 and 
November 2017. In the validation cohort, 42 specimens of the 
neoadjuvant chemotherapy group were biopsy tissue before 
neoadjuvant chemotherapy, while the other specimens were 
surgical tissues. Tissues of training cohort were provided by 
NCC Bio Bank of National Cancer Center, Korea. All speci-
mens were fresh-frozen. 

2. Complete clinical information and outcome 
Clinical data, including the date of diagnosis, clinical 

and surgical stages, response to neoadjuvant chemother-
apy, recurrence, and survival, were collected from medical 
records. Invasive disease-free survival (iDFS) was defined as 
the time from diagnosis of primary breast cancer to invasive 
breast cancer recurrence or death from any cause and over-
all survival (OS) was defined as the time from diagnosis to 
death.

3. RNA sequencing and quality control
For the training cohort, sequencing libraries were prepared 

using fresh-frozen tissues with TruSeq Stranded mRNA LT 
Sample Prep Kit (Illumina Inc., San Diego, CA) following the 
manufacturer’s protocols. paired-end sequencing was con-
ducted using the prepared cDNA library for RNA sequenc-
ing using an Illumina HiSeq 4000 sequencer (Illumina). In 

RNA sequencing quality control, artifacts including adap-
tor sequences, contaminant DNA, and PCR duplicates were 
eliminated to reduce the bias of sequencing data. After qual-
ity control of sequencing data, aligned reads were gener-
ated by mapping sequencing data on the reference genome 
using the HISAT2 program (GitHub, http://daehwankimlab.
github.io/hisat2/). With generated aligned reads, transcript 
assembly was conducted using StringTie (https://ccb.jhu.
edu/software/stringtie/). Based on the transcript quantifi-
cation of each sample, expression levels were normalized to 
transcript length and depth of coverage. Through normali-
zation, expression profiles were extracted as fragments per 
kilobase of transcript per million mapped reads (FPKM).

For the validation cohort, sequencing libraries were pre-
pared using fresh-frozen tissues with TruSeq RNA Sample 
Prep Kit v2 (Illumina Inc.) following the manufacturer’s pro-
tocols. Sequencing of the RNA libraries was performed on a 
HiSeq 2500 sequencing platform (Illumina Inc.). After trim-
ming poor-quality bases from the FASTQ files, we aligned 
the reads to the human reference genome (hg19) using STAR 
v.2.5 (GitHub, https://github.com/alexdobin/STAR) and 
estimated gene expression in terms of FPKM using RSEM 
v.1.3. The quality control of sequencing results was assessed 
using RNA-SeQC (v1.1.8).

For comparison between tumors and non-tumors, non-
tumor data were collected from Gene Expression Omnibus 
(GEO, http://www.ncbi.nlm.nih.gov/geo/). GSE58135 was 
selected as the non-tumor group in GEO, and it had non-
tumor RNA sequencing data of 21 patients with TNBC [20]. 
In non-tumor data, data with a failed status or with the val-
ues of FPKM under 1.0×10–6 were excepted.

4. Differentially expressed gene and Cox regression analy-
sis

By matching the genes of tumors and non-tumors, 10,856 
genes were found in both groups. With 10,856 genes, the dif-
ferentially expressed genes (DEGs) were analyzed. DEGs 
were screened to meet one of the following conditions: (1) sta-
tistically significant difference (Wilcoxon test, |fold change| 
> 1.5, adjusted p-value < 0.05) comparing tumors with non-
tumors and (2) statistically significant difference (Wilcoxon 
test, |fold change| > 1.5, adjust p-value < 0.05) comparing 
the patients who exhibited recurrence/metastasis after surgi-
cal resection with the patients without recurrence/metasta-
sis. The previously screened DEGs were further shortlisted, 
matching with the gene significant in Cox regression analysis 
for recurrence/metastasis. Before combining the DEGs, we 
identified the Cox regression coefficient of each gene and 
weighted gene expression with the corresponding coefficient 
value [21].
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5. Combination gene analysis
The 59 genes selected in the DEG analysis were subjected 

to combination analysis ranging from 2 to 10 genes. The com-
binations were formed by multiplying the regression coef-
ficients of each correlating gene with its expression level and 
then summing them. Continuous Cox regression analysis 
was then performed to obtain p-values (p-values saturated 
in combinations of 8 to 10 genes). Subsequently, receiver 
operating characteristic (ROC) statistical analysis was con-
ducted on the combined gene sets to calculate the area under 
the curve (AUC).

6. Pre-validation of the candidate gene signatures for recur-
rence by cross validation of machine learning

Candidate gene signatures (achieving p-value < 0.05, AUC 
> 0.90, sensitivity > 80%, and specificity > 80%) were ranked 
by k-fold cross validation to identify the optimal gene com-
bination. The patients were randomly separated by 2 folds 
(training set and test set) 300 times [21].

7. Signal transduction pathway analysis based on meta-
analysis

Signal transduction analysis was performed using the CBS 
Probe PINGS (Reg. No. 2008-01-129-000568, CbsBioscience, 
Daejeon, Korea) [21]. For gene signature validation, signal 
transduction was analyzed for pathways related to each 
patient’s DEGs compared recurrence/metastasis and non-
recurrence/non-metastasis and for pathways related to gene 
signature. The genes were mapped to the signal transduction 
pathways obtained from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database (http://www.genome.jp/
kegg/). The top 10 signal transduction pathways were select-
ed for each patient’s DEGs and for gene signature according 
to the weight of the number of interactions and interacting 
genes. Ten pathways related to each patient’s DEGs com-
pared with GEO’s non-tumor and gene signature-related 
pathways were compared. For each signal transduction 
pathway selected in signal transduction pathway analysis, 
the gene interaction frequency ratio was computed, which 
is a score of interacting genes with signature genes in gene 
signature validation. By applying 100% gene interaction fre-
quency to the highest probability of gene interaction within 
each signal transduction pathway, the top 10 high interaction 
frequency genes were selected. In addition, 10 high interac-
tion frequency genes related to each patient’s DEGs and gene 
signatures related to high interaction frequency genes were 
compared.

8. Molecular subtype classification of TNBC
Molecular subtypes for both training and validation sets of 

data were primarily classified to six centroids using TNBC-

type (http://cbc.mc.vanderbilt.edu/tnbc/) [22]. Using the 
results obtained from analysis, patients with TNBC were 
refined to four molecular subtypes such as basal-like 1 (BL1), 
basal-like 2 (BL2), mesenchymal (M), and luminal androgen 
receptor (LAR). Using Kaplan-Meier analysis, the prognostic 
power of TNBCtype-4 and the relationship between TNBC-
type-4 and 10-gene signature were analyzed.

9. T-cell receptor diversity analysis
T-cell receptor (TCR) profiles were obtained using MiXCR 

2.1.3 (GitHub, https://github.com/milaboratory/mixcr) 
using RNA sequencing data [23,24]. RNA sequencing data 
were aligned to all the IG/TCR loci. After two rounds of 
contig assembly, the V/J junctions of TCRs were extended. 
The assembled clonotypes were exported. TCR diversity was 
analyzed with the T cell receptor beta locus (TCRβ) using the 
Shannon index [25]. Using Kaplan-Meier survival (KM) anal-
ysis, the prognostic power of TCRβ diversity was analyzed. 

10. Statistical analysis
Clinicopathological variables between the training and 

validation cohorts were evaluated using chi-square tests. 
Gene expression data were tested for normality using the 
Shapiro-Wilk test. As the data did not meet normality assum-
ptions, significant differences between the responders and 
non-responders were evaluated using the Wilcoxon test. 
ROC curve analysis was used to determine the accuracy of 
threshold values for classifying recurrence/metastasis and 
non-recurrence/non-metastasis using gene signatures. KM 
curves were calculated using death and invasive disease as 
endpoints in iDFS and death in OS. The difference in KM 
curves was examined using the log-rank test, and the dif-
ference in hazard ratio was examined using Cox regression 
analysis. Candidate gene signatures were analyzed using 
Cox regression to understand the relationships between the 
recurrence/metastasis, classification, and clinicopathologi-
cal variables. Significance was set at p < 0.05. All statistical 
analyses were performed using R v.3.4.3 software (R Devel-
opment Core Team, https://www.r-project.org/).

Results

1. Clinical characteristics of patients
Of the 184 patients, 76 were in the training cohort and 108 

in the validation cohort. The clinical characteristics of the 
patients in the training and validation cohorts are summa-
rized in Table 1. Overall, the patients in the very young age 
group were not significantly different between the cohorts. 
Patients in the training cohort were more likely to have 
earlier-stage diseases than the validation cohort; however, 
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the distribution of clinical stage among the patients was not 
different between the two groups. For adjuvant chemother-
apy, the TAC (taxotere, adriamycin, and cyclophosphamide) 
regimen was used more in the validation cohort, probably 
because there were more advanced-stage patients. A sche-
matic representation of the patients and samples is shown 
in S1 Fig.

2. DEG analyses of tumor vs. non-tumor, and relapsed vs. 
non-relapsed 

In the DEG analysis of tumor versus non-tumor, 9,741 
genes were significantly differentially expressed by more 
than 1.5-fold changes in 10,856 genes. DEG analysis of pri-
mary tumors between relapsed and non-relapsed patients 
revealed 136 out of 10,856 genes showing significant differ-
ences in expression by 1.5-fold. Subsequently, out of 10,856 
genes, 584 genes were statistically significant in the single 
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Table 1.  Pathological baselines of the training and validation cohorts

		  Training cohort			   Validation cohort		  Training
Pathologic	

Total
	 Primary 	 Residual 	

Total
	 Primary 	 Residual 	 vs.

parameter	
(n=76)

	 tumors	 tumors	
(n=108)

	 tumors	 tumors	 validation
		  (n=61)	 (n=15)		  (n=77)	 (n=31)	 p-valuea)

Age (yr)	
    < 35 	 17 (22.4)	 10 (16.4)	 7 (46.7)	 36 (33.3)	 24 (31.2)	 12 (38.7)	 0.1465
    ≥ 35 	 59 (77.6)	 51 (83.6)	 8 (53.3)	 72 (66.7)	 53 (68.8)	 19 (61.3)	
TNM stage (pathologic)							     
    I	 29 (38.2)	 29 (47.5)	 -	 18 (16.7)	 18 (23.4)	 -	 3.48×10–5

    II	 42 (55.3)	 32 (52.5)	 10 (66.7)	 57 (52.8)	 44 (57.1)	 13 (41.9)	
    III	 5 (6.6)	 -	 5 (33.3)	 33 (30.6)	 15 (19.5)	 18 (58.1)	
Systemic chemotherapy							     
    Neo-adjuvant	 15 (19.7)	 -	 15 (100)	 73 (67.6)	 42 (54.5)	 31 (100)	 -
        AC	 2 (13.3)	 -	 2 (13.3)	 2 (2.7)	 -	 2 (6.5)	
        AC-D	 6 (40.0)	 -	 6 (40.0)	 64 (87.7)	 35 (83.3) 	 29 (93.5)	
        AC-wP	 -	 -	 -	 7 (9.6)	 7 (16.7)	 -	
        AC-PC	 4 (26.7)	 -	 4 (26.7)	 -	 -	 -	
        PCarbo	 2 (13.3)	 -	 2 (13.3)	 -	 -	 -	
        DA	 1 (6.7)	 -	 1 (6.7)	 -	 -	 -	
    Adjuvant	 61 (80.3)	 61 (100)	 -	 35 (32.4)	 35 (45.5)	 -	
        AC 	 6 (9.8)	 6 (9.8)	 -	 2 (5.7)	 2 (5.7)	 -	
        TC	 14 (23.0)	 14 (23.0)	 -	 1 (2.9)	 1 (2.9)	 -	
        FAC	 14 (23.0)	 14 (23.0)	 -	 3 (8.6)	 3 (8.6)	 -	
        AC-D	 7 (11.5)	 7 (11.5)	 -	 5 (14.3)	 5 (14.3)	 -	
        AC-wP	 6 (9.8)	 6 (9.8)	 -	 4 (11.4)	 4 (11.4)	 -	
        AC-PC	 3 (4.9)	 3 (4.9)	 -	 -	 -	 -	
        TAC	 11 (18.0)	 11 (18.0)	 -	 20 (57.1)	 20 (57.1)	 -	
Event							     
    Presence	 13 (17.1)	 8 (13.1)	 5 (33.3)	 23 (21.3)	 9 (11.7)	 14 (45.2)	 0.4057
    Absence	 63 (82.9)	 53 (86.9)	 10 (66.7)	 85 (78.7)	 68 (88.3)	 17 (54.8)	
Specimen							     
    Core biopsy	 -	 -	 -	 42 (38.9)	 42 (54.5)	 -	
    Surgery 	 76 (100)	 61 (100)	 15 (100)	 66 (61.1)	 35 (45.5)	 31 (100)	
Follow-up period (mo), 	 51.5 (4.6-230.8)	 51.1 (11.5-230.8)	57.8 (4.6-154.8)	 58.3 (6.6-99.8)	 59.0 (12.9-92.7)	 56.6 (6.6-99.8)	
  median (range)

Values are presented as number (%) unless otherwise indicated. AC, adriamycin, cyclophosphamide; AC-D, AC followed by docetaxel; 
AC-PC, AC followed by paclitaxel and carboplatin; AC-wP, AC followed by weekly paclitaxel; DA, docetaxel and adriamycin; Event, 
recurrence or metastasis; FAC, 5-FU, adriamycin, cyclophosphamide; PCarbo, paclitaxel and carboplatin; TAC, taxotere, and AC; TC, 
taxotere and cyclophosphamide; TNM, tumor-node-metastasis (American Joint Committee on Cancer stage). a)p-values were calculated 
using the chi-squared test.
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Table 2.  Gene signature candidates as the prognostic biomarkers of triple-negative breast cancer 
		

		  No. of	 Continuous	
Rank	 Gene signature	 combination	 Cox	 AUC	 Sensitivity	 Specificity	 Accuracy
		  genes	 p-value

  1	 DGKH_GADD45B_KLF7_LYST_NR6A1_PYCARD_	 10	 1.24E-09	 0.946	 92.31	 92.06	 92.11
	   ROBO1_SLC22A20P_SLC24A3_SLC45A4
  2	 DGKH_DIP2B_EMP1_GADD45B_MT2A_NOTCH2_	 10	 1.35E-09	 0.937	 84.62	 98.41	 96.05
	   NR6A1_RORA_SLC22A20P_SLC24A3
  3	 GADD45B_LYST_NOXA1_NR6A1_PYCARD_	   8	 2.22E-09	 0.941	 84.62	 96.83	 94.74
	   SLC22A20P_SLC24A3_NTAQ1
  4	 DGKH_KLF7_LYST_NR6A1_ROBO1_SLC24A3_SLC6A20	   7	 2.32E-09	 0.919	 84.62	 90.48	 89.47
  5	 DGKH_EMP1_GADD45B_LYST_SLC22A20P_	   7	 2.33E-09	 0.950	 92.31	 88.89	 89.47
	   SLC24A3_SLC6A20
  6	 CUEDC1_DGKH_EMP1_LYST_NOXA1_	   7	 2.76E-09	 0.933	 84.62	 90.48	 89.47
	   SLC22A20P_SLC6A20
  7	 DGKH_KLF7_LYST_NR6A1_PRICKLE1_ROBO1_SLC24A3	   7	 2.97E-09	 0.927	 92.31	 92.06	 92.11
  8	 DCLK2_GADD45B_LYST_NR6A1_SLC22A20P_	   7	 3.16E-09	 0.954	 84.62	 98.41	 96.05
	   SLC24A3_NTAQ1
  9	 GADD45B_KLF7_LYST_NR6A1_ROBO1_	   7	 3.33E-09	 0.918	 84.62	 93.65	 92.11
	   SLC22A20P_SLC6A20
10	 DCLK2_GADD45B_LYST_NR6A1_SLC22A20P_NTAQ1	   6	 5.09E-09	 0.958	 84.62	 95.24	 93.42
AUC, area under the curve; CUEDC1, CUE domain containing 1; DGKH, diacylglycerol kinase eta; DCLK2, doublecortin like kinase 2; 
DIP2B, disco interacting protein 2 homolog B; EMP1, epithelial membrane protein 1; GADD45B, growth arrest and DNA damage induc-
ible beta; KLF7, Kruppel-like factor 7; LYST, lysosomal trafficking regulator; MT2A, metallothionein 2A; NOTCH2, notch receptor 2; 
NOXA1, NADPH oxidase activator 1; NR6A1, nuclear receptor subfamily 6 group A member 1; NTAQ1, N-terminal glutamine amidase 1; 
PRICKLE1, prickle planar cell polarity protein 1; PYCARD, PYD and CARD domain containing; ROBO1, roundabout guidance receptor 
1; RORA, RAR related orphan receptor A; SLC22A20P, solute carrier family 22 member 20, pseudogene; SLC24A3, solute carrier family 24 
member 3; SLC45A4, solute carrier family 45 member 4; SLC6A20, solute carrier family 6 member 20.

Fig. 1.  Selected prognostic gene signature evaluation of clinical performance. The clinical performance of the prognostic gene signature 
was evaluated using receiver operating characteristic (ROC) analysis, cross validation, and Cox regression analysis. (A) ROC analysis of 
the prognostic gene signature to predict the recurrence of triple-negative breast cancer. (B) Clinical performance of the gene signature in 
Cox regression analysis, cross-validation, and ROC analysis. AUC, area under the curve; CI, confidence interval; DGKH, diacylglycerol 
kinase eta; GADD45B, growth arrest and DNA damage inducible beta; KLF7, Kruppel-like factor 7; LYST, lysosomal trafficking regulator; 
NR6A1, nuclear receptor subfamily 6 group A member 1; PYCARD, PYD and CARD domain containing; ROBO1, roundabout guidance 
receptor 1; SLC22A20P, solute carrier family 22 member 20, pseudogene; SLC24A3, solute carrier family 24 member 3; SLC45A4, solute 
carrier family 45 member 4.
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Cox analysis. In the DEG analysis in three ways, 59 DEGs 
overlapped (S2 Table).

3. Candidate gene signatures by gene combination and 
selected gene signature by cross validation

The top 10 candidate gene signatures were ranked with 
the Continuous Cox p-value. Ten candidates showed values 
of 80 or higher in sensitivity, specificity, and accuracy. The 
prognostic gene signature was selected by meeting stati- 
stical criteria within subgroups of cohorts. Also the selected  
gene signature was DGKH_GADD45B_KLF7_LYST_NR6-
A1_PYCARD_ROBO1_SLC22A20P_SLC24A3_SLC45A4, 
showing 99.00% cross-validation accuracy, and it was statis-
tically significant in the discrete Cox analysis. The risk score 
was calculated with a cut-off value of 5.959715 as follows:  
(0.818636×DGKH)+(0.018069×GADD45B)+(0.605352×KLF7) 
+(0.231666×LYST)+(1.305352×NR6A1)+(–0.052086×PYCA-
RD)+(–0.196973×ROBO1)+(0.968759×SLC22A20P)+(0.09833
1×SLC24A3)+(0.311646×SLC45A4) (Table 2, Fig. 1).

4. Prognostic significance of gene signature in the training 
cohort

During the median follow-up of 51.5 months (range, 4.6 
to 230.8 months), patients with tumors with high-risk gene 
signatures (n=17) showed significantly shorter iDFS (medi-
an, 58.5 months; 95% confidence interval [CI], 25.8 to not 
reached) than those with low-risk signatures (n=59, medi-
an not reached, p=1.32e-11) in the overall population (Fig. 
2A). Further analysis in the separate group of patients who 
underwent primary surgery and in the patients with residu-
al tumors after neoadjuvant chemotherapy showed similar 
results. Among patients who received primary surgery and 
patients with residual tumors after neoadjuvant chemother-
apy, the median iDFS in the high-risk group was 68.9 months 
(95% CI, 58.5 to not reached; p=1.12e-05) and 25.8 months 
(95% CI, 10.6 to not reached; p=1.83e-05), respectively, and 
the median iDFS in the low-risk group did not reach the 
median (Fig. 2B and C). 

The impact of gene signature on OS of training set rep-
resented significant difference in total patients (p=0.00019). 
However, subgroup analysis represented significant impact 
only in neoadjuvant treated patients subgroup (S3 Fig.).  

5. Prognostic significance of gene signatures in the valida-
tion cohort

Median follow-up time for validation cohort was 58.3 
months (range, 6.6 to 99.8 months). In the overall validation 
cohort, although the median iDFS of the patients with high-
risk genetic signatures was not reached, there was a signifi-
cantly higher risk for recurrence or metastasis than patients 
with low-risk gene signatures (median iDFS not reached 

and p=5.84e-06 in log-rank test). When the patients were 
sub-divided according to the treatment sequence, the prog-
nostic significance of the gene signatures in the surgical tis-

Cancer Res Treat. 2024;56(4):1113-1125

Fig. 2.  Invasive disease-free survival in high risk and low-risk 
groups. The invasive disease-free survival was analyzed in dif-
ferent cases. (A) Kaplan-Meier curves for all patients. (B) Kaplan-
Meier curves of patients treated with adjuvant chemotherapy. 
(C) Kaplan-Meier curves of patients treated with neoadjuvant 
chemotherapy.
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sues from the patients who underwent primary surgery was 
consistent with the training cohort (p=0.0379); however, the 
median iDFS in the high-risk and low-risk groups was not 
reached yet. High-risk gene signatures were still valid in pre-

dicting the prognosis of patients with residual tumors after 
neoadjuvant chemotherapy; the median iDFS in the high-
risk group was 13.6 months (95% CI, 12.2 to not reached), 
but it was not reached in the low-risk group (p=3.38e-03). 

Chang Min Kim, Prognostic 10-Gene Signature for Early TNBC

Fig. 3.  Prognostic validation of the gene signature in the validation cohort. The prognostic gene signature was validated by invasive dis-
ease-free survival analysis in various cases. (A) Kaplan-Meier curves for all patients. (B) Kaplan-Meier curves in primary tumor specimens 
(surgical specimens of adjuvant patients and biopsy specimens of neoadjuvant patients). (C) Kaplan-Meier curves of patients treated with 
adjuvant chemotherapy. (D) Kaplan-Meier curves in biopsies of patients treated with neoadjuvant chemotherapy. (E) Kaplan-Meier curves 
for invasive disease-free survival in residual tumors of patients treated with neoadjuvant chemotherapy.
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Also, when the gene signatures were examined in the tissues 
obtained by core biopsy in the neoadjuvant chemotherapy 
group, prognostic significance in iDFS was statistically sig-
nificant (p=0.0224) (Fig. 3). 

In validation set, the gene signature impact on OS repre-
sented significance in total patients (p=0.00183). However, 
subgroup analysis represented significant impact in only pri-
mary tumor groups (p=0.0190) and marginal significance in 
neoadjuvant-treated patients group (p=0.0510) (S4 Fig.).  

6. Relationships between 10-gene signature and other 
potential prognostic factors

To investigate the interaction between the gene signa-
ture and other prognostic methods, specific prognostic val-
ues of the TNBCtype-4 were evaluated. In the TNBCtype-4 
subgroup analysis, 76 patients with TNBC were classified 
into 22 patients of BL1 type (30.6%), 12 patients of BL2 type 
(16.7%), 22 patients of M type (30.6%), 10 patients of LAR 
type (13.9%) and six patients of unknown type (8.3%). There 
was no significant difference in terms of iDFS in the KM anal-
ysis by subtypes. However, patients could be further classi-
fied into high-risk and low-risk group by the gene signature 
in each subtype, respectively (Fig. 4). Among the TNBC sub-
types, median iDFS of high-risk patients in 10-gene signa-
ture in BL1 (n=5, median iDFS was 15.5 months) and M (n=8, 
median iDFS was 58.5 months) subtypes were significantly 
inferior to those with low-risk patients (median not reached 
for both subtypes; p=3.41e-06 and p=4.29e-03 for BL1 and M, 

respectively). Additionally, we performed the TCRβ diversi-
ty analysis as a potential prognostic marker. With the cut-off 
that the highest point of the Youden index in ROC analysis 
(cut-off: 5.26), 35 patients belonged to the high diversity of 
TCRβ group and the rest of the patients had low diversity of 
TCRβ (n=41). However, the difference in iDFS according to 
the TCRβ diversity did not reach statistical significance (S5 
Fig.).

7. Cox regression analysis of the selected gene signature
The prognostic impact of the selected gene signature 

(DGKH_GADD45B_KLF7_LYST_NR6A1_PYCARD_ROBO1 
_SLC22A20P_SLC24A3_SLC45A4) was investigated with 
Cox regression analysis. In the univariate Cox regression 
analysis, the gene signature was the most significant factor 
among the clinical factors and high score was strongly cor-
related with poor prognosis. TNM stage showed a marginal 
significance. In the multivariable Cox regression analysis 
with the gene signature, TNM stage, and TCRβ diversity, the 
gene signature only remained statistically significant (Table 
3).

8. Signal transduction pathway analysis and high interac-
tion frequency genes analysis for prognostic gene signa-
ture

Through the biological meta-analysis, we found gene 
signature and prognosis-related KEGG signal transduc-
tion pathways as well as high interaction frequency genes. 

Cancer Res Treat. 2024;56(4):1113-1125

Fig. 4.  TNBCtype-4 analysis with gene signature. TNBCtype-4 was analyzed by invasive disease-free survival analysis in various cases. 
(A) Pie charts of TNBCtype-4 for total patients, high-risk patients and low-risk patients.  (Continued to the next page)
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Transduction pathway analysis revealed that the pathways 
in cancer, phosphoinositide 3-kinase–Akt signaling pathway, 
Alzheimer disease pathway, Human cytomegalovirus infec-
tion pathway, hepatitis C pathway, breast cancer pathway, 
and mitogen-activated protein kinase signaling pathway 
were related to the prognostic gene signatures and progno-

sis. In these pathways, KRAS, HRAS, and APP were the high 
interaction frequency genes related to gene signatures and 
prognosis (S6 Table).

Chang Min Kim, Prognostic 10-Gene Signature for Early TNBC

Fig. 4.  (Continued from the previous page)  (B) Kaplan-Meier curves of patients classified with TNBCtype-4. (C) Kaplan-Meier curves of 
patients classified with TNBCtype-4 and gene signature. (D) Kaplan-Meier curves of patients classified into BL1 subtype. (E) Kaplan-Meier 
curves of patients classified into BL2 subtype. (F) Kaplan-Meier curves of patients classified into M subtype. (G) Kaplan-Meier curves of 
patients classified into LAR subtype. BL1, basal-like 1; BL2, basal-like 2; LAR, luminal androgen receptor; M, mesenchymal; UNS, unspeci-
fied.
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Discussion 

TNBCs are highly heterogeneous, making it challenging to 
predict prognosis and select appropriate treatments. Molecu-
lar categorization based on the comprehensive genetic signa-
tures classified into distinct subtypes and therapeutic targets 
were suggested [14,26]. However, for the early-stage TNBCs, 
the introduction of immunotherapy was the only translation.

In this study, we aimed to identify and validate a 10-gene 
signature set based on the transcriptome of primary tumors 
for predicting the prognosis of patients with early-stage 
TNBC. Our analysis revealed that the gene signature set 
could better stratify patients with TNBC based on risk score 
than clinicopathologic parameters with an accuracy of 92.11% 
at a cut-off of 5.959715. We also validated the gene signature 
set was validated in patients with TNBC from another insti-
tution, demonstrating its objectivity.

Among the genes that make up the 10-gene set, some are 
related to immune responses (LYST and PYCARD), while 
others are related to the biology of cancer cells (GADD45B, 
KLF7, ROBO1, SLC45A4). The rest are novel genes with lit-
tle evidence of a link to cancer (DGKH, NR6A1, SLC22A20P, 
SLC24A3). Detailed information on each gene that makes up 
the 10-gene set is presented in the S7 Table.

The objective of this study was to verify the 10-gene sig-
natures in multivariate analysis by exploring additional bio- 
markers, in addition to traditional clinical variables. When 

our patient samples were analyzed according to the TNBC-
type-4 subtyping [22], we observed a similar pattern of prog-
nosis in our training cohort, based on subtypes (Fig. 4B). 
Further categorization of patients using the 10-gene signa-
ture revealed that patients with BL1 subtype and M subtype, 
but not BL2 and LAR subtypes, had a distinctly different 
prognosis (Fig. 4C-G). Using the gene score, we were able 
to differentiate patients with poor prognosis from those pre-
dicted to have a good prognosis for BL1 (5 out of 22, 22.7%). 
Among the total of 22 patients with the M subtype predicted 
to have poor risk, only eight (36.3%) were classified as high 
risk.  However, the TCRβ diversity analysis showed that the 
mean level of TCRβ diversity was not significantly different 
between patients with relapsed and non-relapsed patients, 
and although patients with high TCRβ diversity (cut-off: 
5.26) showed a trend for better iDFS, the difference was not 
statistically significant (S5 Fig.). 

Interestingly, in the analysis using surgical specimens, 
the 10-gene signature discovered in this study significantly 
predicted the prognosis of patients with early-stage TNBC, 
regardless of whether the specimen was obtained from pri-
mary surgery or a residual tumor after neoadjuvant chemo-
therapy. In a recent analysis, 56% of cases showed a subtype 
change after neoadjuvant chemotherapy in patients with 
TNBC, and the most common change was from BL1 to M 
subtype [27]. Given that the BL1 and M subtypes account 
for the majority (55%-60%) of TNBC cases, the good perfor-

Cancer Res Treat. 2024;56(4):1113-1125

Table 3.  Cox regression analysis of the prognostic gene signature and variables

Variable	 No.	 RC	 HR (95% CI)	 p-value

Univariable Cox regression analysis
    Candidate genes
        DGKH_GADD45B_KLF7_LYST_NR6A1_PYCARD_	 76	 3.9606	 52.49 (6.81-404.53)	 1.44×10–4

          ROBO1_SLC22A20P_SLC24A3_SLC45A4 (low vs. high)	
    Clinicopathological features
        Age (≤ 35 yr vs. > 35 yr)	 76	 –0.1605	 0.85 (0.25-2.94)	 0.799
        TNM stage (1, 2 vs. 3)	 76	 0.9281	 2.53 (0.55-11.74)	 0.236
        TNM stage (1 vs. 2, 3)	 76	 1.9985	 7.38 (0.95-57.08)	 0.056
        PAM50 call ROR-S (subtype) (low, med, high)	 76	 –0.4875	 0.61 (0.30-1.27)	 0.186
        TCRβ Diversity (low vs. high)	 76	 –0.8453	 0.43 (0.13-1.41)	 0.162
Multivariable Cox regression analysis
    DGKH_GADD45B_KLF7_LYST_NR6A1_PYCARD_	 76	 4.2879	 72.81 (7.04-752.75)	 3.21×10–4

      ROBO1_SLC22A20P_SLC24A3_SLC45A4 (low vs. high)	
    TNM stage (pathologic, 1 vs. 2, 3)	 76	 2.3537	 10.52 (0.67-165.09)	 0.094
    TCRβ diversity (low vs. high)	 76	 0.3597	 1.43 (0.37-5.56)	 0.603

CI, confidence interval; DGKH, diacylglycerol kinase eta; GADD45B, growth arrest and DNA damage inducible beta; HR, hazard ratio; 
KLF7, Kruppel-like factor 7; LYST, lysosomal trafficking regulator; NR6A1, nuclear receptor subfamily 6 group A member 1; PYCARD, 
PYD and CARD domain containing; RC, regression coefficient; ROBO1, roundabout guidance receptor 1; ROR-S, risk of recurrence based 
on subtype; SLC22A20P, solute carrier family 22 member 20, pseudogene; SLC24A3, solute carrier family 24 member 3; SLC45A4, solute 
carrier family 45 member 4; TCRβ, T cell receptor beta locus; TNM, tumor-node-metastasis (American Joint Committee on Cancer stage).
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mance of the 10-gene signature in these subtypes might have 
contributed to the consistent results in both pre-treatment 
and residual tumors. 

Our approach to biomarker discovery differed from oth-
ers in that we selected gene combinations that showed the 
best performance using combination analysis, which is a 
way to find optimal genes that can be used as biomarkers in 
large-scale analyses such as RNA sequencing. We then per-
formed cross-validation as a pre-validation using a machine 
learning process. Through these procedures, we discovered 
a list of gene combinations with the least chance of failure in 
a separate validation cohort. Finally, a meta-analysis of the 
gene signature enabled us to demonstrate that the 10-gene 
signature has biological relevance in TNBC, not just as a list 
of genes with statistical power (S8 Fig.) [21].

We discovered a novel, 10-gene signature and validated it 
in a separate cohort of prospectively collected samples with 
regular follow-up data from a separate institution. There are 
several limitations in the application of the findings from 
this study. One of these limitations pertains to the hetero-
geneity of systemic chemotherapy regimens utilized, which 
were based on various clinical risk factors. It’s important to 
note that the patients involved in this study were enrolled 
prior to the implementation of findings from the CREATE-X 
or Keynote-522 studies into clinical practice [28,29]. Conse-
quently, further investigation is warranted to assess the pre-
dictive potential of the gene signature concerning adjuvant 
capecitabine and/or immunotherapy. Given that the current 
standard treatment for early-stage TNBC involves a combi-
nation of pembrolizumab and chemotherapy as neoadjuvant 
therapy, additional research is necessary to ascertain the pre-
dictive role of the 10-gene signature in achieving pathologic 
complete remission or guidance for escalated treatment in 
high-risk patients. 

In conclusion, our study identified a 10-gene signature as a 
potential prognostic biomarker for patients with early-stage 
TNBC. To be used as a biomarker in a risk-based approach 
to clinical practice, this gene signature should be further 
validated in prospective clinical studies involving new treat-
ments such as capecitabine and immune checkpoint inhibi-
tors are applied. Nonetheless, we suggest that our findings 
can contribute to solving diagnostic challenges in TNBC and 
to a step close to precision medicine for qualified patient care.
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