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Although the structure of cortical networks provides the necessary substrate for their neuronal activity, the structure alone does 
not suffice to understand the activity. Leveraging the increasing availability of human data, we developed a multi-scale, spiking 
network model of human cortex to investigate the relationship between structure and dynamics. In this model, each area in one 
hemisphere of the Desikan–Killiany parcellation is represented by a 1 mm2 column with a layered structure. The model aggregates 
data across multiple modalities, including electron microscopy, electrophysiology, morphological reconstructions, and diffusion tensor 
imaging, into a coherent framework. It predicts activity on all scales from the single-neuron spiking activity to the area-level functional 
connectivity. We compared the model activity with human electrophysiological data and human resting-state functional magnetic 
resonance imaging (fMRI) data. This comparison reveals that the model can reproduce aspects of both spiking statistics and fMRI 
correlations if the inter-areal connections are sufficiently strong. Furthermore, we study the propagation of a single-spike perturbation 
and macroscopic fluctuations through the network. The open-source model serves as an integrative platform for further refinements 
and future in silico studies of human cortical structure, dynamics, and function. 
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Introduction 
Brain organization and activity display distinct features across 
multiple spatial and temporal scales: from the molecular level to 
whole-brain networks, from sub-millisecond processes to mem-
ories that last decades (Deco et al. 2008; Honey et al. 2012; 
Squire et al. 2015). Impressive technological advancements have 
made almost all these scales accessible through specialized tech-
niques, which leads to a comprehensive but fragmented picture 
(Sejnowski et al. 2014). Models have the potential to integrate the 
diverse data modalities into a unified framework and to bridge 
across the scales (Pulvermüller et al. 2021). Large-scale, data-
driven models at cellular resolution have been constructed for 
sensory cortex (Reimann et al. 2013; Markram et al. 2015; Girardi-
Schappo et al. 2016; Arkhipov et al. 2018; Billeh et al. 2020; Jiang 
et al. 2024), prefrontal cortex (Hass et al. 2016), hippocampus 
(Hendrickson et al. 2012; Bezaire et al. 2016; Ecker et al. 2020), 
cerebellum (Casali et al. 2019; Yamaura et al. 2020), and the olfac-
tory bulb (Migliore et al. 2014, 2015), among others. These models 
reproduce resting-state activity (e.g. Potjans and Diesmann 2014; 
Markram et al. 2015; Bezaire et al. 2016; Hass et al. 2016) and  
stimulus responses (e.g. Arkhipov et al. 2018; Billeh et al. 2020) on  

various levels of detail. Advances in the simulation technology for 
large networks of point neurons (Jordan et al. 2018; Einevoll et al. 
2019; Pronold et al. 2022a, b) have enabled the step beyond single 
brain regions to multi-area cortical network models (Schmidt 
et al. 2018a, b; Lu et al. 2022; see also Izhikevich and Edelman 
2008 for a pioneering study). 

The multi-area spiking network model of Schmidt et al. (2018b) 
relates the connectivity of the vision-related areas in one hemi-
sphere of macaque cortex to its dynamics. It integrates cortical 
architecture and connectivity data, in particular axonal tracing 
data (Bakker et al. 2012; Markov et al. 2014a, b), into a comprehen-
sive, layer-resolved network of 32 areas. Simulations where the 
model is poised in a metastable regime just below a transition 
to a high-activity regime reproduce local and cortico-cortical 
resting-state activity (Schmidt et al. 2018b): single-cell spiking 
statistics closely match recordings from macaque V1, and func-
tional connectivity patterns correspond well with macaque func-
tional magnetic resonance imaging (fMRI) data. Moreover, the 
model yields population bursts that mainly propagate in the feed-
back direction, akin to empirical findings during visual imagery 
(Dentico et al. 2014) and in slow-wave sleep (Massimini et al. 2004; 
Nir et al. 2011; Sheroziya and Timofeev 2014).
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In part due to the scarcity of available human data in compar-
ison with other species, only a few large-scale cellularly resolved 
human brain network models have been built (Izhikevich and 
Edelman 2008; Lu et al. 2022). The former encompasses a mil-
lion neurons for most simulations (although a variant with 1011 

neurons was also simulated), while the latter goes up to the full 
86 billion neurons of the human brain. The model of Izhikevich 
and Edelman (2008) includes thalamocortical interactions and 
displays self-sustained activity as well as chaotic cortical spiking 
activity (as observed experimentally by London et al. 2010; but see  
Priesemann et al. 2014). In contrast, Lu et al. (2022) focus on fMRI 
data and develop a fitting routine to fine-tune the model in order 
to reproduce recorded blood-oxygen-level-dependent (BOLD) sig-
nals. However, both models neglect cytoarchitectural heterogene-
ity across areas, for instance using the same average number of 
incoming synapses per neuron in each brain area. Furthermore, 
both models simplify laminar patterns of cortico-cortical con-
nectivity, and considerably downscale the number of synapses 
per neuron. Such downscaling is likely to affect the obtained 
dynamics, such as the correlation structure of the activity (Van 
Albada et al. 2015). 

Leveraging the increasing availability of human data (e.g. 
Mohan et al. 2015; Minxha et al. 2020; Berg et al. 2021; Cano-
Astorga et al. 2021; Shapson-Coe et al. 2024), we build and 
simulate a model that encompasses the scales from the single-
neuron level to the network of areas in one hemisphere of the 
human brain with a biological number of neurons and synapses 
in each local circuit. The model aggregates data across many 
scales, from electron microscopy data for the density of synapses 
(DeFelipe et al. 2002b; Cano-Astorga et al. 2021) to whole-brain 
diffusion tensor imaging (DTI) and fMRI data, supplements it 
through predictive connectomics (e.g. Barbas and Rempel-Clower 
1997; Ercsey-Ravasz et al. 2013; Beul et al. 2017; Hilgetag et al. 
2019; Van Albada et al. 2022), and yields activity data on scales 
from single-neuron spiking activity to area-level correlation 
patterns. 

Simulating large-scale cellularly resolved models requires the 
efficient use of supercomputers, a thorough understanding of the 
inherent bottlenecks of these simulations, and state-of-the-art 
simulation technology. Systematic benchmarking is a significant 
step toward the optimal use of neuronal simulator technologies 
such as NEST (Diesmann et al. 2002) on supercomputers (Van 
et al. 2021; Albers et al. 2022). Furthermore, recent studies have 
systematically isolated and addressed major contributing factors 
to long simulation times (Pronold et al. 2022a, b). These opti-
mizations, coupled with a relatively coarse cortical parcellation, 
limit the simulation times for the model presented here. Shorter 
simulation times lead to a higher turnover rate of simulations, 
and enable investigations of more versions and realizations of the 
model. 

First, we describe the data integration into a mesoscale con-
nectome, the detailed construction of the model, and the activity 
data used to validate the model. We validate the mesoscale con-
nectome against features that were not explicitly built in. Then, 
we analyze the spiking activity in a version of the model with 
equal local and inter-areal synaptic strengths, which we call the 
“base version” of the model. The base version lacks substantial 
inter-areal interactions, so we systematically increase the inter-
areal synaptic weights. Next, we compare the resulting activity 
with single-neuron spiking statistics and area-level correlation 
patterns based on fMRI; the “best-fitting version” is achieved 
when inter-areal synaptic weights are increased relative to local 
synaptic weights. Finally, we investigate the propagation of both 

Table 1. All 34 areas in the Desikan–Killiany parcellation for one 
hemisphere with corresponding acronyms. 

Long name Acronym Long name Acronym 

bankssts BSTS parsorbitalis PORB 
caudalanteriorcingulate CAC parstriangularis PTRI 
caudalmiddlefrontal CMF pericalcarine PCAL 
cuneus CUN postcentral PSTS 
entorhinal ENT posteriorcingulate PC 
fusiform FUS precentral PREC 
inferiorparietal INFP precuneus PCUN 
inferiortemporal IT rostralanteriorcingulate RAC 
isthmuscingulate ISTC rostralmiddlefrontal RMF 
lateraloccipital LOCC superiorfrontal SF 
lateralorbitofrontal LORB superiorparietal SP 
lingual LIN superiortemporal ST 
medialorbitofrontal MORB supramarginal SMAR 
middletemporal MT frontalpole FP 
parahippocampal PARH temporalpole TP 
paracentral PARC transversetemporal TT 
parsopercularis POPE insula INS 

macroscopic fluctuations and single-spike perturbations through 
the network. These examples illustrate how the model, which we 
publish as open source, may be used as a basis for a wide range 
of investigations into human cortical structure, dynamics, and 
function. 

Materials and methods 
Model construction 
In the following text, we detail the composition of the model and 
the construction of its “mesoconnectome”: the connectivity at the 
level of neural populations specific to cortical areas and layers. 
Each of the 34 areas in one hemisphere of the Desikan–Killiany 
parcellation (Table 1) is modeled as a layer-resolved 1mm2 micro-
circuit consisting of leaky integrate-and-fire (LIF) eurons. The lay-
ers considered are 2/3, 4, 5, and 6, simplifying laminar subdivisions 
and ignoring layer 1 in view of its low neuron density. Within each 
layer, the model distinguishes excitatory and inhibitory neurons. 
Throughout, we refer to a combination of area, layer, and neural 
class as a population, for example the population of excitatory 
neurons in layer 4 of primary visual cortex (area pericalcarine). 

In each local circuit, the full natural density of neurons and 
synapses for the modeled layers is used. This leads to a total of 
3.47 million neurons connected via 42.8 billion model-internal 
synapses (Fig. 1). The remaining input impinging on the neurons, 
from non-modeled parts of the brain, is represented as a stochas-
tic drive. The neurons are not assigned spatial coordinates, so that 
all neurons in a given area, layer, and population are treated as 
statistically equivalent. The data sources underlying the model 
construction and validation are listed in Supplementary Table S1 
and the heuristics used for the model construction are specified, 
along with starting points for refinements, in Supplementary 
Tables S2 and S3. The summary of the model description and 
model parameters is presented in Tables 2 and 3, respectively. 

Neuron number 
The number of neurons per layer follows from multiplying their 
volume density ρneuron with the layer thickness hlayer and the sur-
face area Acolumn as Nneuron = ρneuronhlayerAcolumn (here, Acolumn = 
1 mm2). We use the volume density and the layer thickness 
provided in the seminal work of von Economo and Koskinas

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
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Fig. 1. Model overview. The model comprises all 34 areas of the Desikan–Killiany parcellation (Desikan et al. 2006) in one hemisphere of human cerebral 
cortex. Each area is modeled by a column with 1 mm2 cortical surface. Within each column, the full number of neurons and synapses based on 
anatomical data is included. In total, this leads to 3.47 million neurons and 42.8 billion synapses. Both the intrinsic and the inter-areal connectivities 
are layer- and population-specific. 

( Von and Economo 2009). These data distinguish the layers into 
finer categories than the ones we use in our model. Therefore, we 
sum the corresponding “layer thickness overall” and average the 
corresponding “cell content” values weighted by the relative layer 
thickness. 

Furthermore, the data are provided in the parcellation of von 
Economo and Koskinas; we use the mapping to the Desikan– 
Killiany parcellation constructed by Goulas et al. (2016, table 1). 
In the given mapping, one or more von Economo and Koskinas 
areas are assigned to each Desikan–Killiany area. For the layer 
thicknesses, we take the average across the corresponding areas 
in the parcellation by von Economo and Koskinas (using that the 
mapping was constructed based on cytoarchitectonic similarity, 
such that the average is across architectonically similar areas); 
for the volume densities, we weight the average by the relative 
thickness of the layers. 

To separate the neurons in a given layer into inhibitory and 
excitatory neurons, we use the layer-resolved relative size of the 2 
populations from the electron-microscopy-based reconstruction 
of cortical tissue in the human temporal lobe by Shapson-Coe 
et al. (2021, Supplementary Fig. 5B). The resulting fractions of 
excitatory neurons are 65% in layer 2/3, 79% in layer 4, 78% in layer 
5, and 86% in layer 6. The population sizes follow by multiplying 
the relative population size with the total number of neurons in 
the layer. The numbers of neurons per population for all areas are 
listed in Supplementary Table S4. 

Synapse number 
We approximate the volume density of synapses ρsynapse = 
6.6 × 108 synapses/mm3 (Cano-Astorga et al. 2021) as constant 
across cortex (DeFelipe et al. 2002a; Sherwood et al. 2020). This 
allows us to compute the total number of synapses per area based 
on their respective volume (Von and Economo 2009), as described 
above for the number of neurons. The task that remains is to 
determine the pre- and postsynaptic neurons of these synapses. 
Once the pre- and postsynaptic populations are determined, the 
corresponding number of synapses is distributed independently 
with uniform probability onto the possible connections. In 

particular, this means that both autapses (connections of a 
neuron with itself) and multapses (multiple synapses between 
a pair of neurons) can occur; their occurrence is quantified in 
Fig. S2. 

Fraction of local connections 
We separate the Nnonlocal 

synapse synapses from long-range connections 
through the white matter from the Nlocal 

synapse = Ntotal 
synapse − Nnonlocal 

synapse 
synapses coming from within the area. To determine the fraction 
of synapses from long-range projections, we use the scaling rule 
by Herculano-Houzel et al. (2010): 

Nnonlocal 
neuron 

Ntotal 
neuron 

∝ 1(
Ntotal 

neuron

)0.16 , (1)  

i.e. the relative number of neurons sending axons into the white 
matter decreases with increasing total number of neurons in the 
gray matter Ntotal 

neuron. We determine the proportionality constant 
using the value Nnonlocal 

neuron /Ntotal 
neuron = 0.21 from tracing data in 

macaque (Markov et al. 2011,though note that this reflects the 
intra-hemispheric fraction and neglects inter-hemispheric con-
nections) in combination with 1.4 × 109 gray matter neurons in 
macaque (Collins et al. 2010). With the number of gray matter 
neurons in human, Ntotal 

neuron = 16×109 (Herculano-Houzel 2009), we 
arrive at the estimate Nnonlocal 

neuron /Ntotal 
neuron = 0.14 or Nlocal 

neuron/Ntotal 
neuron = 

0.86 for human cortex. 
These numbers determine average fractions of local and non-

local synapses in our model; since these synapses are assigned to 
neuron pairs via random sampling of source and target neurons, 
the resulting fractions of sending neurons can actually differ 
from the given percentages. Further, the non-local connectivity 
is made area-specific according to DTI data as specified in the 
section “Long-Range Projections.” We assume that the fraction of 
neurons sending axons into the white matter equals the frac-
tion of synapses from long-range projections, i.e. from inter-areal 
cortico-cortical and subcortical sources; in particular, all connec-
tions between different cortical areas are treated as white-matter 
connections.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
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Local connectivity 
The Nlocal 

synapse local synapses need a further distinction: Ninternal 
synapse 

synapses where the presynaptic neuron is part of the simulated 
column and Nexternal 

synapse synapses where the presynaptic neuron is 
outside of the simulated column, i.e. in the remainder of the 
area. To split these 2 categories, we use the spatial connection 
probability p(x1 | x2) between a neuron located at x1 and another 
neuron at x2, which we assume to be a spatially homogeneous 
3-dimensional exponential distribution p(x1 | x2) ∝ exp(−|x1 − 
x2|/λconn) with decay constant λconn = 160 μm (Packer and Yuste 
2011; Perin et al. 2011). From p(x1, x2) = p(x1 | x2)p(x2), where  p(x2) 
is assumed to be constant reflecting a uniform distribution of 
neurons across space, we obtain the connection density ρinternal 

within the column as 

ρinternal ∝
∫

col. 
dx1

∫
col. 

dx2 exp(−|x1 − x2|/λconn), (2)  

where the proportionality factor is the normalization constant of 
p(x1, x2). We calculate the connection density assuming cylindri-
cal columns. In cylindrical coordinates, using dx = rdrdφdz and∫ a 

0 dx1
∫ a 

0 dx2 f (|x2 −x1|) = 2
∫ a 

0 dy (a−y)f (|y|) simplifies this integral 
to 

ρinternal ∝4
∫ rcol. 

0 
dr1

∫ rcol. 

0 
dr2 r1r2 

×
∫ 2π 

0 
dφ (2π − φ)

∫ h 

0 
dz (h − z) 

× exp(−d(r1, r2, φ, z)/λconn), (3)  

with d(r1, r2, φ, z) =
√

r2 
1 − 2r1r2 cos φ + r2 

2 + z2, the radius of the 
column rcol., and the total height of the column h. For the con-
nection density ρexternal that the postsynaptic neuron is in the 
column but the presynaptic neuron outside of it, the domain 
outside of the column has to be integrated:

∫
col. dx1 → ∫

¬col. dx1. 
Approximating the entire area as a cylinder, this leads to the 
replacement

∫ rcol. 
0 dr1 →

∫ rarea 
rcolumn 

dr1, where  rarea is the radius of the 
larger cylinder, i.e. 

ρexternal ∝4
∫ rarea 

rcol. 

dr1

∫ rcol. 

0 
dr2 r1r2 

×
∫ 2π 

0 
dφ (2π − φ)

∫ h 

0 
dz (h − z) 

× exp(−d(r1, r2, φ, z)/λconn), (4)  

with the same normalization factor as for the internal synapses. 
Here, radius is approximated as rarea ≈ √

Aarea/π based on the 
surface area Aarea. The remaining integrals are solved numerically 
using the adaptive multidimensional quadrature implemented 
in SciPy (Virtanen et al. 2020). ρinternal and ρexternal are used to 
determine the number of synapses with neurons within and 
outside of the column, respectively: 

Ninternal 
synapse =

ρinternal 

ρinternal + ρexternal 
Nlocal 

synapse, (5)  

Nexternal 
synapse = 

ρexternal 

ρinternal + ρexternal 
Nlocal 

synapse. (6)  

Note that although we keep rcol. the same for all areas, both ρinternal 

and ρexternal are area-specific because their thickness h, the total 
surface area, and the neuron densities vary. 

For the local connectivity within the column, comprising 
Ninternal 

synapse synapses, we use the model of Potjans and Diesmann 
(2014) as a blueprint. More precisely, we use the average number 
of synapses qPD 

B→A between a neuron in source population B and 
a neuron in target population A. We combine these average 
numbers of synapses with the number of neurons NB 

neuron, NA 
neuron 

in the pre- and postsynaptic population: 

NB→A 
synapse = 

NB 
neuronqPD 

B→ANA 
neuron∑

A,B NB 
neuronqPD 

B→ANA 
neuron 

Ninternal 
synapse. (7)  

Equation ( 7) keeps the relative average number of synapses per 
pair of neurons (i.e. relative to the other population pairs) equal to 
the respective value in Potjans and Diesmann (2014) by construc-
tion. In particular, for agranular areas, Eq. (7) assigns no synapses 
to layer 4 while preserving the anatomically determined number 
of synapses. The resulting average numbers of model-internal 
local synapses per neuron are listed for each target population 
in Supplementary Table S5. 

The Nexternal 
synapse synapses from outside the column are also dis-

tributed based on Potjans and Diesmann (2014). Here, we use the 
indegrees KPD 

ext→A (kext(reference) in their table 5) and the number 
of neurons in the postsynaptic population NA 

neuron to scale the 
number of synapses: 

Next→A 
synapse = 

KPD 
ext→ANA 

neuron∑
A K

PD 
ext→ANA 

neuron 
Nexternal 

synapse . (8)  

Thus, the external indegrees from Potjans and Diesmann (2014) 
determine the relative external indegrees for the different popu-
lations but not their absolute values. In both Eq. (7) and  Eq. (8), we 
round the final result to obtain an integer number of synapses. 
The resulting external indegrees are not explicitly represented in 
the model by simulated neurons. Rather, they are simplified as 
excitatory external inputs, as described in the next sections. 

Long-range projections 
The Nnonlocal 

synapse synapses could belong to intra- or inter-hemispheric 
inter-areal projections, or to projections from subcortical struc-
tures. Retrograde tracing in macaque showed that only about 5% 
of the presynaptic neurons are located in nonadjacent cortical 
areas within the hemisphere and only about 1% are located in 
subcortical structures (Markov et al. 2011). Furthermore, con-
tralateral projections (from the other hemisphere) tend to form 
only a small fraction of the combined inter-areal projections (e.g. 
Dehay et al. 1988; Barbas et al. 2005; Rosen and Halgren 2022), 
although this fraction is regionally specific (Ruddy et al. 2017). 
Based on these observations and the assumption that the fraction 
of presynaptic neurons equals the fraction of the corresponding 
synapses, we neglect both subcortical and inter-hemispheric pro-
jections, i.e. we treat all Nnonlocal 

synapse synapses as belonging to intra-
hemispheric inter-areal projections. Furthermore, we assume that 
the presynaptic neurons are inside the simulated column in the 
respective presynaptic area. Thus, we do not consider spatial 
divergence or convergence of connections beyond the 1 mm2 

scale. 
We define the area-level connectivity according to processed 

DTI data from  Goulas et al. (2016), which is based on data from 
the Human Connectome Project (Van Essen et al. 2013). For a given 
target area X, we distribute the synapses among the source areas

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
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based on the relative number of streamlines NoSY→X in the DTI 
data: 

NY→X 
synapse = 

NoSY→X∑
Z NoSZ→X 

Nnonlocal 
synapse . (9)  

As before, we round the resulting value. 
A comprehensive dataset on the layer specificity of the 

presynaptic neurons based on retrograde tracing is available for 
macaque (Markov et al. 2014a, b). Not only in this species but 
also in cat, the layer specificity as measured by the fraction of 
supragranular labeled neurons SLN is systematically related to 
the cytoarchitecture (Van Albada et al. 2022). For our human 
model, we assume the same quantitative relationship as in 
macaque, for lack of the relevant human-specific data. Fitting 
a beta-binomial model with a probit link function to the macaque 
data yields (Schmidt et al. 2018a) 

SLN(B → A) = �
(
a0 + a1 log(ρA 

neuron/ρB 
neuron)

)
, (10) 

where �(x) = 1 
2 [1 + erf(x/

√
2)] denotes the cumulative distribu-

tion function of the standard normal distribution and the fitted 
parameters are a0 = −0.152 and a1 = −1.534.  We use the human  
neuron densities in Eq. (10) to estimate the laminar origin in 
human. The SLN value allows determining whether the origin is 
in layer 2/3 or not. Excluding layer 4, which does not form long-
range projections (Markov et al. 2014b), the 2 infragranular layers 
5 and 6 still need to be distinguished. To this end, we simply use 
the relative size of the 2 populations to distribute the remaining 
synapses. 

On the target side, anterograde tracing can specify the layer 
specificity. However, there are no comprehensive datasets of 
anterograde tracing in non-human primates available to date. 
Hence, we use the collected data from the CoCoMac database 
(Stephan et al. 2001), which aggregates data across many tracing 
studies. Relating the target patterns from anterograde tracing to 
the SLN value reveals 3 categories of target patterns (Schmidt 
et al. 2018a): 

SLN > 65% :[4] 

35% ≤ SLN ≤ 65% :[1, 2/3, 4, 5, 6] 

SLN < 35% :[1, 2/3, 5, 6], 

where layer 4 is replaced by 2/3 in the first case for agranular 
target areas (Beul and Hilgetag 2015). Using the SLN value to 
distinguish feedforward (SLN > 65%), lateral (35% ≤ SLN ≤ 65%), 
and feedback (SLN < 35%) connections, this implies that feed-
forward connections target layer 4, feedback connections avoid 
layer 4, and lateral connections show no distinct pattern. For the 
quantitative distribution of the synapses onto the layers included 
in the respective target pattern, we use the relative thickness of 
the layer in relation to all layers of the target pattern. 

Thus far, we determined the location of the synapse in the 
target layer. Next, we decide whether the postsynaptic neuron of 
a synapse in a given layer is excitatory or inhibitory based on the 
analysis of the data by Binzegger et al. (2004) in Schmidt et al. 
(2018a, Table S11). To this end, we sum the target probabilities for 
postsynaptic neurons across all layers separately for excitatory 
and inhibitory neurons. This yields the probability for a synapse 
in a given layer to have an excitatory or inhibitory postsynaptic 
neuron in any layer. However, we take one exception into account: 
for feedback connections (SLN < 35%), we fix the fraction of 

excitatory target cells to 93% (Schmidt et al. 2018a) because 
feedback connections have been found to preferentially target 
excitatory neurons (Johnson and Burkhalter 1996; Anderson et al. 
2011). 

To finally determine the postsynaptic neuron, we assume that 
all inhibitory postsynaptic neurons are in the same layer as 
the synapse. For the excitatory neurons, we take the dendritic 
morphology into account. Using morphological reconstructions 
of human pyramidal cells in temporal cortex (Mohan et al. 2015) 
(for a subset of the data see Mohan et al. 2023), we calculate 
the layer-resolved length of dendrites for neurons with the soma 
in a given layer. Assuming a constant density of synapses along 
the dendrites, the ratio of the length �A,B of dendrites in layer 
A ∈ [1, 2/3, 4, 5, 6] belonging to neurons with soma in layer B ∈ 
[2/3, 4, 5, 6] to the total length of dendrites in this layer,

∑
B �A,B, 

determines the probability that the postsynaptic cell is in layer B 
given that the synapse is in layer A: P(soma in B | synapse in A) =
�A,B/

∑
B �A,B. 

Ultimately, we only need the location of the postsynaptic 
neuron but not the location of the synapse. Thus, we multiply 
P(soma in B | synapse in A) with the distribution of the synapses 
across the layers and marginalize the synapse location. The 
average numbers of incoming long-range synapses per neuron 
for all areas in our model are listed in Supplementary Table S6. 

Further model specifications 
Neuron parameters 
We use the LIF neuron model with exponential postsynaptic 
currents (Gerstner et al. 2014) for all neurons. To determine the 
parameter values, we analyzed the LIF models from the Allen Cell 
Types Database (https://celltypes.brain-map.org/; Teeter et al. 
2018; Berg et al. 2021) which were fitted to human neurons. For 
both excitatory and inhibitory cells, we fix the leak and reset 
potential to VL = Vreset = −70 mV. For the threshold potential Vth, 
the membrane time constant  τm, and the membrane capacitance 
Cm, we fitted a log-normal distribution using maximum likelihood 
estimation to the distribution of the respective parameter for all 
cells in which the LIF model had an explained variance above 
0.75 to ensure a good fit of the LIF model. For convenience, we 
parameterize the log-normal distribution using the mean and 
the coefficient of variation CV. The resulting mean threshold 
potential is Vth = −45 mV for both excitatory and inhibitory cells 
with CV = 0.21 and CV = 0.22 for excitatory and inhibitory cells, 
respectively. The resulting mean capacitance is Cm = 220 pF and 
Cm = 100 pF with CV = 0.22 and CV = 0.34 for excitatory and 
inhibitory cells, respectively. To account for the high-conductance 
state in vivo (Destexhe et al. 2003), we lower the membrane 
time constant to τm = 10 ms on average with CV = 0.55 and 
CV = 0.43 for excitatory and inhibitory cells, respectively. We 
do not distribute the synaptic time constants, which we fix to 
τs = 2 ms, and the absolute refractory period of tref = 2 ms. 

In all simulations shown in the main text, the neuron param-
eters are not distributed, i.e. all coefficients of variation were set 
to CV = 0. Simulations with distributed neuron parameters are 
shown in the appendix. 

Synapse parameters 
We use static synapses with a transmission probability of 100 %. 
Excitatory postsynaptic potentials follow a truncated normal dis-
tribution with average amplitude 0.1 mV and relative standard 
deviation of 10 %. The inhibitory postsynaptic potentials also 
follow a truncated normal distribution with a factor g = 5 larger 
absolute value of the mean and standard deviation. Excitatory

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
https://celltypes.brain-map.org/
https://celltypes.brain-map.org/
https://celltypes.brain-map.org/
https://celltypes.brain-map.org/
https://celltypes.brain-map.org/
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(inhibitory) weights are truncated below (above) zero; values out-
side of the allowed range are redrawn. 

Postsynaptic potentials are converted into postsynaptic cur-
rents using the conversion factor 

PSC 
PSP 

= 
Cm 

τm
ε−1/(1−ε) , ε = 

τs 

τm 
. (11) 

Note that the conversion factor depends on both the synapse 
parameters ( τs) and the postsynaptic neuron parameters (τm, Cm). 

We introduce several scaling factors that affect the postsynap-
tic potentials: first, the synaptic weights of the synapses within 
a column from layer 4 excitatory neurons to layer 2/3 excitatory 
neurons are increased 2-fold, in agreement with the blueprint 
(Potjans and Diesmann 2014). Second, we introduce a scaling 
factor χI for the cortico-cortical synapses targeting inhibitory 
neurons. This scaling factor stabilizes the column with respect 
to inter-areal input. For all simulations shown in the main text, it 
is set to 2.0. Third, we introduce a scaling factor χ for the inter-
areal connections onto both excitatory and inhibitory neurons. 
Increasing this factor leads to the best-fitting version Figs. 5 and 
6. For inter-areal synapses onto inhibitory neurons, χI and χ are 
multiplied with each other. 

Delays 
Within a column, the average transmission delay is 1.5 ms for 
excitatory and 0.75 ms for inhibitory connections. For the inter-
areal connections, we assume an average conduction velocity of 
3.5 m/s (Girard et al. 2001). Dividing the fiber length between 2 
areas, obtained through tractography (Goulas et al. 2016), by this 
conduction velocity, we obtain the average delay between the 2 
areas. All delays follow a truncated log-normal distribution with 
a relative standard deviation of 50 %. Delays are truncated below 
the resolution of the simulation; values outside of the allowed 
range are redrawn. 

External input 
We determined the number of synapses from non-simulated 
presynaptic neurons in Eq. (8). The postsynaptic potentials follow 
a truncated normal distribution with average wext = 0.1 mV and 
relative standard deviation of 10 %. Note that, for simplicity, we 
assume that the external input is exclusively excitatory. We keep 
the mean input, measured relative to rheobase, fixed at ηext = 1.1 
and determine the rate of the driving Poisson processes by 

νA 
ext = 

Vth − VL 

τmwextKext 
A 

ηext, (12) 

with Kext 
A = Next→A 

synapse/NA 
neuron (extrinsic indegrees for each popu-

lation listed in Supplementary Table S7). We further introduce 2 
scaling factors for the postsynaptic potentials arriving at excita-
tory neurons in layers 5 and 6, respectively. For all simulations 
shown, the first scaling factor is set to 1.05 and the second to 1.15. 
The resulting νext, for our parameter set, spans a range from 0 to 
13.35 spikes/s, with a mean of 3.59 ± 2.03 spikes/s. An isolated 
neuron receiving only the external input fires in the range of 35.0 
to 50.0 spikes/s. 

Activity data 
Experimental spiking data 
Minxha et al. (2020) recorded data from 13 adult epilepsy patients 
under evaluation for surgical treatment using depth electrodes in 
medial frontal cortex. In total, they recorded 767 neurons within 

320 trials and extracted spikes using a semi-automated spike 
sorting algorithm. For our analysis, we disregard task-related 
activity and use only the 2 s of activity that were recorded before 
stimulus onset. The data are publicly available via the Open 
Science Framework at http://doi.org/10.17605/OSF.IO/U3KCP. 

Temporal hierarchy from model spiking data 
To study the propagation of macroscopic fluctuations through 
the network, we determine the dominant order of activations 
of the areas, which we term “temporal hierarchy,” in the best-
fitting version of the model. Spike trains from simulations of 10 
s biological time (after an initial 2.5 s that are discarded) using 
the best-fitting parameters were converted to spike rate signals 
by aggregating across layers and 1-ms time intervals. For each 
pair of areas, delay times (positive or negative) were estimated 
as the peak location of the cross-correlation function between 
their spike rate signals. When multiple peaks of similar height 
were detected, the delay was selected based on specific criteria: 
if the corresponding delays had the same sign, the one closest to 
zero was selected. Otherwise, the case was labeled “undecided.” 
To further refine the delay estimates, the time series was divided 
into 9 segments to get 9 independent estimates of the delay. When 
the median absolute deviation of these 9 peaks was more than 
3 ms, the previously computed delay was rejected. The resulting 
data formed a matrix consisting of delay times between pairs of 
areas, along with “undecided” labels for ambiguous cases. The 
method described by Schmidt et al. (2018b) was used to minimize 
the delays predicted from the hierarchy (starting with the most 
leading and ending with the most lagging area) and the actual 
delay estimates. This hierarchy thus represents the main direction 
of activity flow across the areas, apart from oscillatory activity 
that we largely discard because of the ambiguous directionality it 
implies. 

FMRI data 
Participants 
MRI data were obtained from 19 participants (7 female, age range 
= 21 to 33 years, mean age = 25 years) with normal or corrected-to-
normal visual acuity. All participants provided written informed 
consent after receiving full information about experimental pro-
cedures and were compensated for participation through either 
monetary reward or course credit. All procedures were conducted 
with approval from the local Ethical Committee of the Faculty of 
Psychology and Neuroscience at Maastricht University. 

Magnetic resonance imaging 
Anatomical and functional images were acquired at Maastricht 
Brain Imaging Centre (Maastricht University) on a whole-body 
Magnetom 7T research scanner (Siemens Healthineers, Erlan-
gen, Germany) using a 32-channel head-coil (Nova Medical Inc.; 
Wilmington, MA, USA). Anatomical data were collected prior to 
functional data with an MP2RAGE (Marques et al. 2010) imaging  
sequence [240 slices, matrix = 320 × 320, voxel  size  =  0.65 × 0.65 × 
0.65 mm3, first inversion time (TI1) = 900 ms, second inversion 
time (TI2) = 2750 ms, echo time (TE) = 2.51 ms, repetition time (TR) 
= 5000 ms, first nominal flip angle = 5◦, and second nominal flip 
angle = 3◦, GRAPPA  =  2]. Functional images were acquired using a 
gradient-echo echo-planar (Moeller et al. 2010) imaging sequence 
(84 slices, matrix = 186 × 186, voxel  size  =  1, 6 × 1.6 × 1.6 mm3, 
TE = 22 ms, TR = 1500 ms, nominal flip angle = 63◦, GRAPPA  =  2, 
multi-band factor = 4). In addition, after the first functional run, 
we recorded 5 functional volumes with opposed phase encoding

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
http://doi.org/10.17605/OSF.IO/U3KCP
http://doi.org/10.17605/OSF.IO/U3KCP
http://doi.org/10.17605/OSF.IO/U3KCP
http://doi.org/10.17605/OSF.IO/U3KCP
http://doi.org/10.17605/OSF.IO/U3KCP
http://doi.org/10.17605/OSF.IO/U3KCP
http://doi.org/10.17605/OSF.IO/U3KCP
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Table 2. Model description after Nordlie et al. (2009). 

Model summary 

Populations 34 areas (Table 1) with a total of 254 populations. The model consists of about 3.5 million neurons and 43 billion 
synapses. 

Geometry — 

Connectivity area- and population-specific but otherwise random 

Neuron model LIF, fixed absolute refractory period (voltage clamp) 

Synapse model exponential postsynaptic currents 

Plasticity — 

Input independent homogeneous Poisson spike trains 

Measurements spiking activity 

Populations 

Type Cortex 

Elements LIF neurons 

Number of populations 34 areas with 8 populations each (areas caudalanteriorcingulate, caudalmiddlefrontal, entorhinal, lateraloccipital, 
parsorbitalis, precentral, rostralanteriorcingulate have 6, and the parahippocampal area has 4), 2 per layer 

Population size N (area- and population-specific) 

Connectivity 

Type source and target neurons drawn randomly with replacement (allowing autapses and multapses) with area- and 
population-specific connection probabilities. The total number of synapses between populations is fixed, 
corresponding to the “Random, fixed total number” rule described by Senk et al. (2022). 

Weights fixed, drawn from normal distribution with mean J such that postsynaptic potentials have a mean amplitude of 
0.1 mV and standard deviation δJ = 0.1J; 4E to 2/3E increased  by factor  2 (cf. Potjans and Diesmann 2014); weights of 
inhibitory connections increased by factor g; excitatory weights < 0 and inhibitory weights > 0 are redrawn; 
inter-areal weights onto inhibitory populations increased by factor χI and onto excitatory and inhibitory populations 
increased by factor χ 

Delays fixed, drawn from truncated lognormal distribution with mean d and standard deviation δd = 0.5d; delays of  
inhibitory connections factor 2 smaller; delays rounded to the nearest multiple of the simulation step size 
h = 0.1 ms, inter-area delays drawn from a truncated lognormal distribution with mean d = s/vt, with distance s and 
average transmission speed vt = 3.5 m/s (Girard et al. 2001); and standard deviation δd = d/2, distances determined 
as the median of the distances between all vertex pairs of the 2 areas in the DTI data (Goulas et al. 2016), delays 
< 0.1 ms before rounding are redrawn 

Neuron and synapse model 

Name LIF neuron 

Type LIF, exponential synaptic current inputs 

Subthreshold dynamics dV 
dt = − V−EL 

τm 
+ Is(t) 

Cm 
if(t > t∗ + τr), V(t) = Vr else, Is(t) = ∑

i,k Jk e
−(t−tk 

i )/τs �(t − tk 
i ), k: neuron index, i: spike index, �: 

Heaviside step function 

Spiking If V(t−) < θ  ∧ V(t+) ≥ θ 1. set t∗ = t, 2. emit spike with time stamp t∗ 

Input 

Type Background 

Target LIF neurons 

Description Independent homogeneous Poisson spike trains to all neurons in the network; rate fixed such that the mean input, 
measured relative to rheobase, is ηext = 1.1 

Measurements 

Spiking activity 
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Table 3. Parameter specification for synapses and neurons. 

Name Value Description 

Synapse parameters 

J ± δJ Intra-areal connections: 16.4 ± 1.6 pA onto excitatory and 
7.5 ± 0.8 pA onto inhibitory neurons prior to the application of 
scaling factors, inter-areal connections scaled as Jcc = χ J onto 
excitatory and Jcc = χχIJ onto inhibitory neurons 

excitatory synaptic strength 

g g = 5 relative inhibitory synaptic strength 

de ± δde 1.5 ± 0.75 ms local excitatory transmission delay 

di ± δdi 0.75 ± 0.375 ms local inhibitory transmission delay 

d ± δd d = s/vt ± 1 
2 s/vt inter-area transmission delay, with s the distance 

between areas 

vt 3.5 m/s transmission speed 

Neuron parameters 

τm 10 ms membrane time constant 

τr 2 ms absolute refractory period 

τs 2 ms postsynaptic current time constant 

Cm 220 pF for excitatory neurons,100 pF for inhibitory neurons membrane capacity 

Vr −70 mV reset potential 

θ −45 mV fixed firing threshold 

EL −70 mV leak potential 

directions to correct for EPI distortions that occur at higher field 
strengths ( Andersson et al. 2003). 

Participants underwent 5 functional runs comprising a resting-
state measurement, 3 individual task measurements, and a task-
switching paradigm wherein participants repeatedly performed 
each of the 3 tasks. With the exception of the task-switching 
run, which lasted 9.5 min, all functional runs lasted 15 min. 
Since task-related runs were not included in this study, they 
will not be discussed further. However, it is noteworthy that 
resting-state runs always preceded task-related runs to prevent 
carry-over effects (Grigg and Grady 2010). Participants were 
instructed to close their eyes during resting-state runs and 
otherwise to let their mind wander freely. 

Processing of (f)MRI data 
Anatomical images were downsampled to 0.8 × 0.8 × 0.8 mm3 

and subsequently automatically processed with the longitudi-
nal stream in FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) 
including probabilistic atlas-based cortical parcellation according 
to the Desikan–Killiany (DK) atlas (Desikan et al. 2006). Initial 
preprocessing of functional data was performed in BrainVoyager 
20 (version 20.0; Brain Innovation; Maastricht, The Netherlands) 
and included slice scan time correction and (rigid body) motion 
correction wherein all functional runs were aligned to the first 
volume of the first functional run. EPI distortions were then 
corrected using the COPE (Correction based on Opposite Phase 
Encoding) plugin of BrainVoyager that implements a method 
similar to that described in Andersson et al. (2003) and the 
“topup” tool implemented in FSL (Smith et al. 2004). The pairs of 
reversed phase encoding images recorded in the beginning of the 
scanning session were used to estimate the susceptibility-induced 

off-resonance field and correct the distortions in the remaining 
functional runs. This was followed by wavelet despiking (Patel and 
Bullmore 2016) using the BrainWavelet Toolbox (brainwavelet.org) 
for MATLAB (2019a, The MathWorks, Natick, MA). Subsequently, 
high-pass filtering was performed in BrainVoyager with a 
frequency cutoff of 0.01Hz and to register functional images to 
participants’ anatomical images. Using MATLAB, functional data 
were then cleaned further by regressing out a global noise signal 
given by the first 5 principal components of signals observed 
within the cerebrospinal fluid of the ventricles (Behzadi et al. 
2007). Finally, voxels were uniquely assigned to one of 68 cortical 
regions of interest (ROIs) and an average BOLD signal for each ROI 
was obtained as the mean of the time-series of its constituent 
voxels. 

Code and workflow 
The entire workflow of the model, from data preprocessing 
to simulation and the final analysis, relies on the Python 
programming language (https://www.python.org/) version 3.9 
in combination with NumPy (Harris et al. 2020) version 1.21.3, 
SciPy (Virtanen et al. 2020) version 1.7.1, pandas (McKinney 2010) 
version 1.3.4, Matplotlib (Hunter 2007) version 3.4.3, networkx  
version 2.4 (Hagberg et al. 2008), and seaborn (Waskom 2021) 
version 0.11.2. All simulations were performed using the NEST 
simulator (Gewaltig and Diesmann 2007) version  2.20.2 (Fardet 
et al. 2021) on the JURECA-DC supercomputer. A simulation of 
10 s biological time takes approximately 200 core-hours (1 min 
build phase + 15 min for 10 s biological time on 768 cores). The 
workflow is structured using Snakemake (Köster and Rahmann 
2012). For the mean-field analysis, we used the NNMT toolbox 
(Layer et al. 2022).

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
brainwavelet.org
brainwavelet.org
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
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Results 
Human mesoscale connectome 
The model comprises all 34 areas of one hemisphere of human 
cortex in the Desikan–Killiany parcellation (Desikan et al. 2006). 
Each area is modeled by a 1 mm2 column and the columns are 
connected through long-range projections (see Fig. 1). We here 
give a brief summary of the model construction complementing 
the details in the Materials and methods. 

We distinguish 2 classes of neurons, excitatory and inhibitory, 
and account for the layered structure of cortex. At this level of 
modeling, the connectivity statistics between neurons in both 
classes and all layers are needed, which are not straightforwardly 
delivered by current experimental techniques. Accordingly, we 
combine available data with predictive connectomics to arrive at 
a human mesoconnectome at a layer- and population-resolved 
level. The lack of data on the connectivity is the main reason 
for considering only 2 classes of neurons. While a recent study 
defines 45 inhibitory and 24 excitatory neuron types in human 
(Hodge et al. 2019), including this diversity would require a huge 
number of cell-type-specific connection probabilities. This is not 
yet feasible because no connectivity data are available at such 
a fine granularity; hence, we restrict the model to 2 classes of 
neurons, as done in earlier studies (Potjans and Diesmann 2014; 
Schmidt et al. 2018a, b). 

Mesoscale connectome 
To derive the mesoconnectome, we start from the total number 
of synapses per layer and subsequently assign pre- and postsy-
natpic neurons. For the local connections, we use the connection 
probabilities derived by Potjans and Diesmann (2014) (Fig. 2A and 
Sec. “Local connectivity”) as a blueprint. The relative connection 
probabilities across source and target populations are kept con-
stant, and they are only scaled by a constant factor to achieve the 
desired total number of local synapses in each area. The cortico-
cortical connectivity on the area level is specified by DTI data 
from the Human Connectome Project (Goulas et al. 2016, which 
is based on the data from Van Essen et al. 2013; Fig. 2B and Sec. 
“Long-range projections”). Synapses associated with long-range 
projections are assigned to postsynaptic neurons according to 
morphological reconstructions of human neurons (Mohan et al. 
2015; Fig. 2C and Sec. “Long-range projections”). 

The laminar origin of long-range projections is based on predic-
tive connectomics. Retrograde tracing data in macaque show that 
the laminar origin is systematically related to the cytoarchitecture 
(Hilgetag et al. 2019; Fig. 2D). Assuming that the same relation also 
holds in human, we use the fit in combination with the human 
cytoarchitecture to determine the laminar origin (Fig. 2E). For the 
laminar target, we assume the same relation between laminar 
origin and target as done for macaque by Schmidt et al. (2018a), 
for lack of layer-specific human data. 

Combining these data, we arrive at a human mesoconnectome 
which specifies the number of synapses between excitatory and 
inhibitory neurons for all areas in the Desikan–Killiany parcella-
tion on a layer- and population-specific level (Fig. 2F). 

Connectivity validation 
To validate the derived mesoconnectome, we compare it with 
anatomical features that were observed in other species but that 
were not explicitly built in. 

The density of connections between areas is highly hetero-
geneous, spanning 5 orders of magnitude, and approximately 

log-normally distributed in mouse (Gămănuţ et al. 2018), mar-
moset (Theodoni et al. 2021), and macaque (Ercsey-Ravasz et al. 
2013). Similarly, in our model the numbers of synapses between 
pairs of populations span 5 orders of magnitude (Fig. 3A) and  
they are approximately log-normally distributed. Furthermore, 
the connection density decays exponentially with distance in 
mouse (Horvát et al. 2016), marmoset (Theodoni et al. 2021), and 
macaque (Ercsey-Ravasz et al. 2013). In our model, the number 
of synapses between pairs of areas also decays exponentially 
(Fig. 3B) with a decay constant of 45.6 mm. Thus, 2 salient features 
of tracing data are captured by our model. 

Anterograde tracing data indicate that feedback axons arborize 
more strongly than their feedforward counterparts (Rockland 
2019). This suggests a larger outdegree of feedback projections 
compared with feedforward projections. In our model, the average 
outdegree from neurons in a given population to a given target 
area varies systematically between feedforward and feedback 
projections (Fig. 3C); here, feedforward and feedback were clas-
sified based on the predicted SLN value (Schmidt et al. 2018a): 
SLN > 65% (feedforward), 35% ≤ SLN ≤ 65% (lateral), and 
SLN < 35% (feedback). The average outdegree for feedforward 
inter-area connections in our model is 352 compared with 554 in 
the feedback direction. While the model preserves the biological 
neuron and synapse density as well as the average indegree, 
modeling all projections as coming from the 1 mm2 microcircuits 
alters the average outdegree for inter-area projections. Specifi-
cally, this multiplies the average outdegree by the ratio of source 
area surface to target area surface; taking this factor into account 
leads to an estimated biological average outdegree of 793 in the 
feedforward and 1221 in the feedback direction. 

Finally, fully reconstructed axons (Winnubst et al. 2019) suggest 
that many projecting neurons target multiple areas. To check for 
such divergence in the model, we restrict ourselves to connections 
with an average outdegree larger than 100. Again using the pre-
dicted SLN value to separate feedforward, lateral, and feedback 
connections, we obtain a broad distribution of the number of 
target areas (Fig. 3D). In addition to the larger outdegree in the 
feedback direction, feedback projections also target more areas: 
on average 3.53 compared with 2.46 for lateral and 1.97 for feed-
forward projections. 

Micro- and macroscopic dynamics 
Spiking activity in the base version 
We first consider simulations with equal strengths of local and 
inter-areal synapses. The simulated spiking activity of this base 
version of the model is asynchronous and irregular with low firing 
rates across all areas (Fig. 4). There is a pronounced structure 
of the activity across populations, layers, and areas (Fig. 4A–C). 
To quantify the spiking activity further, we consider population-
averaged statistics (Fig. 4D–F). The firing rate of the inhibitory 
neurons is higher than the firing rate of the excitatory neurons, 
with the highest activity in layer 6 (Fig. 4D). The activity of some 
excitatory populations is very low, in particular in layers 2/3 and 5 
(Fig. 4D). In terms of the irregularity of the spike trains, quantified 
by the coefficient of variation CV of the interspike intervals, 
all populations are in the regime of CV ISI ≈ 0.8 (Fig. 4E), i.e. 
slightly more regular than a Poisson process. Lastly, the average 
pairwise correlation between the neurons is close to zero across 
all populations (Fig. 4F). 

Comparison with experimental activity data 
To obtain stronger inter-areal interactions, we increase the 
inter-areal synaptic weights onto excitatory neurons by the
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Fig. 2. Data and predictive connectomics. (A) Within-area connectivity blueprint (average number of synapses per pair of neurons). (B) Inter-areal  
connectivity based on DTI (number of streamlines); see Table 1 for acronyms. (C) Probability for inter-areal synapses in a given layer to be established 
on neurons with cell body in a given layer, estimated from human neuron morphologies. (D) Relation of neuron densities of source area B and target 
area A with laminar source pattern (fraction of supragranular labeled neurons, SLN) in macaque. (E) Predicted source pattern (SLN) in human. (F) Layer-
and population-resolved mesoconnectome (number of synapses). 

inter-areal scaling factor χ and onto inhibitory neurons by a 
factor χIχ , where  χI = 2. We compare the resulting activity 
of the model with experimental activity data on 2 levels: on 
the neuron level, we use the electrophysiological recordings 
by Minxha et al. (2020) from human medial frontal cortex (cf. 
Sec. “Experimental spiking data”); on the cortex level, we use 
resting-state fMRI data from 19 subjects (cf. Sec. “FMRI data”). 
The electrophysiological data were recorded in dorsal anterior 
cingulate cortex and pre-supplementary motor area; we compare 
the data with the model activity in area caudalanteriorcingulate. 
The pre-supplementary motor area overlaps with our model area 
superiorfrontal but forms only a small part of it, so that the 
2 cannot be meaningfully compared. Since the recordings are 

not layer- or population-specific, we combine the spike trains 
of all layers and populations in caudalanteriorcingulate for 
this analysis. In both the experimental and simulated data, we 
consider only neurons with at least 0.5 spikes/s for the firing rate, 
and, for the irregularity, expressed as the coefficient of variation of 
the interspike intervals (CV ISI) and revised local variation (LvR), 
we consider only neurons with at least 10 spikes in the respective 
interval. LvR is a measure of spike train irregularity that corrects 
for firing rate variations and refractoriness (Shinomoto et al. 
2009). As the spike trains comprise only s of activity, we divide 
the 10 s of simulated activity into 5 snippets of equal length. In 
order to compare the experimental and simulated distributions, 
we calculate the Kolmogorov–Smirnov distances between them
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Fig. 3. Connectivity validation. (A) Histogram of the number of synapses between pairs of populations (gray bars) and a log-normal fit (black line). 
(B) Logarithmic number of synapses between a pair of areas versus distance between these areas (gray symbols) and an exponential fit with decay 
constant λ (black line). (C) Average outdegree of a neuron in any given population to any postsynaptic area in either feedforward (FF) or feedback (FB) 
direction. (D) Average number of target areas of a neuron in any given population to any postsynaptic area with average outdegree larger than 100 in 
either feedforward (FF), lateral (LAT), or feedback (FB) direction. 

Fig. 4. Spiking activity in the base version of the model. (A–C) Raster plots for 3 representative areas; subsampled to 2.5% of the excitatory (blue) and 
inhibitory (red) neurons. (D–F) Layer- and population-resolved distribution of population-averaged statistics across areas; boxes show quartiles, whiskers 
are within 1.5 times the interquartile range, symbols show outliers outside of the whiskers. (D) Firing rate. (E) CV ISI of neurons with at least 10 spikes. 
(F) Pairwise correlation coefficient of a random subsample of 2000 neurons for each population. 

and report 1 − KSdist as a measure of similarity, where 0 means 
no and 1 means perfect similarity. To obtain a proxy for the BOLD 
signal from our model, we use the absolute value of the area-
level synaptic currents (Schmidt et al. 2018b). We compute the 
functional connectivity using the Pearson correlation coefficient 

of this BOLD proxy (simulation) or the BOLD signal (experiment). 
As a measure of the similarity between the modeled and empirical 
functional connectivity we use the Pearson correlation coefficient 
and the root-mean-square error (RMSE), in both cases excluding 
the diagonal where all values are identically one. We convert the
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RMSE to a similarity measure using exp(−RMSEsim/σexp), where  
σexp denotes the standard deviation of the functional connectivity. 
We use both methods because the Pearson correlation is based 
on relative values and quantifies the linear relationship between 
the variables, while the RMSE-based measure takes into account 
the absolute FC strengths. 

Figure 5A shows how the different similarity measures depend 
on the inter-areal scaling factor χ . The agreements of the CV ISI, 
the LvR, and the rates initially stay constant and these measures 
abruptly show a higher agreement at χ = 2.5. At  χ-values close 
to 2.5, the network sometimes starts in a state of high activity 
and then, after an initial transient, settles in a lower activity state 
or, depending on the random seed, the network operates in a 
higher- or lower activity state for the same value of χ for the 
full simulation duration. To exclude transients due to a transition 
from a high- to a low-activity state, we disregard the first 2500 ms. 
The distributions of the spiking activity measures continue to 
match the experimental data well until χ = 2.8. Afterwards,  the  
similarities of the irregularity measures CV ISI and LvR deterio-
rate. The similarity of the fMRI functional connectivity calculated 
using the Pearson correlation of the experimental and simulated 
functional connectivity matrices grows from 0.37 to 0.47 and then 
suddenly drops to 0.33 at χ = 2.5, a value around which it remains. 
The correlation to be maximally accounted for by the model is 
given by the mean correlation of the experimental functional 
connectivities across subject pairs, which is 0.63; this ceiling is 
thus not reached. On the other hand, using the RMSE, the similar-
ity stays initially around 0.38 and grows to 0.46 at χ = 2.5, which is 
consistent with the behavior of the spiking activity measures. The 
mean RMSE-based similarity between experimental functional 
connectivities of different subjects is 0.59. Thus, also in terms of 
this measure, the model does not fully account for the empirical 
FC structure in human subjects, but it comes closer than the 
Pearson correlation. As χ = 2.5 is the first point at which most 
measures show good agreement, we use this setting for further 
analysis. In the following text, we refer to this setting as “the best-
fitting version.” 

A closer look at the underlying statistics (Fig. 5B–D) confirms  
that the best-fitting version matches the experimental data better 
than the base version does. The firing rate distribution (Fig. 5B) 
is reproduced well by both the base and the best-fitting version, 
but the latter follows the experimental distribution slightly better. 
This matches the observation in Fig. 5A, where the firing rate 
similarity is high throughout and peaks at the best-fitting version. 
The CV ISI (Fig. 5C) shows clear differences between the base and 
the best-fitting versions: in the former, the CV ISI is narrowly 
distributed around a sub-Poissonian average; in the best-fitting 
version and the recordings, the CV ISI is broadly distributed 
around a Poissonian average. These 2 distributions match almost 
exactly. Similar observations hold true for the LvR, where the main 
difference compared with the CV ISI is that all distributions are 
slightly broader. 

To facilitate the comparison of the functional connectivities, we 
group the areas into clusters of different resting-state networks 
following Kabbara et al. (2017). The experimental (Fig. 5E) and  
best-fitting (Fig. 5G) functional connectivities show a clear 
structure with increased correlations within the clusters in the 
resting-state networks, while the functional connectivity of the 
base version shows only very weak correlations (Fig. 5F). Also 
the enhanced correlations between the dorsal attention network 
(DAN) and the salience network (SAN) are well captured by 
the model in the best-fitting version. These improvements are 
captured by the RMSE-based measure, which takes into account 

the absolute FC values, as opposed to the Pearson correlation, 
which only considers the linear relationship between the 
empirical and simulated FC. 

Analysis of best-fitting version 
The simulated spiking activity in the best-fit version varies 
across areas both quantitatively and qualitatively. Generally, firing 
rates are higher in the best-fit version than in the base version 
(Fig. 6). Some areas, such as caudalanteriorcingulate (Fig. 6A) 
and fusiform (Fig. 6C), show low-rate uncorrelated spiking 
activity with brief population bursts, while some areas, such as 
pericalcarine, are in a state of high firing in most populations. 
For completeness, the raster plots of all areas are shown in the 
Appendix (Figs. S11, S12, S13). We consider population-averaged 
statistics to quantify the spiking activity on the level of the full 
network (Fig. 6D–F). Inhibitory neurons have higher firing rates 
than excitatory neurons, with the highest activities in layers IV 
and VI (Fig. 6D). The activity of some excitatory populations is 
very low, particularly in layers 2/3, 4, and 6. The irregularity of 
the spike trains, quantified by the CV ISI, is on average closer 
to that of a Poisson process compared with the base version, 
but also varies more strongly across areas (Fig. 6E). The average 
pairwise correlations are generally low, but reach higher values in 
a number of areas  (Fig. 6F). 

Temporal hierarchy 
An important aspect of global network dynamics is the temporal 
relation between signals in different brain regions. An estimate 
of the direction of the activity flow, which we term “temporal 
hierarchy” (see section “Temporal Hierarchy from Model Spiking 
Data’’) in the best-fitting version of our model is shown in Fig. 7B. 
Its construction is inspired by Mitra et al. (2014), though they 
worked with fMRI data, which reveals dynamics on the scale of 
seconds rather than milliseconds. We see an activation pattern 
following the order of parietal, occipital, temporal, and frontal 
areas. We compare our result with the work of Dentico et al. 
(2014), which is based on EEG data. They look at the flow of 
activity under 2 conditions: visual perception and visual imagery. 
Their findings show that the flow of activity, in particular 
from the occipital lobe to the parietal gyrus, reverses when 
visual input is absent. This is consistent with the temporal 
hierarchy in our model, which has no visual input, and has 
the parietal cortex leading the occipital areas. In the macaque 
visual cortex model of Schmidt et al. (2018b), their Figs. 7D 
and 7G show the same pattern of parietal leading occipital 
regions. Furthermore, in both our model and that described in 
Schmidt et al. (2018b), the parietal areas are the first to become 
activated, identifying these as drivers of cortical spontaneous 
activity. 

Propagation of a single-spike perturbation 
In vivo, single-neuron perturbations can affect behavior (Brecht 
et al. 2004; Houweling and Brecht 2008). But how does a single-
neuron perturbation spread across the cortical network consisting 
of millions of neurons or more? We investigate this in our model 
comprising 3.5 million neurons. To this end, we perturb the mem-
brane potential of a single excitatory neuron in layer 4 in primary 
visual cortex (area pericalcarine) such that it exceeds the thresh-
old and emits a spike. On the network level, this is an extremely 
weak perturbation. However, since spiking networks are highly 
sensitive to perturbations (London et al. 2010; Monteforte and 
Wolf 2010), even a single spike can alter the spiking pattern of 
the network (Izhikevich and Edelman 2008).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
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Fig. 5. Comparison with experimental activity data. (A) Similarity of simulated spiking activity in area caudalanteriorcingulate to experimental spiking 
data (Minxha et al. 2020) recorded in medial frontal cortex and to resting-state fMRI functional connectivity (cf. Sec. “FMRI data”) as a function of the 
scaling parameter χ for inter-areal synaptic strengths. The vertical dashed line at 2.5 corresponds to the chosen best-fitting version. The shaded areas 
represent the standard deviation over 10 simulation runs, each with a different random seed. (B–D) Distribution of spiking statistics across neurons in 
experimental spiking data (Minxha et al. 2020) and in the simulated base and best-fitting versions: distribution of firing rates (B), CV ISI (C), and revised 
local variation (LvR; Shinomoto et al. 2009) (D). (E–G) Functional connectivity in the default mode network, DAN, SAN, auditory network (AUD), visual 
network (VIS), and the remaining areas (other). Experimental functional connectivity of the right hemisphere from fMRI recordings, averaged across 19  
subjects (E). Simulated functional connectivity based on synaptic input currents in the base (F) and the best-fitting version (G). 

Fig. 6. Best-fitting spiking activity of the model. (A–C) Raster plots for 3 representative areas; subsampled to 2.5% of the excitatory (blue) and inhibitory 
(red) neurons. (D–F) Layer- and population-resolved distribution of population-averaged statistics across areas; boxes show quartiles, whiskers are within 
1.5 times the interquartile range, symbols show outliers outside of the whiskers. (D) Firing rate. (E) CV ISI of neurons with at least 10 spikes. (F) Pairwise  
correlation coefficient of a random subsample of 2000 neurons for each population. 
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Fig. 7. Temporal hierarchy of activity flow across the network. Inflated medial and lateral views of the brain (A) depict the temporal order of activation, 
with colors ranging from white for the most leading area to dark blue for the last. The black zone in the medial view is not part of the model. The 
temporal hierarchy matrix in (B) is based on the estimation of delays obtained as peaks in the cross-correlation function between source and target 
area, with the ordering of areas determined as described in the section “Temporal Hierarchy from Model Spiking Data”. The matrix is symmetric across 
the diagonal with inverse sign. Cells marked with “x” indicate delays classified as ‘undecided’. On the x- and y-axis the brain area labels are colored 
according to a coarse anatomical division of parietal (gray), occipital (light gray), temporal (blue) and frontal (green) lobes. Abbreviations from Table 1. 
Brain meshes from Winkler (2013); Bakker et al. (2015). 

We perform 2 simulations with identical parameters and ran-
dom seeds but once without and once with the single-neuron 
perturbation. The drawn random numbers and their total number 
are the same in both simulations. To quantify alterations of the 
spiking pattern, we count the total number of spikes of a popula-
tion in 0.1 ms bins and compute the difference between the unper-
turbed and the perturbed simulation. As soon as the difference 
is nonzero due to an additional or missing spike, our observable 
is set to one. Thus, the observable quantifies the presence or 
absence of a spike in a given population due to the perturbation. In 
both the base version (Fig. 8A) and the best-fitting version (Fig. 8B), 
the perturbation propagates to all areas in less than 50 ms. In  
the best-fitting version, the perturbation propagates even slightly 
faster to most areas (Fig. 8C). Presumably, the increased activity 
level in the best-fitting version contributes to this difference in 
propagation speed (Fig. 6). In the base version, the propagation 
time is 29.4 ± 10.9 ms (mean ± standard deviation); in the best-
fitting version, it is 25.1 ± 10.4 ms. 

How is this fast propagation possible? Just like weighted area-
level cortical graphs of mice and macaques (Bassett and Bullmore 
2017), the population-level graph in our model exhibits small-
world network properties (Watts and Strogatz 1998). Namely, only 
a small number of steps is needed to reach any node: the shortest 
path length between any pair of populations is between 1 and 
4 and  at most 5 (Fig. 8D). But the shortest path length in terms 
of the number of populations traversed does not account for the 
transmission delay, which is particularly relevant between areas. 
Taking also the delay into account by weighting each step with 
the mean delay and computing the Dijkstra path length (Dijkstra 
1959), i.e. the shortest path based on the sum of the mean delays, 
we see that the small-world property of the network enables a 
Dijkstra path length below 50 ms for any pair of populations and 
below 40 ms for the majority of pairs (Fig. 8E). Thus, the network 
structure supports fast propagation at the population level. The 
propagation of the perturbation indeed takes place on a timescale 

similar to the Dijkstra path length between the perturbed 
population and the target population. The distribution of delays 
(present in both model versions) in principle allows propagation 
to take place even faster than this path length. 

Discussion 
We aggregated data across multiple modalities, including electron 
microscopy, electrophysiology, morphological neuron reconstruc-
tions, and DTI, to construct a multi-scale spiking network model 
of human cortex. In this computational model featuring 3.5 mil-
lion neurons connected via 43 billion synapses, each area in a full 
hemisphere of human cortex is represented by a millimeter-scale 
layer-resolved microcircuit with the full density of neurons and 
synapses. The model was simulated on a supercomputer, using 
advances in the simulation technology of NEST. We filled gaps 
in the data using statistical regularities found in other species, 
in particular to determine the laminar origins and targets of 
inter-areal connections. Comparisons with electrophysiological 
recordings from human medial frontal cortex and human fMRI 
reveal that the model captures aspects of both microscopic and 
macroscopic resting-state activity when the strength of the inter-
areal synapses is increased. 

Base vs. best-fitting version 
Simulations of the model with equal local and inter-areal synap-
tic strengths (which we refer to as the “base version” of the 
model) reveal a state with asynchronous and irregular activity. 
The activity is heterogeneous across areas, layers, and excita-
tory and inhibitory populations. The activity deviates from the 
experimental recordings in terms of both spiking activity and 
inter-area functional connectivity. On the single-neuron level, the 
distribution of the spiking irregularity in the model is more narrow 
than the observed one and centered in the sub-Poissonian regime. 
On the network level, the activity is hardly correlated between
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Fig. 8. Propagation of the effects of a single spike. Binary absolute difference of spike counts per population in 0.1 ms bins between a perturbed and an 
unperturbed simulation with identical parameters and random seeds in the base version (A) and the best-fit version (B); the color quantifies the Dijkstra 
path length between the perturbed and the target population. Populations are ordered corresponding to the previous figures; for the scale see panel E. 
Timing of the first spike count difference per area (C) in the base version (orange) and the best-fit version (blue). Histogram of shortest path lengths 
between all pairs of populations in the network (D). Histogram of shortest path lengths weighted by the average delay between all pairs of populations 
in the network (E). 

areas, which stands in stark contrast to the salient structure in 
the fMRI data. 

To alleviate these discrepancies, we increased the synaptic 
weights of inter-areal connections. The increased anatomical 
connection strength leads to an increase in inter-areal correla-
tions, with a modular structure similar to the experimental data. 
On the level of the single-neuron statistics, the increased inter-
areal synaptic weights hardly affect the distribution of firing rates 
and irregularity until the synaptic weights reach a critical value 
at which the fit to the experimental data suddenly improves. 
This best-fitting version features not only stronger correlations 
between the activity in different areas but also within areas and 
populations. Furthermore, the firing rates, in particular in the 
inhibitory populations, are increased. Although the low overall 
firing rates and the higher inhibitory compared with excitatory 
rates are realistic features (Dehghani et al. 2016; Dąbrowska et al. 
2021), some layers and populations of the model exhibit either 
seemingly excessive or nearly vanishing rates. Since recordings 
of spiking activity from human cortex are few and far between, a 

“ground truth” to compare these spike rates with is not available. 
Furthermore, experimental recordings may miss many neurons 
that do not spike within the recording window (Shoham et al. 
2002; Urai et al. 2022). However, assuming that human cortical 
activity is like that from other species, completely silent neural 
populations and spike rates exceeding a few tens of spikes 
per second are anomalous. Besides the large variation in spike 
rates, a number of areas display highly synchronous activity 
(cf. Fig. S11–S13). To some extent, this may be less unrealistic 
than it appears at first sight, because vertical stripes in raster 
plots are emphasized when the spikes of more neurons are 
plotted: vertical stripes in raster plots of experimental spiking 
activity are less prominent than for a simulation with the same 
degree of synchrony where the spikes of many more neurons are 
shown. We previously presented such an example of simulated 
macaque V1 spiking activity, appearing highly synchronized 
upon visual inspection but matching both single-neuron spiking 
statistics and population activity power from experiments 
(Schmidt et al. 2018b). Nevertheless, the synchrony and large

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
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variations in spike rates across areas and layers in the present 
model are probably not yet an accurate reflection of cortical 
spiking activity, and remain to be addressed. One promising 
avenue is to enhance local balance via joint clustering of 
excitatory and inhibitory neurons (Pronold et al. 2024; Rostami 
et al. 2024). This refinement was shown to normalize spike rate 
distributions in a recent multi-area model of macaque cortex 
(Pronold et al. 2024), but is beyond the scope of this study. 

Propagation of macroscopic fluctuations and 
single-spike perturbations 
Computational models allow one to examine questions that are 
hard to investigate experimentally. Here, we study how both 
macroscopic activity fluctuations and single-spike perturbations 
propagate through the network. First, we construct a “temporal 
hierarchy” of inter-area propagation from the ongoing activity 
based on the cross-correlation functions of the area-level spiking 
activity. The results reveal a dominant order of parietal, occipital, 
temporal, and then frontal areas. Parietal areas leading the 
activity matches findings from a model of all vision-related areas 
in macaque cortex (Schmidt et al. 2018b), and the predominant 
activation of parietal before temporal regions matches EEG 
findings during visual imagery (Dentico et al. 2014). Different from 
Schmidt et al. (2018b), occipital areas precede temporal areas, 
and predominantly positive rather than negative correlations 
are found between the frontal areas and the remainder of 
the network. Possible reasons for these differences include 
the fact that the former study only included 2 frontal areas, 
whereas we here model a full hemisphere; and the adjustment 
of the method for constructing the temporal hierarchy, where 
we discard oscillatory activity. Coito et al. (2019) analyzed the 
directed functional connectivity of spontaneous EEG and found 
the strongest outflows from cingulate and medial temporal 
regions. This appears different from our results, although their 
methods differ strongly from ours and they did not assign an 
overall propagation order across all areas. As such, our model 
prediction merits further investigation. In future, propagation 
upon stimulation of for instance primary visual cortex may also 
be studied, akin to Joglekar et al. (2018) and Pronold et al. (2024). 
These studies report, respectively, that balanced amplification 
and joint clustering of excitatory and inhibitory cells may 
aid macroscopic activity propagation through the cortical 
network. 

Second, we use our model to track the effect of a single 
additional spike through the large-scale network. We find that 
the single-spike perturbation spreads across the entire network 
within less than 50 ms, close to the lower limit imposed by the 
mean transmission delay between the areas along the shortest 
possible path. In the best-fitting version, the propagation is even 
faster than in the base version. The observed latencies are on 
the same order as visual response latencies across macaque 
cortex (Lamme and Roelfsema 2000), but note that single-
spike perturbations may not be visible on the population level. 
Rapid propagation of spiking activity, whether on the single-
neuron or the population level, is likely to support fast sensory 
processing and behavioral responses. Due to the stochastic input 
to the network and its sensitivity to small perturbations, the 
triggered spike sequences are not fixed but will differ between 
trials. However, signal separation and classification performance 
may benefit from the divergence of trajectories due to chaos 
(Keup et al. 2021). The stochasticity of the external drive in 
our model reflects the lack of knowledge about the activity of 
the non-modeled parts of the brain. In reality, these inputs will 

be more deterministic and less variable across trials, and may 
therefore support more reliable spike sequences. Future work 
may furthermore investigate whether subnetworks with strong 
synapses, such as those modeled for turtle cortex by Riquelme 
et al. (2023), can support repeatable and precisely timed spike 
sequence in the human cortical network. 

Delineation from other species 
The approach we followed closely resembles that taken for the 
multi-area model of macaque vision-related cortex of Schmidt 
et al. (2018a, b). A notable difference compared with that model is 
that our best-fitting version is stable over the full length of the 
investigated simulations, in contrast to the metastable activity 
obtained there, which sometimes switched to a high-activity state 
after long simulation durations. In the best-fitting version, our 
model still exhibits a type of metastability: in some simulations, 
the activity is initially high and later switches to the lower activity 
state that matches the experimental data better and that we 
analyze. The increased stability of the best-fitting state in the 
present model compared with the macaque model and the lack 
of excessive network-averaged firing rates throughout the simu-
lations provide a better match to actual brain activity. 

Just like the model of Schmidt et al. (2018a, b), the present 
model predicts that stronger inter-areal compared with local 
synapses are needed to account for appreciable functional con-
nectivity between areas, a feature that may be investigated exper-
imentally. In our model, the inter-areal synapses are, moreover, 
stronger onto inhibitory than onto excitatory neurons. A similar 
feature was reported in mice, where interareal excitatory synaptic 
input to layer 2/3, but not to layer 5, parvalbumin-expressing 
interneurons is stronger than to pyramidal neurons (Yang et al. 
2013; D’Souza et al. 2016; D’Souza and Burkhalter 2017). How-
ever, using estimates of the relative densities of excitatory and 
inhibitory neurons taken from cat area 17 (Gabbott and Somogyi 
1986; Binzegger et al. 2004; Potjans and Diesmann 2014), we 
were also able to obtain good correspondence with experimen-
tal resting-state activity in simulations with very strong inter-
areal synapses, equal in strength onto excitatory and inhibitory 
neurons (Fig. S6). In this case, stability was afforded by stronger 
local synapses onto inhibitory compared with excitatory cells, 
consistent with slice data from human cortex (Campagnola et al. 
2022). In all cases, we did not need to adjust the connection 
densities to obtain plausible activity as done in the macaque 
model (Schuecker et al. 2017). This is an improvement because 
now the connection densities can be directly estimated from the 
empirical data. 

A question that naturally emerges is what sets human cortex 
apart from that of other species in terms of the properties that 
determine its resting-state activity statistics. One property that 
differs with respect to other species is the fraction of excitatory 
vs. inhibitory neurons, which appears to be lower especially in 
human cortical layer 2/3 (Gabbott and Somogyi 1986; Sahara 
et al. 2012; Shapson-Coe et al. 2021; Alreja et al. 2022). Our model 
predicts that this reduced excitation in the supragranular layers 
necessitates greater inter-area coupling for the resting-state 
activity statistics to match the experimental data, and further 
leads to a slighty different pattern of functional connectivity 
between areas (cf. Fig. 5, Fig. S6). Future work may consider a 
selective increase in the occurrence of bipolar-type interneurons, 
which preferentially target other inhibitory neurons (Loomba 
et al. 2022). Further, human cortical neurons tend to be larger 
and have a lower count density than in other species, receiving 
more synapses per neuron on average (Sherwood et al. 2020;

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
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Loomba et al. 2022). This is likely to be advantageous for 
information processing, due to a combinatorial explosion of 
potential synaptic co-activations, but even the implications 
for resting-state activity remain to be understood. As we 
have also mentioned and incorporated into our model, the 
inter-area connectivity of human cortex is sparser because 
the increased surface between the gray and white matter 
does not make up for the increased brain volume, so that 
relatively fewer myelinated axons can connect the areas 
than in species with smaller brains (Herculano-Houzel 2009). 
Another prominent feature of human cortex is its large number of 
areas, although the increase in this number with respect to other 
species appears only moderate compared with the expansion of 
the surface area (Changeux et al. 2021). This study uses a coarse 
parcellation both for computational efficiency and to limit the 
number of unknown parameters, but future work may refine 
the model toward the potentially 180 or more areas per human 
cortical hemisphere (Glasser et al. 2016; Amunts et al. 2020). A 
further aspect, not yet considered here, is the large transcriptional 
diversity of human cortical neurons, which putatively form 
hundreds of cell types (Hodge et al. 2019; Miller et al. 2019). 
Taking into account this extensive diversity would necessitate 
estimating a huge number of connection probabilities, scaling 
with the square of the number of cell types, which the available 
experimental data do not yet allow. This complexity may be 
gradually approached in future. Also certain electrophysiological 
properties differ between the cortical neurons of humans and 
those of other species; for instance, human layer 2/3 pyramidal 
cells have a smaller specific capacitance, which may to some 
extent be compensated by the larger size of human neurons 
(Eyal et al. 2018). Here, we have included distinct human-specific 
electrophysiological parameters for excitatory and inhibitory 
cells, but the investigation of further cell-type diversity and the 
comparison with single-neuron parameters from different species 
are left to future work. 

Outlook 
Various assumptions and approximations flow into the model 
definition. For instance, with the modeled inhibitory postsynaptic 
potentials being 5 times as large as excitatory ones, the relative 
strength of inhibitory synapses is rather high in the model, in 
vitro recordings suggesting a factor closer to 1 (Campagnola et al. 
2022). However, reducing the IPSP-to-EPSP ratio even to a value of 
2 does not allow adequate reproduction of the observed micro-
scopic and macroscopic activity statistics (see Fig. S3). A possible 
resolution to this apparent inconsistency is that cortical circuits 
achieve effective inhibition via other factors than simply PSP size, 
such as more precisely attuned inhibition at the level of small 
subcircuits, individual neurons, or even dendritic branches (Xue 
et al. 2014; Arkhipov et al. 2018; Pronold et al. 2024; Rostami et al. 
2024; Znamenskiy et al. 2024; Horton et al. 2024). For simplicity 
and model robustness, we defined the synaptic strengths via 
only a few parameters; in reality, synaptic strengths are diverse, 
for instance having laminar specificity, and the properties of 
synapses conveying feedforward and feedback signals are likely to 
differ (Germuska et al. 2006; Bastos et al. 2012; Self et al. 2012). In 
addition, the electrophysiological properties of individual neurons 
are known to be distributed, as characterized in detail in the Allen 
Cell Types Database (Teeter et al. 2018). However, using distribu-
tions based on the human neuron parameters provided by the 
Allen Cell Types Database leads to a worse fit to the experimental 
data compared with using the mean values only (see Fig. S4). A 
possible reason is that, in reality, intrinsic neuron parameters and 

input strengths are attuned to each other, preventing neurons 
with high intrinsic excitability from being strongly driven (Joseph 
and Turrigiano 2017). Another example is that we assumed the 
fraction of inter-areal plus subcortical connections to equal the 
fraction of white-matter connections; however, cortical areas, 
especially adjacent ones, may also be connected to some extent 
via the gray matter (Vandevelde et al. 1996; Anderson and Martin 
2009). Furthermore, the synaptic time constants for excitatory 
and inhibitory connections are taken to be equal in the model, 
whereas these have been found to differ in nature (Spruston et al. 
1995; Salin and Prince 1996; Angulo et al. 1999; Gupta et al. 2000). 
Using longer inhibitory than excitatory time constants, we are 
still able to obtain a close fit to the experimental activity data 
when also adjusting the membrane time constants and more 
strongly scaling the long-range synaptic strengths (see Fig. S5). In 
terms of in- and outdegrees of long-range projections, our model 
preserves the mean indegree but alters the mean outdegree by the 
ratio of source area surface to target area surface. The outdegree 
might affect the strength of the correlations; furthermore, the 
activity of the projecting neurons might be more correlated since 
they are assumed to be all within the same microcircuit. Further 
research may incorporate more realistic spatial divergence and 
convergence of connections along the cortical surface. 

Besides qualitative approximations made in the model, 
detailed parameter values may also be updated in future, as 
additional data for human cortex are becoming available. For 
instance, layer- and cell-type-specific connection probabilities, 
synaptic strengths, and parameters of synaptic dynamics were 
recently measured in acute slices of human frontotemporal 
cortex (Campagnola et al. 2022). Furthermore, the recent electron 
microscopic reconstruction of a millimeter-scale fragment of 
human temporal cortex (Shapson-Coe et al. 2021) delivers 
layer- and cell-type-specific local connectivity data that may 
be used to adjust the microcircuit connectivity used here. The 
neuron morphologies used here (Mohan et al. 2015, 2023) have  
important selection effects, being taken from temporal cortex 
and neurons having to be relatively free of cutting artifacts to be 
selected for reconstruction, which will tend to favor neurons with 
relatively small apical dendritic trees. These selection effects may 
gradually be overcome as new data become available. Enabling 
further model refinement, a number of valuable resources and 
results have recently been published, detailing various aspects 
of histology, immunohistochemistry (Alkemade et al. 2022), 
transcriptomics (Jorstad et al. 2023; Siletti et al. 2023), and depth-
resolved fMRI (Pais-Roldán et al. 2023) of the human brain. 
Furthermore, detailed human cytoarchitecture and receptor 
densities are gathered in the BigBrain (Amunts et al. 2013; Wagstyl 
et al. 2020; Zachlod et al. 2023), and are still being complemented 
with new measurements. These data follow the Julich-Brain 
parcellation (Amunts et al. 2020), which is more fine-grained than 
the Desikan–Killiany parcellation used here. Thus, the data may 
be leveraged either by finding an appropriate mapping between 
parcellations or by increasing the granularity of the model. 

Experimental functional connectivity is not stationary but 
exhibits slow fluctuations (Deco et al. 2011). Currently, our 
model does not exhibit dynamics on such long timescales; 
we hypothesize that additional slow processes like spike-
frequency adaptation, short-term plasticity, or neuromodulation 
are necessary to this end. Furthermore, the absence of slow 
activity may lead to an overestimation of the correlations in the 
functional connectivity estimation when applying the Balloon– 
Windkessel model or low-pass filtering the signal. To avoid 
that, we opted to base our fMRI BOLD proxy directly on the

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhae409#supplementary-data
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summed synaptic inputs. However, it should be noted that a direct 
comparison of the estimated absolute values with experimental 
data may not be ideal since we consider shorter timescales in 
our measure. Therefore, other methods should be explored in the 
future to account for these issues. 

Our model provides a starting point for investigating cor-
tical processes including adaptation, plasticity, and neuro-
modulation via simulation. It enables in silico studies of the 
multi-scale dynamics of the human cerebral cortex and the 
information processing it supports, from the level of spiking 
neurons to that of interacting cortical areas. To facilitate such 
further studies, the source code is publicly available at https:// 
zenodo.org/doi/10.5281/zenodo.13711671. 
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