Platelet adenylate cyclase and phospholipase C are affected differentially by ADP-ribosylation

Effects on thrombin-mediated responses

Harjit S. BANGA,* Randall K. WALKER,† Larry K. WINBERRY† and Susan E. RITTENHOUSE*‡ *Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, and †Biologic Laboratories, Center for Disease Control, Massachusetts Department of Public Health, Boston, MA 02130, U.S.A.

Thrombin stimulates phospholipase C and inhibits adenylate cyclase in human platelets. We have studied the effect of purified S_1 monomer, the ADP-ribosylating subunit of pertussis toxin, on these receptorcoupled G-protein-dependent activities. ADP-ribosylation of a 41 kDa protein is associated with a marked decrease in the ability of thrombin to inhibit cyclic AMP formation, but has little effect on phospholipase C. Therefore adenylate cyclase and phospholipase C appear to be modulated by different G-proteins.

INTRODUCTION

The incubation of human platelets with thrombin leads to activation of phospholipase C and is associated with the hydrolysis of membrane phosphoinositides and accumulation of inositol trisphosphate and diacylglycerol (Rittenhouse-Simmons, 1979; Rittenhouse & Sasson, 1985; Tarver et al., 1987). Thrombin is also a potent inhibitor of adenylate cyclase in platelets, attenuating the PGE₁-stimulated increase in cyclic AMP (Aktories & Jakobs, 1984). This action of thrombin is mediated by an inhibitory guanine nucleotide-binding protein, G, (Aktories & Jakobs, 1984). Treatment of platelet membranes and permeabilized platelets with pertussis toxin, which ADP-ribosylates the α -subunit of G_i, uncouples adenvlate cyclase from the inhibitory effects of thrombin (Brass et al., 1986; Grandt et al., 1986). Activation of phospholipase C is also considered to be mediated by a G-protein, since permeabilized platelets exposed to stable analogues of GTP exhibit formation of inositol phosphates (Lapetina, 1986) and diacylgycerol (Haslam & Davidson, 1984), and thrombin-induced phospholipase C activation can be inhibited by GDP[S] (Brass et al., 1986). Such phospholipase C-directed Gprotein activity has been referred to as G_p (Cockcroft, 1987). Studies with several cell systems have indicated that receptor-stimulated responses are inhibited when such cells are incubated with pertussis toxin (Nakamura & Ui, 1985; Verghese et al., 1985; Paris & Pouyssegur, 1986), implying that G_i may also be G_p . However, pertussis toxin has been shown to inhibit thrombininduced GTPase activity by only about 30%, perhaps indicating that thrombin stimulates yet another Gprotein in human platelets that is relatively resistant to pertussis-toxin treatment (Grandt et al., 1986; Houslay et al., 1986). We have undertaken further studies on the regulation of receptor-coupled enzyme activites by ADPribosylation-sensitive G-protein(s). We considered it important to use the purified ADP-ribosylating component (S_1 monomer) of pertussis toxin, rather than the holotoxin, to avoid the effects that the holotoxin's B (binding) subunit appears to exert (Banga *et al.*, 1987; Rosoff *et al.*, 1987). The results show that platelet adenylate cyclase and phospholipase C are affected differentially by exposure of platelets to ADP-ribo-sylation and that adenylate cyclase is much more sensitive to such treatment.

EXPERIMENTAL

Pertussis toxin was purified, and the S₁ monomer was isolated and inactivated with NEM as presented elsewhere (Banga *et al.*, 1987). Human platelet-rich plasma, free of erythrocytes, was prepared freshly in the presence of aspirin (1 mM) as described by Rittenhouse (1983). Platelets were washed and suspended (1.75×10^{9} /ml) in buffer, pH 7.1 (Brass *et al.*, 1986). Just before incubation at 37 °C, the platelets were diluted 5-fold with buffer containing 120 mM-KCl, 4 mM-MgCl₂, 15 mM-Hepes, 25 mM-NaCl, 1 mM-NaH₂PO₄, 1 mM-EGTA, 280 μ M-Ca²⁺, pH 7.1, and permeabilized with saponin (Brass *et al.*, 1986; Banga *et al.*, 1987) to allow access of S₁ (28 kDa) to substrates.

Detection of ADP-ribosylated protein

Platelets $(3.5 \times 10^8/\text{ml})$ were permeabilized by adding saponin $(15 \,\mu\text{g/ml})$ in the presence of $[^{32}\text{P}]\text{NAD}^+$ (70 $\mu\text{Ci/ml}, 1 \,\mu\text{M}$; NEN-Dupont), NADP⁺ (0.5 mM), ATP (0.5 mM) and S₁ monomer (0-40 $\mu\text{g/ml}$). NADP⁺ was included to minimize hydrolysis of NAD⁺ by platelets (Rosenthal *et al.*, 1987). The incubations were carried out at 37 °C, and the reaction was stopped after 5–60 min by adding an equal volume of ice-cold 20% (v/v) trichloroacetic acid. The precipitated material was washed with diethyl ether and analysed after onedimensional SDS/polyacrylamide-gel electrophoresis on 12.5%-acrylamide gels as described by Brass *et al.* (1986). The ADP-ribosylated band was detected by autoradiography and digested with 0.5 ml of H₂O₂ (30%, v/v) at 110 °C before radioactivity counting by

Abbreviations used: G-protein, guanine nucleotide-binding protein; GDP[S], guanosine 5'-[β -thio]diphosphate; NEM, N-ethylmaleimide; PGE₁, prostaglandin E₁; PtdOH, phosphatidic acid.

[‡] To whom reprint requests should be addressed.

- 66.2 kDa

41 kDa

31 kDa

Fig. 1. ADP-ribosylation in permeabilized platelets

Platelets were incubated with saponin (15 μ g/ml), [³²P]NAD⁺ (70 μ Ci/ml; 1 μ M), NADP⁺ (0.5 mM), ATP (0.5 mM) and either buffer (control) or S₁ monomer (Batch 1) with a final concentration of 10 (S₁¹⁰), 20 (S₁²⁰), 30 (S₁³⁰) or 40 (S₁⁴⁰) μ g/ml for the time periods indicated. The radiolabelled solubilized proteins were resolved on SDS/12.5%-polyacrylamide gels and observed by autoradiography.

Fig. 2. Time- and dose-dependence of ADP-ribosylation in permeabilized platelets

Platelets were incubated with S_1 (Batch 1; 10 μ g/ml) for 5–60 min. Experimental conditions were as described for Fig. 1. The 41 kDa protein band was digested with H_2O_2 before radioactivity counting. Results are c.p.m./4×10⁷ platelets. ADP-ribosylation in platelets incubated with increasing concentrations of S_1 for 10 min at 37 °C is shown in the inset as a percentage of maximal ADP-ribosylation; the maximum is considered to be that attained in 60 min with 10 μ g of S_1 /ml.

scintillation spectrophotometry in 1.0 ml of water + 10 ml of Monofluor (National Diagnostics). Inactivation of S_1 by NEM was confirmed as previously described (Banga *et al.*, 1987).

 $[^{32}P]NAD^+$ was separated after the above incubations on 0.1 mm-thick cellulose sheet impregnated with polyethyleneimine (Macherey–Nagel, Düren, Germany), as described by Cassel & Pfeuffer (1978), and its degradation was monitored by counting the radioactivity of the $[^{32}P]NAD^+$ spot after autoradiography.

PtdOH and cyclic AMP formation in permeabilized platelets

Formation of PtdOH (a measure of phospholipase C) and cyclic AMP were measured in permeabilized platelets by conversion of [³²P]ATP into respective products, rather than by mass analysis of diacylglycerol, inositol trisphosphate or cyclic AMP. This ensured that only the responses of permeabilized cells (and therefore substrates accessible to S_1) were monitored. S_1 is known to be without an effect on intact platelets (Banga *et al.*, 1987).

Platelets were permeabilized, as described above, by adding saponin (15 μ g/ml) at zero time and incubating at 37 °C in the presence of ATP (0.5 mM), NAD⁺ (0.5 mM) and S₁ monomer (0–30 μ g/ml); 9 min later, [γ -³²P]ATP (5 μ Ci/ml; NEN–Dupont) was added and the mixture allowed to equilibrate for 1 min. Platelets were then stimulated with α -thrombin (0.5 unit/ml; courtesy of Dr. Ken Mann, University of Vermont) and the incubation was quenched 2.5 min later with 3.75 vol. of chloroform/ methanol/HCl (20:40:1, by vol.). The lipid phase was separated, and [³²P]PtdOH was resolved and quantified after t.l.c. (Rittenhouse, 1983).

Adenylate cyclase activity was monitored by conversion of $[\alpha^{-3^2}P]ATP$ into cyclic $[{}^{3^2}P]AMP$. Saponinpermeabilized platelets $(3.5 \times 10^8/\text{ml})$ were incubated at 37 °C for 9 min, under conditions described above, before addition of $[\alpha^{-3^2}P]ATP$ (5 μ Ci/ml; NEN–Dupont). After a further 60 s, buffer or thrombin (0.5 unit/ ml) was added, followed by PGE₁ (500 nM) 15 s later. The incubation was continued for 2.5 min and quenched with ice-cold trichloroacetic acid (5 %). Cyclic [³H]AMP (12000 c.p.m.; NEN–Dupont) was added to monitor recoveries, and the cyclic $[^{32}P]AMP$ formed was separated and counted for radioactivity (Salomon *et al.*, 1974).

RESULTS AND DISCUSSION

Incubation of saponin-permeabilized platelets with purified S_1 monomer leads to the ADP-ribosylation of a 41 kDa protein (Fig. 1), which corresponds to the α subunit of G₁. Significant ADP-ribosylation is observed in a time- and dose-dependent manner (Figs. 1 and 2). More than one speices of ADP-ribosylatable protein may co-migrate in this region; however, we were unable to resolve the 41 kDa band further by gradient-gel electrophoresis. The extent of ³²P-monitored ADPribosylation is poor when carried out in the absence of NADP⁺, owing to rapid degradation of [³²P]NAD⁺ present at low concentrations. The amount of [32P]-NAD⁺ falls to about 50% of control within 5 min, and to 15% in 15 min, when incubated with permeabilized platelets in the absence of NADP⁺, whereas only a 5%decline in [³²P]NAD⁺ in the presence of NADP⁺ occurs in 15 min. NADP⁺ thus slows down the degradation of NAD⁺ in the reaction mixture, but does not seem to compete with NAD⁺ for pertussis-toxin-catalysed ADPribosylation (Rosenthal et al., 1987).

A 30 kDa protein is also found to be ADP-ribosylated in parallel with the 41 kDa band in the presence of S₁ (Fig. 1); however, do do not know whether it is a pertussis-toxin substrate in itself or a proteolytic product of the major 41 kDa substrate(s). Two other proteins, of approx. 39 and 40 kDa, are also labelled when permeabilized platelets are incubated with [32P]NAD+ and NADP⁺ in the absence of S_1 (Fig. 1). Such endogenous ADP-ribosylating activity in platelets and erythrocytes has been reported previously (Rosenthal et al., 1987). Although NADP⁺ efficiently inhibits the endogenous activity associated with platelet membranes, the activity in cytosol is little affected (Rosenthal et al., 1987). Thus the ADP-ribosylation of 39 and 40 kDa proteins that we observe may represent a cytosolic activity in permeabilized platelets. The significance of such endogenous ADP-ribosylation is not yet clear, and requires investigation.

Incubation of permeabilized platelets with S₁ monomer

Fig. 3. Effect of ADP-ribosylation on thrombin-mediated responses in permeabilized platelets

Permeabilized platelets, preincubated with S₁ (Batch 1; 0-30 μ g/ml) for 10 min at 37 °C, were stimulated with thrombin (0.5 unit/ml) for 2.5 min. The inhibition of thrombin's ability to suppress PGE₁-stimulated cyclic AMP formation () and its ability to cause PtdOH accumulation (O) were monitored as described in the Experimental section. Thrombin-mediated inhibition of PGE,-stimulated cyclic AMP formation in the absence of S₁ was $87.0 \pm 0.4\%$ (n = 3). [³²P]PtdOH in control platelets was 454 ± 30 c.p.m. (n = 4) and increased to 1734 ± 161 (n = 4) in the thrombin-treated platelets. S₁ had no effect on either PGE,-stimulated cyclic AMP formation or [³²P]PtdOH in control platelets. The results shown are representative of three such experiments. ADP-ribosylation, as % of maximum, was calculated as described for Fig. 2.

Table 1. Effect of ADP-ribosylation on thrombin-mediated inhibition of adenylate cyclase and activation of phospholipase C in permeabilized platelets

Human platelets $(3.5 \times 10^8/\text{ml})$ were permeabilized with saponin in the absence or presence of S₁(Batch 2; 10 or 20 µg/ml) and incubated at 37 °C for 10 min. The PGE₁-mediated increase in cyclic [³²P]AMP (control) and the ability of thrombin to inhibit such an increase in platelets incubated with or without S₁ were compared. Cyclic [³²P]AMP radioactivity in the absence of PGE₁ was 719±82 c.p.m. In a parallel experiment, [³²P]PtdOH formation under basal conditions (control) or with thrombin was also measured in platelets preincubated (10 min) with varied concentrations of S₁ (0-20 µg/ml). Values for radioactivity (c.p.m.) are means±s.p. (n = 3).

	Cyclic [³² P]AMP (c.p.m.)	[³² P]PtdOH (c.p.m.)	Percentage reversal (cyclic AMP)	Percentage inhibition (PtdOH)
Control	23241+1522	1079 + 15	_	_
+ thrombin (0.5 unit/ml)	7296 ± 562	4350 ± 189	0	0
$+S_1 (20 \mu g/ml)$	23088 ± 1421	1084 ± 28	-	-
$+S_1(10 \mu g/ml) + thrombin$	16600 <u>+</u> 207	4079 ± 32	58	8
$+S_1 (20 \mu g/ml) + thrombin$	22018 ± 212	3641 ± 150	92	22

under conditions that lead to ADP-ribosylation of the 41 kDa protein inhibits the ability of thrombin to suppress adenylate cyclase, thereby indicating that G_i is functionally modified by such treatment. The degree of such inhibition is related to the proportion of 41 kDa protein ADP-ribosylated (Fig. 3) and is not observed when S_1 is inactivated with NEM (results not shown). However, thrombin-stimulated phospholipase C activity is not affected by S_1 to a similar extent to adenylate cyclase. Considerable inhibition of thrombin-associated effects on adenylate cyclase is observed before any inhibitory effects on thrombin-activated phospholipase C are expressed (Fig. 3). In another set of experiments performed with a different batch of S_1 , phospholipase C activity was inhibited by only 22% when the effects of thrombin in suppressing adenylate cyclase were completely reversed (Table 1). Thus our results indicate that these two activities can be modulated differentially by S_1 . The inhibition of phospholipase C activity might become more pronounced if a significantly higher proportion of substrate were to be ADP-ribosylated, as has been achieved in cell-free platelet membrane systems incubated for 30 min with 50 μ g of pertussis toxin/ml (O'Rourke et al., 1987). However, increasing the concentration of S₁ beyond 30 μ g/ml (the ADP-ribosylating equivalent of about 120 μ g of pertussis toxin/ml) was found to increase ADP-ribosylation of permeabilized platelet protein only marginally (Fig. 2, inset). Also, incubation of platelets with saponin for longer than 10 min elevates basal PtdOH concentrations, diminishes the activation of phospholipase C in response to thrombin, and increases the amount of endogenous protein degradation (S. E. Rittenhouse & H. S. Banga, unpublished work). Thus an analysis of the relationship between ADP-ribosylation and inhibition of phospholipase C activation after extended incubations under our conditions does not appear to be feasible.

The differential effects of S₁-catalysed ADP-ribosylation on platelet adenylate cyclase and phospholipase C suggest that G_i is not a 'promiscuous' entity in the platelet, coupled to the thrombin receptor but free to interact with either adenylate cyclase or phospholipase C. Phospholipase C-directed ' G_p ' may be quite similar to adenylate cyclase-regulating G_i, possibly differing only with regard to susceptibility to ADP-ribosylation [e.g., via blockage of the target cysteine residue (Magee *et al.*, 1987)]. That phospholipase C and adenylate cyclase are coupled to agonists by two different C-proteins in platelets seems more probable, in light of the following additional observations: (1) adrenaline, which efficiently inhibits adenylate cyclase via G₁ (Katada et al., 1984), does not activate platelet phospholipase C (Banga et al., 1986); (2) the thromboxane A_2 analogues U46619 [(15S)hydroxy-11a,9a-(epoxymethano)prosta-5,13-dienoic acid] and ONO 11113 (9,11-epithio-11,12-methanothromboxane A₂) stimulate a phospholipase C activity in platelets that is dependent on G-protein function (Brass et al., 1987), but are unable to inhibit adenylate cyclase

(Brass *et al.*, 1987; H. S. Banga & S. E. Rittenhouse, unpublished work). Clearly, an important future direction for research on stimulus-response coupling in platelets is the isolation and complete characterization of ' G_p '.

The assistance of the vaccine-production staff of the Massachusetts Public Health Biologic Laboratories in the isolation of pertussis toxin is greatly appreciated. The blood-drawing services of the General Clinical Research Center of the Medical Center Hospital of Vermont are gratefully acknowledged. This work was supported by National Institutes of Health Grants HL38622 and HL38623 (to S.E.R.).

REFERENCES

- Aktories, K. & Jakobs, K. H. (1984) Eur. J. Biochem. 145, 333-338
- Banga, H. S., Simons, E. R., Brass, L. F. & Rittenhouse, S. E. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 9197–9201
- Banga, H. S., Walker, R. K., Winberry, L. K. & Rittenhouse, S. E. (1987) J. Biol. Chem. 262, 14871–14874
- Brass, L. F., Laposata, M., Banga, H. S. & Rittenhouse, S. E. (1986) J. Biol. Chem. 261, 16838–16847
- Brass, L. F., Shaller, C. C. & Belmonte, E. J. (1987) J. Clin. Invest. 79, 1269–1275
- Cassel, D. & Pfeuffer, T. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2669–2673
- Cockcroft, S. (1987) Trends Biochem. Sci. 12, 75-78
- Grandt, R., Aktories, K. & Jakobs, K. H. (1986) Biochem. J. 237, 669–674
- Haslam, R. J. & Davidson, M. M. L. (1984) J. Receptor Res. 4, 605–629
- Houslay, M. D., Bojanic, D., Gawler, D., O'Hagan, S. & Wilson, A. (1986) Biochem. J. 238, 109-113
- Katada, T., Bokoch, G. M., Northup, J. K., Ui, M. & Gilman, A. G. (1984) J. Biol. Chem. 259, 3568–3577
- Lapetina, E. G. (1986) Biochim. Biophys. Acta 884, 219-224
- Magee, A. I., Gutierrez, L., McKay, I. A., Marshall, C. J. & Hall, A. (1987) EMBO J. 6, 3353-3357
- Nakamura, T. & Ui, M. (1985) J. Biol. Chem. 260, 3584-3593
- O'Rourke, F., Zavoico, G. B., Smith, L. H. & Feinstein, M. B. (1987) FEBS Lett. 214, 176–180
- Paris, S. & Pouyssegur, J. (1986) EMBO J. 5, 55-60
- Rittenhouse, S. E. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 5417-5420
- Rittenhouse, S. E. & Sasson, J. P. (1985) J. Biol. Chem. 260, 8657-8660
- Rittenhouse-Simmons, S. (1979) J. Clin. Invest. 63, 580-587
- Rosenthal, W., Binder, T. & Schultz, G. (1987) FEBS Lett. 211, 137–143
- Rosoff, P. M., Walker, R. & Winberry, L. (1987) J. Immunol. 139, 2419–2423
- Salomon, Y., Londos, C. & Rodbell, M. (1974) Anal. Biochem. 58, 541–548
- Tarver, A. P., King, W. G. & Rittenhouse, S. E. (1987) J. Biol. Chem. 262, 17268–17271
- Verghese, M. W., Smith, C. D. & Snyderman, R. (1985) Biochem. Biophys. Res. Commun. 127, 450–457

Received 19 January 1988; accepted 8 March 1988