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Benchmarking machine learning methods
for synthetic lethality prediction in cancer

Yimiao Feng 1,2, Yahui Long 3, He Wang 1, Yang Ouyang 1, Quan Li 1,
Min Wu 4 & Jie Zheng 1,5

Synthetic lethality (SL) is a gold mine of anticancer drug targets, exposing
cancer-specific dependencies of cellular survival. To complement resource-
intensive experimental screening, many machine learning methods for SL
prediction have emerged recently. However, a comprehensive benchmarking
is lacking. This study systematically benchmarks 12 recent machine learning
methods for SL prediction, assessing their performance across diverse data
splitting scenarios, negative sample ratios, and negative sampling techniques,
on both classification and ranking tasks. We observe that all the methods can
perform significantly better by improving data quality, e.g., excluding com-
putationally derived SLs from training and sampling negative labels based on
gene expression. Among the methods, SLMGAE performs the best. Further-
more, the methods have limitations in realistic scenarios such as cold-start
independent tests and context-specific SLs. These results, together with
source code anddatasetsmade freely available, provide guidance for selecting
suitable methods and developing more powerful techniques for SL virtual
screening.

The synthetic lethal (SL) interactionbetweengeneswasfirst discovered
in Drosophila Melanogaster about a century ago1,2. SL occurs if muta-
tions in two genes result in cell death, but a mutation in either gene
alone does not. Based on this observation, Hartwell et al.3 and Kealin4

suggested that SL could be used to identify new targets for cancer
therapy. In the context of cancer, where multiple genes are often
mutated, identifying the SLpartners of thesegenes and interferingwith
their function can lead to cancer cell death, but spare normal cells.
PARP inhibitors (PARPi) are the first clinically approved drugs designed
by exploiting SL5, which target the PARP proteins responsible for DNA
damage repair for the treatment of tumors with BRCA1/2 mutations5–9.
Clinical trials have shown that PARPi have promising treatment effect
on lung, ovarian, breast, andprostate cancers9–12. Despite the success of
PARPi, there are still few SL-based drugs that have passed the clinical
trials so far, partly due to the lack of techniques to efficiently identify
clinically relevant and robust SL gene pairs.

Many methods have been proposed for identifying potential SL
gene pairs in the last decade. Various wet-lab experimental methods
such as drug screening13, RNAi screening14, and CRISPR/
Cas9 screening15 have been used to screen gene pairs with SL
relationships16. However, due to the large number of pairwise gene
combinations (~200 million in human cells)17, and considering the
combinations of different genetic contexts (e.g., cancer types and cell
lines), it is impractical to screen all potential SL pairs by these wet-lab
methods. To reduce the search space of SL gene pairs, computational
methods have been proposed. Statistical methods identify SL gene
pairs based on hypotheses derived from specific biological knowledge.
These methods are generally interpretable because they can reveal
statistical patterns between a pair of genes18. So far, biologists have
mainly relied on the statistical methods such as DAISY19, ISLE20, MiSL21,
SiLi22, etc. Additionally, random forests (RF), a traditional machine
learning method, are also frequently used23–25, probably because it is
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easier to understand than deep learning. However, the accuracy of
thesemodels largely depends on the reliability of the assumptions and
feature extraction, and they areoften hard tobe scaled up. By contrast,
deep learning methods can better capture the complex nonlinear
relationships between input and output, enabling them to identify
complex patterns in the data. However, deep learning methods have
not been well received by the biological community, partly because
biologists aremore concernedwith the accuracy and clinical relevance
of computationally predicted SL gene pairs. Most of the deep learning
methods for SL prediction so far are based on supervised or semi-
supervised learning and therefore rely on the quality and quantity of
labeled SL data, which are usually sparse and noisy. Furthermore, the
inherent black-box nature of deep learningmodelsmakes it difficult to
explain the prediction processes, hindering their practical application
in real-world settings.

In this work, we conduct a comprehensive benchmarking of
machine learning methods for SL prediction, providing guidelines for
biologists onmodel utilization. Two recent reviews18,26 summarize data
resources and computational methods associated with SL, but lack a
systematic assessment of these methods’ performance. We address
this gap by evaluating machine learning-based SL prediction methods
on classification and ranking tasks across different scenarios, including
the impact of negative sample quality from various sampling strate-
gies. We compile a list of recently published traditional machine
learning and deep learningmethods for predicting SL interactions (see
Supplementary Tables 14 and 15), from which we select three matrix
factorization methods and nine deep learning methods for bench-
marking (Table 1). To standardize input and output formats and to
facilitate data processing and result aggregation, we use SL labels from
SynLethDB27 and preprocess feature data frommultiple other sources
according to the model’s requirements, including knowledge graph
(SynLethKG27), GO (Gene Ontology28), PPI (BioGRID29), and Pathway
(KEGG30). To assess the generalizability and robustness of the models,
we incorporate three data segmentation methods (DSMs) and four
positive-to-negative ratios (PNRs) into our experimental design.
Additionally, we investigate the impact of negative sample quality on

the model performance by utilizing three negative sampling methods
(NSMs). Finally, we also perform two prediction tasks (i.e., classifica-
tion and ranking) to identify the most probable SL gene pairs.
Benchmarking results indicate that integrating information from
multiple data sources is beneficial for predicting results and improving
the quality of training data, such as screening negative samples based
on gene expression and removing SL calculated during the training
process. Additionally, our study extends the SL prediction problem to
a more realistic scenario, provides valuable insights into the perfor-
mance of different AI approaches to SL prediction, and further pro-
vides some suggestions for future development of new methods.

Results
Benchmarking pipeline
To evaluate machine learning methods for predicting SL interactions,
we selected 12 methods published in recent years, including three
matrix factorization-based methods (SL2MF31, CMFW32, and GRSMF33)
and nine graph neural network-based methods (DDGCN34, GCATSL35,
SLMGAE36, MGE4SL37, PTGNN38, KG4SL39, SLGNN40, PiLSL41, and
NSF4SL42), seeTable 1 formoredetails. The input data for thesemodels
varies, and in addition to SL labels, many kinds of data are used to
predict SL, including GO28, PPI29, pathways30,43, and KG27, etc., and the
detailed data requirements for each model are shown in Table 2. We
believe that how many kinds of data inputs a model can accept is a
function of the model’s own capabilities, and we focus on the model’s
performance in various scenarios. To accomplish this, we designed 36
experimental scenarios, taking into account 3 different data splitting
methods (DSMs), 4 positive and negative sample ratios (PNRs), and 3
negative sampling methods (NSMs) as shown in Fig. 1. In particular,
these scenarios can be described as: (NSMN, CVi, 1:R), where N ∈
{Rand, Exp, Dep}; i∈ {1, 2, 3}; R ∈ {1, 5, 20, 50} (seeMethods for specific
settings). After obtaining the results of all the methods in various
experimental scenarios, we evaluated their performance for both
classification and ranking tasks, and designed an overall score (see
Methods) to better quantify their performance in Fig. 2. We also
evaluated the scalability of all the models, including their

Table 1 | List of supervised machine learning methods for SL prediction

Model & Ref. Year Description

SL2MF31 2018 SL2MF uses logistic matrix factorization to learn gene representations, which are then used to identify potential SL interactions. The authors
design an importance weighting scheme to distinguish known and unknownSL pairs and combine PPI andGO information for the prediction.

GRSMF33 2019 GRSMF is a method based on graph regularized self-representation matrix factorization (MF). It learns self-representation from known SL
interactions and further integrates GO information to predict potential SL interactions.

CMFW32 2020 CMFW is a collective matrix factorization-based method that integrates multiple heterogeneous data sources for SL prediction.

DDGCN34 2020 DDGCN is the first graph neural network (GNN)-based method for SL prediction. It uses graph convolutional network (GCN) and known SL
interactionmatrix as features. The authors use coarse-grained nodedropout and fine-grained edge dropout to address the issue of overfitting
of GCNs on sparse graphs.

GCATSL35 2021 GCATSL proposes a graph contextualized attention network to learn gene representations for SL prediction. The authors use data of GO and
PPI to generate a set of feature graphs as model inputs and introduce attention mechanisms at the node and feature levels to capture the
influence of neighbors and learn gene expression from different feature graphs.

SLMGAE36 2021 SLMGAE is amethod for predicting SL interactions by leveraging amulti-view graph autoencoder. The authors incorporate data from PPI and
GO as supporting views, while utilizing the SL graph as the main view, and apply a graph autoencoder (GAE) to reconstruct these views.

MGE4SL37 2021 MGE4SL is a method based on Multi-Graph Ensemble (MGE) to integrate biological knowledge from PPI, GO, and Pathway. It combines the
embeddings of features with different neural networks.

KG4SL39 2021 KG4SL is a novel model based on graphical neural networks (GNN), and the firstmethod that utilizes knowledge graph (KG) for SL prediction.
The integration of KG helps the model obtain more information.

PTGNN38 2021 PTGNN is a pre-training method based on graph neural networks that can integrate various data sources and leverage the features obtained
from graph-based reconstruction tasks to initialize models for downstream link prediction tasks.

PiLSL41 2022 PiLSL is a graph neural network (GNN)-based method that predicts SL by learning the representation of pairwise interaction between
two genes.

NSF4SL42 2022 NSF4SL is a contrastive learning-basedmodel for SL prediction that eliminates the need for negative samples. It frames the SLprediction task
as a gene ranking problem and utilizes two interacting neural network branches to learn representations of SL-related genes, thereby
capturing the characteristics of positive SL samples.

SLGNN40 2023 SLGNN is a knowledge graph neural networks-based method for synthetic lethality prediction that models gene preferences in distinct
relationships in a knowledge graph, providing better interpretability.

Article https://doi.org/10.1038/s41467-024-52900-7

Nature Communications |         (2024) 15:9058 2

www.nature.com/naturecommunications


computational efficiency and code quality. In addition, we evaluated
the impact of labels from computational predictions on model per-
formance in Supplementary Notes 2.1, and included a comparison
between KR4SL44 and several deep learning methods on a dataset
processed according to KR4SL in Supplementary Notes 2.2. For amore
visual presentation of the benchmarking results, we provided figures

and tables (Fig. 2, Table 3, Supplementary Figs. 3–20 and Supple-
mentary Data 1) to show the results under various scenarios.

Classification and ranking
For the problem of predicting SL interactions, most current methods
still consider it as a classification problem, i.e., to determine whether a
given gene pair has SL interaction. However, models with classification
capabilities alone are insufficient for biologists, who need a curated list
of genes thatmayhave SL relationshipswith the genes they are familiar
with. This list can empower biologists to conduct wet-lab experiments
such as CRISPR-based screening. Among the evaluated methods, only
NSF4SL originally regards this problem as a gene recommendation
task, while other methods belong to the traditional discriminative
models. To compute metrics for both tasks using these models, we
adjusted the output layer, this modification ensures that every model
produces a floating point score as its output.

To assess the overall performance of the models in classification
and ranking tasks, we employed separate Classification scores and
Ranking scores (see “Methods”). Figure 2presents these scores and the
model’s performance across different scenarios andmetrics. Based on
the Classification scores, we found that when using negative samples
filteredbasedonNSMExp, themodelsusually had thebest performance
for the classification task. Among them, SLMGAE, GCATSL, and PiLSL
performed the best with Classification scores of 0.842, 0.839, and
0.817, respectively. On the ranking task, themodels performed slightly
better under the scenario of NSMRand, and the top threemethods were
SLMGAE, GRSMF, and PTGNN, achieved Ranking scores of 0.216,
0.198, and 0.198, respectively. From these scores, SLMGAE is the
model with the best overall performance.

Table 2 | Data requirements of all models compared in
this work

Model Data requirements

SL GO PPI KGa Additional data

SL2MF ✓ ✓ ✓

GRSMF ✓ ✓ ✓

CMFW ✓ ✓ ✓

DDGCN ✓

SLMGAE ✓ ✓ ✓

MGE4SL ✓ ✓ ✓ Pathway, Protein-complex

GCATSL ✓ ✓ ✓

PTGNN ✓ ✓ ✓ Protein sequence

KG4SL ✓ ✓

SLGNN ✓ ✓

PiLSL ✓ ✓ Gene expression

NSF4SL ✓ ✓

aKG includes 27 relationships, including GO and PPI.

Collec�on of methods

Matrix factoriza�on

SL2MF GRSMF CMFW

Deep learning

MGE4SL
KG4SL

DDGCN
PTGNN

GCATSL
PiLSL

SLMGAE
NSF4SL

Collec�on of data Metrics

Classifica�on

Ranking

AUROC
AUPR

F1

NDCG@K

Recall@K

Precision@K

-Nega�ve sampling strategy
-Data par��oning strategy
-Balance between posi�ve and nega�ve samples

Aspects of evalua�on

SynLethDB 2.0

SynLethDB 2.0

...

1:1 1:5 1:20

1:50

Dependency Score Expression

Random

9,845 Genes | 35,913 SL pairs
11,024 BPs | 3,781 MFs | 1,707 CCs
621,916 PPIs | 1,579 Pathways 
54,012 En��es | 2,233,172 Edges

N@10=0.71
R@10=0.80
P@10=0.40

A

B C D

Train pairs (CV1, CV2, CV3)

Test pairs (CV1, CV2)

Test pairs (CV3)

Score matrix

Pr
ed

ic
to

r

Feature
generator

SLGNN

Fig. 1 | Workflow of the benchmarking study. A A total of 12 methods are com-
pared, including 3 matrix factorization-based methods and 9 deep learning meth-
ods. B We collected data from different databases to build a benchmark dataset.
C This study compared the performance of the models in both classification and

ranking tasks. D We also designed various experimental scenarios, including dif-
ferent negative sampling methods, positive-negative sample ratios, and data par-
titioning methods. The combinations of these scenarios constitute a task space
ranging from easy to difficult tasks.
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In the following three sections, for the purpose of consistently
assessing the performance of each model across classification and
ranking tasks, we have designated a single metric for each task. Given
our focus on the accurate classification of positive samples and the
imbalance between positive and negative samples in experimental set-
tings, we primarily employ F1 scores to gauge the models’ classification
performance. Additionally, to appraise the model’s effectiveness in the
ranking task, we mainly rely on the NDCG@10 metric, which takes into
account the relevance and ranking of the genes in the SL prediction list.

Generalizability to unseen genes
In this section, we utilized three different data splitting methods
(DSMs) for cross-validation, namely CV1, CV2, and CV3 (see “Meth-
ods”), in the order of increasing difficulty. The performance of models
given these DSMs reflects their ability to generalize from known to
unknown SL relationships.

Among the three DSMs, CV1 is the most frequently used method
for cross-validation. However, this method exclusively provides accu-
rate predictions for genes present in the training set, lacking the ability

NSMRandA

NSMExpB

NSMDepC

Fig. 2 | Performance of themodels. A–C are the performance of themodel under
NSMRand, NSMExp and NSMDep, respectively, where lighter colors indicate better
performance. The figure contains five parts of information: a) A list of the 12
models. b) The overall scores of the models and the combined scores under the

classification task and the ranking task only. c) and d) The performance of the
models under the classification and ranking tasks, including six experimental
scenarios consisting of 2 DSMs and 3 PNRs. e) The average time required for the
models to complete one cross-validation.
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to extend its predictive capabilities to genes unseen during training.
The CV2 scenario can be characterized as a semi-cold start problem,
i.e., one and only one gene in a gene pair is present in the training set.
This scenario holds significant practical implications. Considering the
existence of ~10,000 known genes involved in SL interactions, there is
a substantial number of human genes remain unexplored. These
genes, which have not yet received enough attention, likely include
numerous novel SL partner genes of known primary genes mutated in
cancers. CV3 is a complete cold-start problem, i.e., neither of the two
genes is in the training set. Under CV3, themodelmust adeptly discern
common patterns of SL relationships, to generalize to genes not
encountered during training.

For the convenience of discussion, we fixed NSM to NSMRand and
PNR to 1:1, i.e., our scenario is (NSMRand, CVi, 1:1), where i = 1, 2, 3. See
Supplementary Data 1 for the complete results under all scenarios.

The left part of Table 3 shows the performance of the models
under different DSMswhile NSM and PNR are fixed to NSMRand and 1:1,
respectively. From the table, it can be seen that, for the classification
task, SLMGAE, GCATSL, and KG4SL performed better under the
CV1 scenario,with F1 scores greater than0.877. Bycontrast, CMFWand
MGE4SL performed poorly, with F1 score less than 0.720. Under CV2,
all the selected methods showed significant performance degradation
compared to CV1. For example, the F1 scores of SLMGAE and GCATSL,
still the top two methods, dropped to 0.779 and 0.775, respectively,
while both of CMFW and MGE4SL decreased to less than 0.670. When
the DSM is changed to CV3, only the F1 score of SLMGAE can still be
above 0.730, while all the other methods drop below 0.700. For the
ranking task, GRSMF, SL2MF, and SLMGAE exhibited better perfor-
mance under the CV1 scenario with NDCG@10 greater than 0.270.
However, under CV2, the NDCG@10 of almost all methods except for
GCATSL andPTGNNare lower than0.120. Lastly, when theDSM is CV3,
the NDCG@10 scores of all the methods in this scenario become very
low (lower than 0.010) except SLMGAE. Generally, SLMGAE, GCATSL,
and GRSMF have good generalization capabilities. In addition, CV3 is a
highly challenging scenario for all models, especially for the ranking
task. However, it is worth mentioning that KR4SL has shown more
promising performance compared to other methods in the
CV3 scenario (see Supplementary Notes 2.2).

Moreover, Fig. 3A and B display the predicted score distributions
of gene pairs in the training and testing sets for the SLMGAE and
GCATSL models, respectively (see all methods in Supplementary
Figs. 21–32). It is noteworthy that when the DSM is CV1, both models

candifferentiate between positive and negative samples effectively. As
the challenge of generalization increases (in the case of CV2), there is a
considerable change in the distribution of sample scores in the two
models. In particular, for GCATSL, almost all negative sample scores in
this model are concentrated around 0.5, while positive sample scores
start to move towards the middle; for SLMGAE, only the positive
sample distribution in the test set was significantly affected. When the
task scenario becomes the most difficult CV3, the score distribution
shift of the positive samples in the test set of the two models is more
pronounced. For GCATSL, almost all sample scores in the test set are
concentrated around 0.4, and themodel cannot fail to have predictive
ability in this scenario. Comparatively, SLMGAE is capable of distin-
guishing the samples in the test set with a relatively high degree of
accuracy.

Robustness to increasing numbers of negative samples
In our study, so far, all negative samples used in training have been
screened from unknown samples. As such, there could be false nega-
tive samples among the gene pairs categorized as negative. This
situation could inadvertently introduce noise into themodel’s training
process. Furthermore, given the substantial disparity between the
numbers of non-SL pairs and SL pairs, these models encounter the
issue of imbalanced data. To assess the robustness of these models to
noise stemming fromnegative samples, we conducted experiments by
gradually increasing the number of negative samples. In our study, the
number of negative samples is set to four levels: equal to the number
of positive samples (1:1), five times the number of positive samples
(1:5), twenty times the number of positive samples (1:20), and fifty
times the number of positive samples (1:50). Notably, the 1:1 ratio
corresponds to the conventional experimental configuration fre-
quently adopted.

In this section, our experimental scenario for comparison is
denoted as (NSMRand, CV1, 1:R) where R = 1, 5, 20, 50. From the right
part of Table 3, it can be seen that as the number of negative samples
increases, the models’ performance (F1 score) in classification tasks
gradually decreases. This phenomenon is particularly pronounced for
CMFW and MGE4SL. When the number of negative samples increases
from one to five times that of positive samples (PNR is 1:5), the
F1 scores of CMFW andMGE4SL drop dramatically from around 0.700
to 0.531 and 0.335, respectively. By contrast, several other methods,
namely SLMGAE, PTGNN, PiLSL, KG4SL, and GCATSL, maintain their
F1 scores above 0.800. When the number of negative samples is

Table 3 | The performance of the models under different DSMs and PNRs (on complete dataset)

Models (NSMRand, CVi, 1: 1), i = 1, 2, 3 (NSMRand, CV1, 1: n), n = 5, 20, 50

F1 score (Classification) NDCG@10 (Ranking) F1 score (Classification) NDCG@10 (Ranking)

CV1 CV2 CV3 CV1 CV2 CV3 1:5 1:20 1:50 1:5 1:20 1:50

GRSMF 0.849 0.750 0.677 0.284 0.104 0.000 0.812 0.770 0.713 0.294 0.319 0.334

SL2MF 0.766 0.667 0.667 0.280 0.005 0.000 0.738 0.703 0.664 0.281 0.281 0.281

CMFW 0.717 0.668 0.667 0.239 0.116 0.000 0.531 0.379 0.316 0.239 0.240 0.241

SLMGAE 0.883 0.779 0.738 0.270 0.101 0.039 0.855 0.809 0.757 0.309 0.336 0.351

NSF4SL 0.869 0.709 0.685 0.228 0.104 0.004 0.802 0.704 0.605 0.228 0.228 0.228

PTGNN 0.869 0.733 0.670 0.236 0.120 0.010 0.815 0.752 0.682 0.251 0.277 0.306

PiLSL 0.863 0.723 0.670 - - - 0.827 0.748 - - - -

KG4SL 0.878 0.740 0.667 0.251 0.108 0.000 0.806 0.692 0.224 0.253 0.250 0.043

SLGNN 0.859 0.685 0.668 0.147 0.045 0.000 0.808 0.783 0.737 0.146 0.258 0.303

DDGCN 0.839 0.743 0.667 0.157 0.008 0.005 0.792 0.735 0.690 0.232 0.261 0.274

GCATSL 0.883 0.775 0.692 0.264 0.122 0.002 0.809 0.685 0.543 0.261 0.268 0.261

MGE4SL 0.697 0.670 0.668 0.003 0.004 0.004 0.335 0.098 0.039 0.042 0.014 0.003

Themissing result ("-") is due to the inability of PiLSL tomakebatchpredictions,which is required for a largenumber ofgenepairs (>800,000)whencalculating themetrics. Bold formatting indicates
the best-performing model in the given scenario, and underlined formatting indicates the second-best model.
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further increased to twenty times the number of positive samples (PNR
is 1:20), only SLMGAE achieved an F1 score above 0.800, while CMFW
and MGE4SL dropped to 0.379 and 0.098, respectively. Finally, when
the number of negative samples is fifty times that of positive samples
(PNR is 1:50), SLMGAE still outperformed other models with an
F1 score of 0.757, followed by SLGNN with an F1 score of 0.737.
Notably, compared with previous PNRs, KG4SL and GCATSL experi-
enced a significant decline in their F1 scores, dropping to 0.224 and
0.543, respectively. On the other hand, in the context of ranking task,
when PNR = 1:5, SLMGAE, GRSMF, PTGNN, and DDGCN exhibited a
slight improvement in NDCG@10 than PNR is 1:1. At PNR = 1:20, the
NDCG@10 for SLMGAE, GRSMF, PTGNN, and DDGCN continued to
rise. Lastly, the NDCG@10 values for SLMGAE and GRSMF continue to
increase to 0.351 and 0.334, respectively, when the PNR is changed to
1:50. Generally, SLMGAE and GRSMF have stronger robustness.

Figure 3C and D display the distribution of the scores for positive
and negative samples predicted by SLMGAE and GCATSL across dif-
ferent PNRs. The figure shows the impact of the number of negative
samples on the score of the given gene pair evaluated by the models.
As the number of negative samples increases, an increasing number of
positive samples in the testing set are assigned lower scores. Despite
this effect, the majority of samples are still correctly classified by
SLMGAE. But for GCATSL, when the number of negative samples is
twenty times that of positive samples, i.e., PNR = 1:20, almost all sam-
ples are assigned very low scores.When the PNR becomes 1:50, almost

all the scores given by GCATSL are concentrated in a very small score
range (around 0), and the predictions of the model are no longer
reliable. Furthermore, under the results of SLMGAE, it is evident that
the distribution of negative samples becomes increasingly con-
centrated with a higher number of negative samples. And a notable
phenomenon is observed in the previous results (Table 3), that certain
models exhibit improved performance in the ranking task as the
number of negative samples increases. We hypothesize that this
improvement is attributed to the higher concentration of scores
among negative samples, resulting in a greater number of positive
samples achieving higher rankings. Consequently, the performance of
some models under ranking tasks improves with increasing PNR.

Impact of negative sampling
Obtaining high-quality negative samples is crucial for the performance
of the models. However, in the context of SL prediction, high-quality
negative samples are scarce. Therefore, it is important to explore
efficient and straightforward methods for obtaining high-quality
negative samples from unknown samples. In this study, we evaluated
three negative sampling approaches, namely NSMRand, NSMExp, and
NSMDep, which represents unconditional random negative sampling,
negative sampling based on gene expression correlation, and negative
sampling based on dependency score correlation, respectively (see
Methods for details). Among these approaches, NSMRand has been
widely used in existing SL predictionmethods, and thus it will be used

A B C D

Fig. 3 | Distribution of predicted scores. A, B are the scores of gene pairs in the
training and testing sets for the SLMGAE and GCATSL models under various data
splittingmethods (DSMs).C,D are the scoreof genepairs in the training and testing

sets for the SLMGAE and GCATSL models under various positive and negative
sample ratios (PNRs). The results are obtained with NSMRand.
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as the baseline for comparison. We denote the scenarios as (NSMN,
CV1, 1:1), where N = Rand, Exp or Dep.

Based on the findings from the previous two subsections, certain
characteristics regarding the model’s generalizability and robustness
in the context of NSMRand can be observed. Here, we investigated two
additional negative sampling methods (NSMExp and NSMDep). Our
observations revealed that models utilizing negative samples from
NSMExp demonstrate improved classification performance compared
to NSMRand. On the other hand, models employing negative samples
fromNSMDep do not show significant performance differences relative
toNSMRand (see SupplementaryData 1). The results of the classification
and ranking tasks are presented in Fig. 4A and D. The majority of
models demonstrate a marked improvement in the classification task
when using NSMExp, with GCATSL’s Classification score increasing
from 0.709 to 0.808. Other models such as SLMGAE, GRSMF, KG4SL,
DDGCN, and PiLSL all achieved Classification scores above 0.720. On
the other hand, SL2MF and CMFW experienced a decrease in perfor-
mance. In the ranking task, the performanceofNSMDepwasbetter than
NSMExp, but not as good as NSMRand. CMFW, DDGCN, and SLMGAE
experienced a considerable decrease in their Ranking scores when
using either NSMDep or NSMExp, while the other models did not
demonstrate a significant variation.

We also assessed the impact of negative sampling on the gen-
eralization and robustness of themodel. As shown in Fig. 4B and E, the
negative samples obtained throughNSMExp have a small impact on the
performance of matrix factorization-based methods, except for the
CMFW model, which has a significant decrease in performance in
classification tasks compared to NSMRand. On the contrary, for deep
learning-based methods, the negative samples obtained through
NSMExp improve the classification task performance of the model in

various scenarios, especially for the CV1 and CV2 scenarios. It is
noteworthy that the performance of the NSF4SL model is not affected
by the quality of negative samples, as it “does not use negative sam-
ples" (i.e., does not use negative samples at all) during the training
process. For ranking tasks, except for CMFWand SLGNN, the quality of
negative sample has a relatively small impact on most models.

Furthermore, we investigated the potential reasons underlying
the different impacts of the negative sampling method. As shown in
Fig. 4C, the distribution of gene expression correlation scores for
known SL gene pairs exhibits a bias towards positive scores. Note that
NSMExp selects gene pairs with negative correlation coefficient of gene
expression. It is possible that, distinguishes the distribution of positive
and negative samples in advance, reducing the difficulty of classifica-
tion, it is able to because NSMExp improve the performance of the
models in the classification task. By contrast, there is a symmetric
distribution of correlation based on dependency scores, hampering
the model’s ability to learn more effective features from the negative
samples selected by NSMDep.

Impact of computationally derived labels on performance
Comparing Tables 3 and 4, it is evident that the performance of all the
models across various DSMs generally improves significantly after
excluding SL labels predicted by computational methods from the
dataset (The complete results can be found in Supplementary Data 2).
Of note, NSF4SL is elevated to the second best (i.e., runner-up) on the
classification task, with F1 scores increasing by 0.108 and 0.135 in the
CV1 and CV2 scenarios, respectively. Nevertheless, SLMGAE remains
the best-performing model overall (see Supplementary Table 4). An
explanation for the observed improvement in performance might be
that, by filtering out the computationally derived SL labels, we have

E

B

D

A

F

C

Fig. 4 | Model performance under various negative sampling methods and
analysis of known sample correlations. A, D show the overall score comparison
of the models on the classification and ranking tasks under all three negative
sampling methods (NSMs). B, E illustrates the differences between classification
and ranking tasks usingNSMExp andNSMRand in different scenarios, asmeasured by

the F1 score and NDCG@10 metrics. Red and blue signify an increase and a
decrease, respectively, with darker shades indicating a larger difference.
C illustrates the distribution of correlation coefficients between known SL pairs of
genes under different data sources. F illustrates the distribution of correlation
coefficients betweengene expression levels of SLpairs fromdifferent label sources.
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also reduced the noise in the model’s training data. Specifically for
NSF4SL, which only relies on positive samples during training, the
improvement in positive sample quality enables NSF4SL to achieve
notably better ranking on dataset without computationally derived
labels compared with complete dataset. We performed correlation
analysis on gene expression within each of the three datasets: the
complete dataset, the dataset excluding computationally predicted
labels, and the dataset of solely computationally predicted labels.
Results revealed that computationally predicted SL gene pairs pre-
dominantly clustered around the correlation coefficients of 0 and
0.5 (Fig. 4F).

Comparison with context-specific methods
In recent years, increasing attention has been paid to the prediction of
context-specific SLs, leading to the development of methods such as
MVGCN-iSL45 and ELISL46. To further assess the performance of
machine learning methods in the context-specific settings, we bench-
marked 7 models on cancer cell-line-specific data, including ELISL and
MVGCN-iSL, along with the following 5 models which demonstrated
superior performance among the 12 methods in the previous bench-
marking study: SLMGAE, NSF4SL, KG4SL, PTGNN, and GCATSL. These
7 models were tested on 4 cancer cell lines: 293T (KIRC)47, Jurkat
(LAML)48, OVCAR8 (OV)49, and HeLa (CESC)47,50. From the results, it is
evident that SLMGAE performed particularly well on 293T and
OVCAR8. NSF4SL performed the best on HeLa. MVGCN-iSL showed
consistently competitive performance across all the cancer types
except for 293T. ELISL’s overall performance was good but not highly
competitive across the four cancer types.Detailed results can be found
in Supplementary Notes 2.3.

Discussion
Here, we present a comprehensive benchmarking study of 12machine-
learning methods for predicting SL interactions. We constructed a
dataset from multiple sources and evaluated all the methods on this
dataset. Our results demonstrate that the predictive capabilities of
thesemethods vary under different experimental settings. Specifically,
among the matrix factorization-based methods, GRSMF exhibited
superior accuracy and stability compared to the other two methods.
Among the deep learning methods, SLMGAE showed the most com-
petitive performance overall, although other methods such as NSF4SL
are also promising. In our experimental settings, the deep learning
methods have outperformed thematrix factorizationmethods overall,

but the latter have their own strengths. This benchmarking framework
can be used to evaluate new models, providing a platform for con-
sistent model training and testing to facilitate future development of
AI techniques in this field.

Our evaluation showed that despite using only SL data, DDGCN
can achieve performance comparable to models that rely on multiple
external data sources (e.g., PTGNN), possibly due to its unique design
of dual dropout. In addition, although both SLMGAE and MGE4SL
incorporate multiple graph views and attention mechanisms, SLMGAE
demonstrates far superior performance compared toMGE4SL. Further
analysis of the twomethods reveals that SLMGAE optimizes themodel
through three distinct objectives corresponding to SL, PPI, and GO,
respectively. It distinguishes the main view from supporting views and
reconstructs multiple graphs for different views via graph auto-
encoders (GAEs). By contrast, MGE4SL optimizes the model by fusing
all the information using a cross-entropy loss, which may introduce
noise. The auto encoder has been shown51 to reduce information loss
caused by Laplacian smoothing52. This may be one of the reasons why
SLMGAE performs so well. KG4SL and GCATSL exhibit noticeable
performance degradationwhen the PNR changes from1:20 to 1:50, i.e.,
with an overwhelming proportion of negative samples, indicating the
models’ inability to discriminate between sparse positive and abun-
dant negative samples. Furthermore, models that integrate different
types of data, such as GO and PPI, usually yield better results than
DDGCN. However, if done inappropriately, such integration could be
counterproductive, as in the case of MGE4SL. We also observed that,
although KG4SL utilizes multiple relationships contained in the
knowledge graph, its performance lags behind that of SLMGAE in both
classification and ranking tasks. This suggests that it is challenging to
incorporate an excess of diverse supplementary information into a
predictive model.

Based on our study, we identified several issues in exploring SL
prediction thatdeserve attention. Firstly,mostmodels donot consider
the realistic imbalance between the numbers of SL and non-SL gene
pairs. Theoretically, SL interactions constitute only a small fraction of
all gene-gene interactions. As a result, there are much more non-SL
gene pairs than SL gene pairs. The models should be able to handle
highly imbalanced data in order to make accurate predictions in real-
world applications. Secondly, the authors of most current methods
have primarily used the CV1 data splitting approach, which has sig-
nificant limitations for predicting new potential SL gene pairs. This
scenario focuses on genes with known SL relationships, often resulting

Table 4 | The performance of themodels under different DSMs and PNRs (on dataset without computationally derived labels)

Models (NSMRand, CVi, 1: 1), i = 1, 2, 3 (NSMRand, CV1, 1: n), n = 5, 20, 50

F1 score (Classification) NDCG@10 (Ranking) F1 score (Classification) NDCG@10 (Ranking)

CV1 CV2 CV3 CV1 CV2 CV3 1:5 1:20 1:50 1:5 1:20 1:50

GRSMF 0.955 0.807 0.687 0.459 0.180 0.000 0.907 0.829 0.780 0.462 0.478 0.524

SL2MF 0.870 0.667 0.667 0.449 0.009 0.000 0.850 0.801 0.743 0.449 0.449 0.449

CMFW 0.761 0.671 0.667 0.388 0.201 0.000 0.582 0.425 0.353 0.388 0.389 0.389

SLMGAE 0.965 0.835 0.761 0.491 0.198 0.028 0.945 0.903 0.855 0.531 0.570 0.586

NSF4SL 0.977 0.844 0.734 0.465 0.195 0.026 0.939 0.852 0.737 0.465 0.465 0.465

PTGNN 0.957 0.792 0.672 0.404 0.215 0.009 0.917 0.837 0.759 0.462 0.489 0.512

PiLSL 0.962 0.799 0.678 - - - 0.931 0.840 - - - -

KG4SL 0.966 0.816 0.693 0.404 0.196 0.000 0.911 0.793 0.452 0.405 0.411 0.320

SLGNN 0.963 0.732 0.667 0.310 0.099 0.000 0.945 0.897 0.717 0.372 0.432 0.345

DDGCN 0.902 0.790 0.671 0.236 0.038 0.005 0.881 0.823 0.767 0.333 0.375 0.408

GCATSL 0.970 0.839 0.708 0.430 0.208 0.001 0.926 0.739 0.610 0.425 0.424 0.432

MGE4SL 0.721 0.677 0.672 0.004 0.005 0.007 0.470 0.183 0.039 0.101 0.017 0.004

Themissing result ("-") is due to the inability of PiLSL tomakebatchpredictions,which is required for a largenumber ofgenepairs (>800,000)whencalculating themetrics. Bold formatting indicates
the best-performing model in the given scenario, and underlined formatting indicates the second-best model.
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in a “streetlight effect”whereother potentially significant SL genepairs
tend to be overlooked. Moreover, within the currently known gene
sets, the number of SL gene pairs may have reached saturation,
necessitating explorationof new scenarios. TheCV2 andCV3 scenarios
are designed to uncover overlooked new SL interactions. Compared to
CV1, the CV2 scenario evaluates amodel’s ability to generalize patterns
learned from training data to genes that have not yet participated in
the model training process. However, most methods have mediocre
performance in the real-world scenarios of CV2, possibly becausemost
of the benchmarked methods were tailored for the CV1 scenario.
Unsurprisingly, these methods perform even worse in the
CV3 scenario, because CV3 represents a complete cold-start problem,
where both genes in the test pairs are unseen during the training. Such
a lack of prior exposure means that these models cannot leverage any
previously learned patterns or relationships associated with the new
genes in the test set, severely limiting their predictive ability. Addi-
tionally, the complexity and sparsity of SL relationships exacerbate this
issue, making these models struggle to generalize effectively from
known data to unseen gene pairs. KR4SL44 has shown better perfor-
mance in the CV3 scenario compared to other benchmarked methods
(see Supplementary Notes 2.2). This may be attributed to the graph
reasoning mechanism of KR4SL, which allows it to learn deeper graph
features corresponding to SL relationships, thus achieving better
generalization capability. Thirdly, the lack of high-quality negative
samples can affect the evaluation of the model. Generally, when eval-
uating the performance of a discriminant model, it is necessary to test
the model with both positive and negative samples of known labels.
However, in the context of SL prediction, obtaining high-quality
negative samples is often a daunting task. The false negative samples
included in the test dataset could potentially skew the evaluation
metrics. In recent years, with the development of CRISPR technology,
there have been works53–55 using combinatorial CRISPR/Cas956 to
screen SL gene pairs, and the data generated from these experiments
can provide reliable negative samples. But for a larger space of gene
pairs, thewet-labmethod is still labor-intensive. Finally, it is essential to
incorporate multiple data sources, such as GO and PPI, to enhance the
generalizability of the model. Additional data related to genes and
genetic interactions can provide features for a complete set of genes
and provide information for predicting new SL interactions in CV2 and
CV3 scenarios. Additionally, as a valuable data source, KG contains
information on multiple aspects of a gene and is organized in a graph
format that can be more interpretable. However, the current methods
for predicting SL interactions (e.g., KG4SL, PiLSL, NSF4SL, SLGNN, and
KR4SL) are still rudimentary in harnessing KG’s potential.

We recommend several future directions to explore in the field
of SL prediction by machine learning. Firstly, predicting context-
specific (e.g., cancer-specific or cell-line-specific) SL interactions is
key to developing cancer precision medicine. SL interactions are
context-specific, meaning that the SL relationship between a pair of
genes may only occur in one type of cancer (or cell line) but not in
another. ELISL46 and MVGCN-iSL45 are methods published in recent
years for predicting context-specific SL interactions. We conducted
experiments on these and several othermethods (see Supplementary
Notes 2.3) and found that current approaches are still unable to
adequately address this issue. Additionally, the cross-cell-line pre-
diction task may also offer a potential solution to this problem. We
conducted a simple experiment on this task (see Supplementary
Notes 2.5). Based on our results, the task of predicting cross-cell-line
SLs requires models to possess robust generalization capabilities
across cell lines, which is currently challenging. The models need to
effectively integrate multi-omics data from different cell lines, to
capture disparities and commonalities among the cell lines. Sec-
ondly, SL interactions can be used to guide drug repositioning, by
identifying new targets of approved drugs or discovering novel
combination therapies. Zhang et al. developed SLKG57, which

provides a computational platform for designing SL-based tumor
therapy, and they demonstrated that SLKG could help identify pro-
mising repurposed drugs and drug combinations. Furthermore,
computationally inferred SL interactionsmaybe used to predict drug
responses at patient level, indicating the SLs are clinically relevant.
For instance, ISLE20 mines TCGA cohort to identify the most likely
clinically relevant SL interactions (cSLi) from a given candidate set of
experimentally SLi. Moreover, it has been shown that cSLi can suc-
cessfully predict patients’ drug treatment response and provide
patient stratification signatures. Thirdly, it is urgent to develop deep
learning methods that can predict clinically relevant SLs based on
personalized data. Although statistical methods such as SLIdR58 and
ISLE have attempted to address this issue, deep learningmodels have
not yet demonstrated their ability to recognize clinically relevant SL
interactions. In order to fill the gap between deep learning models
and clinical applications, it is necessary to make better use of in vivo
or in vitro data. Fourthly, the concept of SL needs extension and
refinement. Several classes of SL, such as synthetic dosage lethality
(SDL)59,60 and collateral lethality61,62, have been proposed by
researchers to capture the inherent complexity of the SL concept.
Furthermore, Li et al.63 categorized SLs into two types: non-condi-
tional/original and conditional SL. Conditional SL refers to synthetic
lethal interactions that occur under specific conditions, such as
genetic background, hypoxia, high levels of reactive oxygen species
(ROS), and exposure to DNA-damaging agents and radiation. The
distinction between the various SL definitions is often overlooked in
the current literature of computational SL prediction. Fifthly, the lack
of high-quality negative samples poses a challenge for researchers in
SL prediction. While NSF4SL42 alleviates this problem by using a
contrastive learning framework to dispense with the need of using
negative samples, most classification models still rely on them. Last
but not the least, most current machine learning models lack inter-
pretability, making it difficult to assess the reliability of their pre-
dictions. Although performingwell in terms of accurate and sensitive
prediction, these models often do not incorporate underlying bio-
logical mechanisms. Improving the interpretability of the machine
learning models can make them more practically useful and infor-
mative for users, including experimental biologists. The methods of
PiLSL41, PTGNN38, and KR4SL44 can provide some degree of inter-
pretability by uncovering the prediction process and providing evi-
dence about the biological mechanisms of SL, e.g., by highlighting
edges or paths with higher attention weights than the rest of a graph.
More powerful techniques of interpretability analysis, however,
remain to be designed in the future.

Methods
Data
For this benchmarking study, we obtained synthetic lethality (SL)
label data from the database of SynLethDB 2.0, which contains a
knowledge graph named SynLethKG27. In addition, we collected
other data used by some models studied here including protein-
protein interaction (PPI), gene ontology (GO), pathways, protein
complexes, and protein sequences. For details on the model data
requirements, see Table 2.

To ensure consistency, we standardized the gene names in the
data using the HUGO Gene Nomenclature Committee (HGNC, http://
www.genenames.org/)64 and the Ensembl Database65.

Synthetic lethality labels. After filtering, we finally obtained a dataset
consisting of 9845 unique genes and 35,913 positive SL genepairs from
SynLethDB. Among the 35,913 pairs, 26,591 were identified through
CRISPR, RNAi, and text mining, whereas the rest 9322 pairs were pre-
dicted using different computational methods. Specifically, we used
the data on K562 cell line collected from Horlbeck et al.17 as the inde-
pendent test set while employing the SynLethDB dataset used in the
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benchmarking study as the training set. The results can be found in
Supplementary Notes 2.4. We used GI score < −3 to screen positive
samples and matched the gene set in the obtained dataset with the
genes inour benchmarking study. Finally,we obtained 1292 positive SL
gene pairs as our independent test dataset. For negative samples, we
ultimately screened 82,553 gene pairs with a GI score of > −3 and the
gene set from our benchmarking study, from which negative samples
were selected based on the GI score in descending order.We collected
54,012 entities and 2,233,172 edges from the knowledge graph of
SynLethKG. To facilitate integration, all the data were aligned by gene
names. Next, we describe our way of pre-processing prior knowledge.

Protein-protein interaction (PPI). We extracted PPI data from the
BioGRID database29 to construct a PPI network, where the nodes
represent a subset of proteins from 9845 genes while the edges
represent the interactions between the nodes. 621,916 PPIs were
extracted for our experiment. Additionally, we reimplemented the

FSweight algorithm66 on the PPI network to calculate the functional
similaritymatrix of proteins as input for SL2MF.We also collected 3403
protein complexes data related to the benchmarking test dataset from
the CORUM67 database as input for MGE4SL.

Gene ontology (GO). We collected GO data from the Gene Ontology
database28, whichconsists ofGeneOntologyAnnotation (GOA) andGO
terms. We collected 16,512 GO terms from the database, including
11,024 Biological Process (BP) terms, 3781 Molecular Function (MF)
terms, and 1707 Cellular Component (CC) terms. To compute the
functional similarity between genes and the semantic similarity
between GO terms, we employed the R package GOSemSim68.

Pathway. We retrieved pathway data from multiple databases,
including KEGG30 and Reactome43. A total of 409 KEGG pathways and
1170 Reactome pathways related to the genes in our experiment were
collected. We obtained the genes involved in the same pathway and
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Fig. 5 | Schematic diagram of negative sampling strategy and data splitting
method. Adepicts the negative sampling steps based on gene expression and gene
dependency scores. B illustrates the different data partitioning methods: the left
matrix shows an example when DSM=CV1, with the blue and purple areas

representing the randomly sampled training and test samples, respectively. For
DSM=CV2 or CV3, their training samples are both drawn from the blue area, while
the purple and orange represent the test sample regions for CV2 and CV3
respectively.
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used them to construct a symmetrical mask matrix. In the matrix, a
value of 1 is assigned when two genes are in the same pathway, and 0
otherwise. These pathway data are used as inputs for MGE4SL.

Dependency score and gene expression. We collected the data of
gene expression and gene dependency scores in different cell lines
from the DepMap database69. Using these data, we designed two new
negative samplingmethods to evaluate the impactof negative samples
on the models’ performance.

Experimental scenarios
Different proportions of negative samples. To evaluate the perfor-
mance of synthetic lethality (SL) predictionmethods, it is crucial to use
realistic scenarios for training and testing. In most existing methods,
the number of negative samples is set equal to the number of positive
samples, i.e., a positive-negative ratio (PNR) of 1:1. However, in real
data, there are much more non-SL gene pairs than SL gene pairs.
Therefore, we tested four different PNRs in our experiments, i.e., 1:1,
1:5, 1:20, and 1:50.

Data split methods. Suppose H = {ga, gb, . . . gn} is the set of all human
genes, and PSL= {(gi, gj), (gk, gl), . . . } is the set of all known human SL
gene pairs. The human gene set H can be divided into two sets, Hseen

and Hunseen, which represent currently known genes with SL interac-
tions and the rest genes, respectively. Clearly Hseen ∪ Hunseen = H and
Hseen \ Hunseen = ;. For the machine learning models in this bench-
marking study, there are generally three situations encountered in the
actual prediction ofwhether a pair of genes (ga, gb) have SL interaction:
(1). {(ga, gb)∣ga ∈ Hseen, gb ∈ Hseen}, (2). {(ga, gb)∣ga ∈ Hseen, gb ∈ Hunseen},
and (3). {(ga, gb)∣ga ∈ Hunseen, gb ∈ Hunseen}.

We simulated these possible scenarios through three data split
methods (DSMs), namely CV1, CV2, and CV3 (Fig. 5B). The settings are
as follows:

• CV1: we split the data into training and testing sets by SL pairs,
where both genes of a tested pair may have occurred in some
other gene pairs in the training set.

• CV2: we split the data by genes, where only one gene of a tested
pair is present in the training set.

• CV3: we split the data by genes, where neither of a tested pair of
genes is present in the training set.

Negative samplingmethods. To train the deep learningmodels for SL
prediction, a sufficient number of gene pairs are required, including
negative samples. However, non-SL gene pairs are rarely known, which
makes it difficult to satisfy the requirements of deep learning models.
Therefore, negative sampling is often needed to obtain negative SL
data for learning. A common strategy is to randomly select gene pairs
from unknown samples as negative samples, which may include false
negatives.

To address this issue, we designed two new negative sampling
methods (NSMs) based on the DepMap database69. The DepMap
database includes gene expression data, gene mutation data, gene
dependency scores data, etc. of many cell lines. The gene dependency
scores were assessed through the utilization of CRISPR technology,
which involves the examination of cellular activity after the single
knockout of a specific gene, and a higher gene dependency score
indicates lower cell activity. FromDepMapdatabase, we obtained gene
expression data and gene dependency scores obtained by CRISPR
knockout experiments. We have designed two new negative sampling
methods (NSMs) using these data: NSMExp and NSMDep.

TheNSMExp is basedon the correlationof expressionbetween two
genes. For each pair of genes, we calculated the correlation coefficient

of expression (corrExp) between the genes across the cell lines. From
Fig. 4C, we observe that known SL gene pairs tend to have positive
correlations of gene expression, i.e., corrExp > 0. Therefore, our sam-
pling step is as follows:
1. We arranged all gene pairs in ascending order of their correlation

scores;
2. To ensure that each gene appears in the negative samples, we first

traverse the gene pairs sequentially from the beginning to find the
smallest set of gene pairs that can contain all genes;

3. From the remaining samples, we extract them in order (ascending
order in NSMExp and descending order in NSMDep) and stop when
the quantity reaches one, five, twenty, and fifty times the number
of positive samples.

Similarly, NSMDep is based on the correlation of the gene depen-
dency score. For each pair of genes, we calculated the correlation
coefficient of the dependency score (corrDep) between the two genes.
We found that the corrDep of the pairs of known SL genes were dis-
tributed mainly in the range [−0.2, 0.2]. Therefore, we first take abso-
lute values for all corrDep and use a sampling step similar to NSMExp,
but unlike NSMExp, in the first step of the sampling, we rank all gene
pairs according to their correlation scores from the highest to the
lowest (Fig. 5A shows the specific negative sampling steps).

Evaluation metrics
To comprehensively evaluate the performance of the models, we uti-
lized sixmetrics. For the classification task, weused threemetrics: area
under the receiver operating characteristic curve (AUROC), area under
the precision-recall curve (AUPR), and F1 score. These metrics are
commonly used for binary classification. For the gene ranking task, we
employed three metrics: normalized discounted cumulative gain
(NDCG@K), Recall@K, and Precision@K. NDCG@Kmeasures whether
the known SL gene pairs are in a higher position in the predicted list of
a model, while Recall@K and Precision@K are used to evaluate the
model’s ability to measure its coverage of relevant content and accu-
racy in returning the top-K results, respectively. The definitions of
these metrics are as follows:

• Area Under the Receiver Operating Characteristic Curve
(AUROC): AUROCmeasures themodel’s ability to classify samples
at different thresholds. It is calculated as the area under the
receiver operating characteristic curve, which is a curve plotted
with false positive rate on the x-axis and true positive rate on the
y-axis. The value of AUROC ranges between 0 and 1.

• Area Under the Precision-Recall Curve (AUPR): AUPR is a
performance metric used to evaluate binary classifiers, which
measures the average precision across different recall levels. Like
AUROC, AUPR can be used to evaluate the performance of
classifiers in the presenceof imbalanced classes or uneven sample
distributions. AUPR is a more sensitive metric than AUROC,
particularly for classification of imbalanced data.

• F1 score: The F1 score is a metric for evaluating the overall effec-
tiveness of a binary classification model by considering both
precision and recall. Combining precision and recall into a single
value, it provides a balanced measure of the effectiveness of
the model.

• Normalized discounted cumulative gain (NDCG@K): NDCG@K
can be used to evaluate the ability of amodel in ranking candidate
SL partners for a gene gi. NDCG@K is calculated as NDCG@K =
DCG@K/IDCG@K,where IDCG@K is themaximumDCG@Kvalue
among the top-K predictions, and DCG@K is calculated as:

DCG@KðiÞ=
XK

j = 1

2I GiðjÞ2GSL
i½ � � 1

log2ðj + 1Þ
, ð1Þ
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where GSL
i denotes all known genes that have SL relationships

with gene gi, Gi(j) is the j-th gene on the list of predicted SL
partners for gene gi, and I ½�� is the indicator function.

• Recall@K: Recall@K measures the proportion of correctly iden-
tified hits among the top K predicted SL partners to the total
known SL partners for gene gi.

Recall@KðiÞ=
PK

j = 1 I GiðjÞ 2 GSL
i

h i

∣GSL
i ∣

: ð2Þ

• Precision@K: Precision@K represents the proportion of correctly
identified SL partners among the top K predicted SL partners of
gene gi.

Precision@KðiÞ=
PK

j = 1 I GiðjÞ 2 GSL
i

h i

∣K ∣
: ð3Þ

• To evaluate the overall performance of a model, we calculate its
performance under classification and ranking tasks separately and
combine them with equal weights to obtain an indicator that
reflects the overall performance of the model, i.e., Overall = (
Classification score + Ranking score)/2. The classification and
ranking scores are calculated as follows, respectively:

Ccvn
=
P

CVnðAUROC +AUPR+ F1Þ
9

,n= 1, 2, 3 ð4Þ

Rcvn
=
P

CVnðNDCG@10 +Recall@10+ Precision@10Þ
9

,n= 1, 2, 3 ð5Þ

Classification score =Ccv1 × 40%+Ccv2 times50%+Ccv3 × 10% ð6Þ

Ranking score =Rcv1 × 40%+Rcv2 × 50%+Rcv3 × 10%

ð7Þ

In the context of predicting new SL relationships, the
CV2 scenario is more realistic and prevalent, and thus it holds
greater significance. Formost models, CV3 is overly challenging.
Therefore, when calculating the integrative classification and
ranking scores, we set the weights for CV1, CV2, and
CV3 scenarios to 40%, 50%, and 10%, respectively.

Model selection and implementation
In this study, we benchmarked 12 in-silicon methods for synthetic
lethality prediction, including three matrix factorization-based meth-
ods and nine deep learning-based methods (Table 1). Among these,
PTGNN and NSF4SL use self-supervised learning, while the other
methods are supervised or semi-supervised learning depending on
specific scenarios. The details of these methods can be found in
the Supplementary Methods. For all the methods, their implementa-
tion details are as follows:

GRSMF33: due to the lack of executable code in the code reposi-
tory of the method itself, the code version we used is GRSMF imple-
mented in GCATSL https://github.com/lichenbiostat/GCATSL/tree/
master/baseline%20methods/GRSMF. We set num_nodes to 9845,
which is the number of genes in our data.

SL2MF31: we used the code of SL2MF from https://github.com/
stephenliu0423/SL2MF. The num_nodes was set to 9845.

CMFW32: we used the code of CMFW from https://github.com/
lianyh/CMF-W.

SLMGAE36: we used the code of SLMGAE fromhttps://github.com/
DiNg1011/SLMGAE. We used the default settings.

NSF4SL42: we used the code of NSF4SL from https://github.com/
JieZheng-ShanghaiTech/NSF4SL. The settings aug_ratio = 0.1 and
train_ratio = 1 were used.

PTGNN38: we used the code of PTGNN from https://github.com/
longyahui/PT-GNN. We have limited the maximum length of protein
sequences to 600 and redesigned the word dictionary based on the
original paper.

PiLSL41: we used the code of PiLSL from https://github.com/
JieZheng-ShanghaiTech/PiLSL. We set the following parameters: –hop
3, –batch_size 512. When calculating the metrics for the ranking task,
we need to calculate the scores of all gene pairs, which are about 50
million. PiLSL is a pair by pair prediction approach that demands sig-
nificant time to obtain all the necessary scores. Therefore, we only
considered the performance of themodel under the classification task
when the PNRs of 1:1, 1:5, and 1:20.

KG4SL39: we used the code of KG4SL from https://github.com/
JieZheng-ShanghaiTech/KG4SL. The default parameters are used for
the experiment.

SLGNN40: we used the code of SLGNN from https://github.com/
zy972014452/SLGNN. The default parameters are used for the
experiment.

DDGCN34: we used the code of DDGCN from https://github.com/
CXX1113/Dual-DropoutGCN. We set dropout = 0.5 and lr = 0.01, which
are the default parameter settings.

GCATSL35: we used the code of GCATSL from https://github.com/
lichenbiostat/GCATSL, The default parameters are used for the
experiment.

MGE4SL37: we used the code of MGE4SL from https://github.com/
JieZheng-ShanghaiTech/MGE4SL, The default parameters are used for
the experiment.

Computational resource
The experiments were conducted on a workstation equipped with 4
Intel(R) Xeon(R) Gold 6242 CPUs @ 2.80GHz, with a total of 64 cores
and 22,528 KB cache, along with 503 GB of memory. The system was
also equipped with three Tesla V100s 32GB GPUs, providing a total of
96GB of GPU memory. The operating system used was Linux
Ubuntu 20.04.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. All the data used in our
research comes frompublicly available sources, including SL labels from
SynLethDB 2.0 https://synlethdb.sist.shanghaitech.edu.cn/#/download.
The Entrez IDs of the genes come from the NCBI database https://www.
ncbi.nlm.nih.gov/gene/. Ensemble ID from https://asia.ensembl.org/
index.html. The PPI data come from the data released by BioGRID on
June 25, 2022, and the download link is https://downloads.thebiogrid.
org/File/BioGRID/Release-Archive/BIOGRID-4.4.211/BIOGRID-ALL-4.4.
211.tab.zip. GO annotation and GO term data are respectively from
http://geneontology.org/gene-associations/goa_human.gaf.gz and
http://geneontology.org/docs/download-ontology/#go_obo_and_owl.
The gene expression data and gene dependency score data of the cell
lines are from DepMap Public 22Q4 https://figshare.com/articles/
dataset/DepMap_22Q4_Public/21637199/2. Pathway data are from
KEGG database https://www.kegg.jp/kegg-bin/download_htext?htext=
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hsa00001&format=json&filedir=kegg/brite/hsa. Pathway data are from
Reactome database released on Sep 15, 2022 https://download.
reactome.org/82/databases/gk_current.sql.gz. The protein complexes
data are from the CORUM database, released on Sep 9, 2022 https://
mips.helmholtz-muenchen.de/fastapi-corum/public/file/download_
archived_file?version=4.0. The protein sequence data are from the
UniProt70 database, released on July 22, 2022 https://www.uniprot.org/
help/downloads. All processed training data in this study are publicly
available in the Zenodo repository (https://doi.org/10.5281/zenodo.
13691648)71 with unrestricted access. Source data are provided with
this paper.

Code availability
The custom code for integrating the models is available on GitHub at
https://github.com/JieZheng-ShanghaiTech/SL_benchmark, while the
data is provided in the Zenodo repository at https://doi.org/10.5281/
zenodo.1369164871 with unrestricted access.
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