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Abstract
Objectives: This article describes the design and evaluation of MS Pattern Explorer, a novel visual tool that uses interactive machine learning to 
analyze fitness wearables’ data. Applied to a clinical study of multiple sclerosis (MS) patients, the tool addresses key challenges: managing 
activity signals, accelerating insight generation, and rapidly contextualizing identified patterns. By analyzing sensor measurements, it aims to 
enhance understanding of MS symptomatology and improve the broader problem of clinical exploratory sensor data analysis.
Materials and Methods: Following a user-centered design approach, we learned that clinicians have 3 priorities for generating insights for the 
Barka-MS study data: exploration and search for, and contextualization of, sequences and patterns in patient sleep and activity. We compute 
meaningful sequences for patients using clustering and proximity search, displaying these with an interactive visual interface composed of coor
dinated views. Our evaluation posed both closed and open-ended tasks to participants, utilizing a scoring system to gauge the tool’s usability, 
and effectiveness in supporting insight generation across 15 clinicians, data scientists, and non-experts.
Results and Discussion: We present MS Pattern Explorer, a visual analytics system that helps clinicians better address complex data-centric 
challenges by facilitating the understanding of activity patterns. It enables innovative analysis that leads to rapid insight generation and contextu
alization of temporal activity data, both within and between patients of a cohort. Our evaluation results indicate consistent performance across 
participant groups and effective support for insight generation in MS patient fitness tracker data. Our implementation offers broad applicability 
in clinical research, allowing for potential expansion into cohort-wide comparisons or studies of other chronic conditions.
Conclusion: MS Pattern Explorer successfully reduces the signal overload clinicians currently experience with activity data, introducing novel 
opportunities for data exploration, sense-making, and hypothesis generation.
Key words: understanding patient experience; sensor data exploration; interactive machine learning; multiple sclerosis; data visualization. 

Introduction
The surge in digital health data, especially activity sensor data, 
complements traditional health records by offering detailed 
insights into patient wellness and disease expression, with 
potential for improved prevention and disease (self-)manage
ment. Consumer sensors like smartwatches allow for non- 
intrusive monitoring, providing high-resolution, multivariate 
data. This data supports various analytical approaches, 
including machine learning on lifestyle factors, potentially 
improving chronic disease management1–4 and personalized 
treatment options, thereby enhancing care quality.5

However, the complexity and granularity of continuously 
measured activity data pose challenges in finding meaningful 
patterns. Human input in the analysis, a core aspect of visual 
analytics (VA), can improve understanding by extracting 
meaningful and actionable signals on health-status changes6,7

(Figure 1). Despite existing VA solutions in healthcare, few 
address chronic disease management through consumer- 
grade sensor data. Monitoring factors like activity and sleep 
quality can prove invaluable to understanding chronic disease 
management.

This study addresses multiple sclerosis (MS) management, 
a chronic, neurodegenerative disease with highly variable 
symptoms, like fatigue and vision problems.8,9 There is no 
cure for MS; treatment aims to reduce relapses and slow pro
gression. Physical activity is crucial for maintaining abilities 
and may slow disease progression.3,9,10 We refer to those 
affected as “person(s) with MS” or PwMS, and to MS 
domain experts as experts.

Background
Current analysis practices of MS domain experts
In MS research, analyzing PwMS physical activity data 
identifies challenges in maintaining physical activity, includ
ing motivation, fatigue, and accessibility. Remote sensors 
help sustain activity levels by providing motivation and use
ful data like heart rate and step count. The long-term goal 
of remote sensing is to guide healthcare providers in man
aging MS symptoms by leveraging undiscovered knowledge 
from sensor data across various timeframes and 
symptomology.
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Analytical methods for time series data include regression 
trees, local dynamic complexity for detecting significant 
changes,11–14 ARIMA models for pattern analysis,15 and 
Bayesian structural time series modeling to assess rehabilita
tion effects, accounting for variables like age and disease 
duration.16 Addressing data quality, methods like the Kal
man Filter are used for imputing missing data.15,17 This ana
lytical process requires domain expertise in data analysis and 
a deep understanding of data characteristics. Optimized for 
data exploration support, our grid-based visualizations aid 
clinicians in such hypothesis testing. These visualizations can 
highlight variations in step count or sleep habits, indicating 
challenges PwMS face in maintaining stable activity levels 
after in-clinic rehabilitation, and thus making them more 
interpretable and actionable to healthcare providers.

Visual analytics in healthcare
Discussions with experts revealed a distinction between sup
porting single-patient analyses and multi-patient analyses, 
reflecting trends observed in related surveys.6,18,19 Single- 
patient methods, varying by data type, include LifeLines’ 
Gantt chart metaphor for medical event time series,20

Doccurate’s textual clinical history summaries,21 and 
VisuExplore’s multiple attribute visualizations.22 MS Pattern 
Explorer focuses on PwMS’ sensor data exploration and con
textual analysis, like recent efforts in contextual analysis of 
Type 2 Diabetes by Philip et al.23 MS Pattern Explorer 
detects temporal patterns in activity data using a pixel-based 
visualization inspired by the approach of Gnaeus.24 MS Pat
tern Explorer is also inspired by single-to-multiple individual 
comparison cohort analysis approaches like CarePre25 and 
KAVAGait.26 At cohort-level, MS Pattern Explorer uses clus
tering and visual aggregation methods for the structured 
overview of time series data characteristics of PwMS.27–29

Finally, we use temporal attributes like the day of the week 
and weather conditions to find interesting relationships for 
the contextualization of time series patterns.30,31

Temporal exploration, search, and 
contextualization
Our approach for time series data exploration combines 
overviews and interactive techniques, influenced by best prac
tices in dashboard design,32 human motion analysis,33 open 
research data,33,34 and exploratory search methods.33,34 We 
simplify data complexity through dimensionality reduction35

and clustering,42 using interactive visual queries inspired by 
query-by-example31 for effective pattern searching. This 
method streamlines searches,39 reduces the need for complete 
data familiarity,33,34 and adjusts for varying definitions of 
similarity.45 To contextualize patterns, we integrate metadata 
analysis with time series interpretation, using a Self- 
Organizing Map (SOM) algorithm41 for both clustering and 
mapping metadata to patterns, addressing our experts’ 
needs.36,45,46,48

Significance
This study acknowledges the significance of personal sensing 
devices in investigating not only physical activity but also 
other lifestyle factors like sleep quality and sleep-wake cycles. 
Working in collaboration with experts, we created MS Pat
tern Explorer, analyzing data from an observational MS 
study of smartwatches tracking the physical activity of 45 
PwMS over a median of 7 weeks (see Figure 2).1,38 The 
study’s multivariate time series data presented analysis, visu
alization, and cognitive overload challenges concerning the 
merging and management of large data, and the identification 
of signals relevant to PwMS1 for insight and hypothesis gen
eration. We identify and address 3 analysis challenges in 
experts’ existing workflows, concerning the exploration, 
search, and contextualization of time series activity data and 
metadata of PwMS. MS Pattern Explorer allows experts to 
personalize MS management for a given PwMS by providing 
comprehensive time-series sensor signals in one easy-to-use 
platform. Our iterative design approach included consulta
tion with experts in clinical MS research and data science.

Figure 1. The MS Pattern Explorer interface. Experts identify activity time series in the Temporal Overview (A) for a selected sensor and specific PwMS, 
at multiple temporal granularity levels. To explore available activity patterns of interest, experts can cluster sequences by their similarity in the Pattern 
Explorer View (B), and discovered patterns of interest can be contextualized through explanatory metadata visualizations. Data, model, and visualization 
parameters can be adjusted with the Configuration Panel (C). Provenance information on previous analysis configurations is tracked in the History View 
(D). Users can search for similar, user-specified activity sequences in the Similar Pattern View (E). To enable comparative between-PwMS analyses, MS 
Pattern Explorer automatically scales the visual encodings to accommodate for multiple PwMS.
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Objective
This study introduces the MS Pattern Explorer, a VA 
approach addressing challenges in analyzing smartwatch data 
from individuals with MS.1 Our collaboration with MS 
experts identifies 3 key analysis challenges in experts’ work
flows with time series activity data:

� Exploration: Exploring long time series at various granu
larities (minutes to days) lacks systematic support, mak
ing pattern discovery manual and slow for MS experts. 
Effective time series exploration and visual data abstrac
tions would accelerate insight and hypothesis generation. 

� Search: Searching for specific time series sequences or pat
terns of user-defined lengths within or across PwMS is 
challenging, impeding the process of experts to assess the 
(re-)occurrence of search queries, to generalize findings, 
and to validate data-driven hypotheses. Meaningful query 
formulation and effective visual representation of search 
results would improve identification of significant activity 
patterns for individuals or cohorts. 

� Contextualization: Contextualizing time series patterns 
through auxiliary and explanatory metadata is currently a 
tedious manual process, challenging the experts to assess 
pattern frequency and significance. An example would be 
a pattern of high activity (step count or heart rate) sur
prisingly often happening Saturday morning, if the sun is 
shining. Effective visual analytics for detecting significant 
MS activity patterns would enhance experts’ sense- 
making abilities. 

To address these challenges, MS Pattern Explorer uses mul
tiple linked views, which together allow for enhanced discov
erability and understanding of activity patterns of PwMS. We 
then study the usability of MS Pattern Explorer across 3 rele
vant user groups, to assess the accessibility of the tool to clini
cians, data scientists, and patients themselves.

Methods
Setting
This study analyzed longitudinal activity measurement data 
collected as part of the “Barriers to physical activity in people 
with MS” (BarKA-MS) study.1 Participants were inpatients 
at the Valens Rehabilitation Centre, a clinic providing com
prehensive inpatient and outpatient rehabilitation services, 
specializing in early neurological rehabilitation and internal 
and musculoskeletal rehabilitation. The primary objective of 
the BarKA-MS study was to assess physical activity levels in 
PwMS using an activity tracker during and after an inpatient 
rehabilitation stay. In addition, it sought to identify potential 
barriers to physical activity through standardized question
naires and free-text assessments. Validation with research- 
grade sensor devices confirmed the suitability of the commer
cially available activity tracker to accurately measure several 
daily physical parameters, such as heart rate and step 
count.35,37,42 45 PwMS were equipped with a commercial 
activity tracker (“Fitbit Inspire HR”) and monitored during 
their rehabilitation stay as well as for 4 weeks after discharge 
(Appendix C—Figure S7).

Data characterization and terminology
We established a common understanding of data characteris
tics and usage of data-centric terminology between ourselves 
and our experts. The 2 activity data attributes considered 
(step count and heart rate) are univariate time series, with a 
temporal granularity up to 1 minute (heart rate). We defined 
4 temporal granularity levels (1 minute, 15 minutes, 1 hour, 
1 day), allowing experts to explore highly specific phenom
ena through analysis, such as inference on activity and sleep. 
A sequence in time series has a user-definable length and is 
used for interactive visual clustering and as a query in 
sequence searches. Its duration is determined by length and 
granularity, for example, “seven minutes”. Finally, we define 

Figure 2: Assembly of computational methods into a data science workflow. Data analysis support can be divided into the data processing area and the 
model selection and training area. Data processing activities occur before and after the model selection and training.
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patterns as generalizable, frequent temporal findings, repre
sented by sets of similar sequences of equal length.

Task characterization
We established a set of design requirements (R#) and user 
tasks (U#) through iterative co-design sessions with our clini
cal expert collaborators. These can be found in Tables 1 and  
2, with a more detailed description in Appendix D. These 
requirements and tasks also guide the tool’s user study evalu
ation, mapping to specific analytical tasks evaluated (T#), as 
shown in Appendix B.

Data preparation
We derived metadata attributes to facilitate the contextuali
zation of patterns in PwMS activity data, that is, the explana
tion of patterns with real-world context. An example would 
be a pattern that happens significantly more often during 
sunny weather. Four expert-identified, diversely sourced 
metadata attributes enrich pattern interpretation under vari
ous factors.

Computational analysis methods
Sequence computation
MS Pattern Explorer allows users to specify sequences and 
patterns of different lengths and granularities. This initiates 
on-the-fly sequence computation for the chosen time series 
attribute, using a sliding window approach to traverse PwMS 
activity data. The computed sequence vectors serve as the 
basis for our machine learning and information retrieval sup
port (Figure 2). To enhance usability, sequences with missing 
values are excluded, and global min-max normalization is 
applied by default, with an optional user parameter for local 
normalization.

Machine learning support: self-organizing map (SOM)
To facilitate visual data exploration, we use a Self- 
Organizing Map (SOM) approach, due to its advantages in 
visual cluster analysis and pattern exploration, especially for 
unexplored data.41 SOM is a neural network trained by 

iterating over normalized sequences serving as data input vec
tors. We chose the Euclidean activation function as the simi
larity measure, which generalizes across all types of user- 
specified sequences (steps, heart-rate changes, sleep). The 
cells of the SOM are initialized using PCA dimensionality 
reduction.36 The SOM grid structure optimally utilizes dis
play space, is effective for vector quantization, and represents 
patterns in a similarity-preserving way.43 The SOM’s grid 
size can be user-defined, with a default setup of 7×7 cells. 
Patterns identified by this approach are dynamic, emerging at 
runtime based on user behavior, rather than being precom
puted on the input dataset.

Information retrieval support: k-nearest neighbor proximity 
search
A k-Nearest Neighbor (kNN) proximity search is used to 
facilitate search, providing the n most similar sequences, 
based on user input.44 Together with the experts, we decided 
for Euclidean distances applied to sequence vectors. The 
sequences with the smallest distances are presented as a list in 
the search results, either for within-PwMS or between-PwMS 
analysis.

Tool implementation
An overview of the MS Pattern Explorer’s implementation 
schematic can be seen in Figure 3.

Tool evaluation
We conducted a 15-person user study with in-person and 
online interviews. Participants were equally distributed 
amongst 3 target user groups: data-scientists, clinicians work
ing in the MS domain, and non-experts (members of neither 
of these). This classification allows for the assessment of the 
tool not only with the primary user group (clinicians), but 
also for the comparison with other relevant stakeholders in 
healthcare, in line with the design of similar studies.45 Partici
pants were on average 34.1 years old (SD¼11.35) and 
66.66% were male. None of the participants had seen MS 
Pattern Explorer before or performed analyses on the Barka- 

Table 1. MS Pattern Explorer’s design requirements.

Requirement Description

R1 Attribute selection Switch between heart rate and step count attributes interactively.
R2 Patient selection Enable selection of a PwMS for detailed analysis.
R3 Granularity control Adapt visual interfaces and algorithmic support to changes in time granularity.
R4 Sequence and pattern specification Specify the length of temporal phenomena to limit search space and enhance search efficiency.
R5 Model control Provide interactive control for ML clustering and retrieval.
R6 Within and between-PwMS analysis Support workflows for both single and multiple PwMS analysis.
R7 Analysis history Automatically track workflow history and enable return to different stages.

Table 2. MS Pattern Explorer’s user tasks.

Task Description

U1 Sequence analysis Detailed longitudinal analysis of temporal sequences for selected PwMS, focusing on heart rate and 
step count.

U2 Pattern exploration Explore patterns for selected MS activity attributes using clustering algorithms and interactive ML 
processes.

U3 Sequence search Search for similar sequences based on a query, retrieving the k-most similar sequences.
U4 Temporal pattern localization Localize pattern sequences along the temporal attribute to see distribution for a PwMS.
U5 Pattern contextualization Relate frequent patterns to external metadata attributes like time of day, day of week, and weather 

conditions for context, to further support hypothesis generation.
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MS dataset and had varying degrees of experience with data 
analysis (data literacy). We asked the participants to answer 
a series of open (O) and closed (C) questions that comprehen
sively cover the tool’s feature set, to assess the intuitiveness of 
the tool in conducting exploratory data analysis across the 3 
user groups. We grouped these questions under a set of ana
lytical tasks, aiming for complete coverage of our character
ized design requirements and user tasks (Tables 1 and 2, 
respectively). These questions can be found in Appendix B.

To accurately reflect task completion for closed questions, 
beyond binary assessment, participant responses were scored 
within the interval 0.0 (task failure) and 1.0 (task comple
tion). We applied deductions of 0.2 or 0.5 points to the score 
if participants required minor usability hints or assistance. 
This allowed us to assess the degree to which our feature 
implementation was intuitive for our target user groups. 
Open question responses were evaluated based on the 

number of relevant insights identified, as in other literature 
on insight-based evaluation.33,46,47

The evaluation procedure included a brief introduction 
(5 minutes) to the research domain, followed by an overview 
of MS Pattern Explorer (5 minutes), where we deliberately 
only showed the different views without demonstrating any 
interaction techniques. Finally, the participants were asked to 
use MS Pattern Explorer to complete a set of usage tasks that 
comprehensively cover the tool’s interactive functionalities 
(20 minutes).

Results
MS Pattern Explorer tool
In this section, we refer to the requirements (R) and user tasks 
(U) identified in Tables 1 and 2 to clearly connect our user- 
centered development steps together.

Figure 3: The MS Pattern Explorer’s architecture. We use a Vue framework-based frontend with Plotly for visualizations, and a separate Python Flask 
Application for API call handling. User interaction involves frontend input, backend processing, and subsequent frontend updates with relevant data.
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Temporal overview
The Temporal Overview component (Figures 1A and 4) 
presents longitudinal time series data for one chosen attribute 
and PwMS (R1, R2, R3). Users can conduct detailed tempo
ral sequence analysis at various granularities and identify 
multiple sequences through highlighting (U1). These sequen
ces may represent previously explored patterns or search 
results (U2). Figure 4 captures absolute time, with the x-axis 
indicating finer granularities like days within a week (R3). 
This component adjusts to the user’s chosen temporal granu
larity (U4), accommodating different views, such as hours of 
a day (Figure 1). When set to 1 day granularity, the Temporal 
Overview displays the complete MS study period, as shown 
in Figure 4 for step count. The y-axis represents the week of 
the year, and the x-axis represents the day of the week. Users 
can switch to a between-PwMS comparison of sequences 
(R6), adjusting the scale of the color encoding of values to 
accommodate cohort-wide values, providing a global per
spective useful for assessing PwMS activity variations. This 
feature is particularly valuable to experts when trying to 
understand the diverse activity levels among PwMS in the 
cohort (R6, U5) (Table 3).

Exploration of activity patterns
MS Pattern Explorer enables effective time series exploration 
by implementing an interactive ML process, leveraging the 
Self-Organizing Maps (SOM) algorithm algorithm. 22 The 
clustering algorithm reveals frequent patterns of user- 
steerable length and model parameters (R5). Results of this 
exploratory cluster analysis are presented in the Pattern 
Explorer View (Figure 1B), a grid-based view with each cell 
containing one sequence pattern, where the variety and 

heterogeneity of patterns are easily identifiable by the clini
cians (U5). An overview of the workflow for steering the 
exploratory analysis process can be seen in Figure 5.

The pattern of every cell is encoded with a thick red line, 
which allows for gaining an overview of the variety of pat
terns (U1, U2). Thin black lines represent the heterogeneity 
of sequences distributed in every pattern/cell. At the top of 
every cell, the sequence count is shown (eg, #25), that is, the 
number of sequences that the clustering algorithm has 
assigned to a particular cell. Figure 1B shows 6-hour heart 
rate patterns for a PwMS, with upward trends at the top left 
of the SOM, low heart rate patterns at the top right, and 
diverse patterns with high heart rates located at the bottom.

The linking between the Pattern Explorer View (B) and the 
Temporal Overview (A) allows users to analyze the distribu
tion of temporal occurrences of a pattern (U2, U4). A click 
on a cluster cell selects the patter, linking it to the Temporal 
Overview where these pattern sequences are highlighted. This 
can, for example, be seen in Figure 4B, where sequences with 
upward trends in the time series are highlighted.

Users are in control of the normalization strategy, the grid 
dimensions, and the number of training iterations (R5). 
While designed for simplicity with standard SOM parame
ters,22,23 it also offers adjustable settings for more tailored 
analysis, catering to both individual and group-level 
(between-PwMS) explorations (R6).

Searching for PwMS activity sequences
MS Pattern Explorer enables effective search for temporal 
activity patterns with the Similar Pattern View (Figure 1E), 
aiding clinicians in finding sequences similar to a predefined 
query using a proximity search algorithm (R4, U3). This 

Figure 4. (A) Temporal Overview of a PwMS’ weekly step counts; (B) exploring for PwMS activity patterns. In (B), 2 similar sequences occur on 2 
consecutive days in the Temporal Overview (highlighted by the black rectangle marks).
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algorithm retrieves and ranks the k-most similar sequences, 
displayed together with the query sequence always at the top. 
Users select a query sequence from the Temporal Overview 
(A), with user-specified data processing parameters (U5). The 
number of sequences shown in the Similar Pattern View is 
adjustable.

Each list element shows the retrieved sequence within its 
temporal attribute context (blue line chart) using a rectangle 

metaphor with a bright-red background to highlight the 
sequence.

Each sequence is accompanied by relevant metadata like 
the PwMS ID and sequence start date, maintaining data pri
vacy. An interactive bar chart on the right of every list ele
ment shows attributes like the time of day or day of the week, 
for contextualization and filtering (U2, U5). This functional
ity enables users to drill down into specific data subsets, such 

Table 3. Data and metadata attributes computation.

Data attribute—type Description Contextual relevance Source of data Type and range of values

Part of the day—metadata Splits the day into 4 
segments

Helps detect energy loss in 
PwMS with fatigue during the 
day, a common symptom.

Computed values Categorical: morning, 
afternoon, evening, night 

Additional granularity 
within a segment:  
1-minute, 15-minute, or  
1-hour 

Part of the week— 
metadata

Indicates on which week
days specific patterns 
occur, applicable across 
all 4 granularity levels

Many PwMS are pursuing jobs 
or have family duties, leading 
to different physical activity 
patterns between weekdays 
and weekends.

Computed values Categorical: Monday, 
Tuesday, Wednesday, 
Thursday, Friday, 
Saturday, Sunday

PwMS distribution— 
metadata

Anonymized PwMS IDs 
help identify if activity 
patterns are common to 
specific PwMS or are 
balanced in distribution 
across PwMS.

Identifies specific PwMS activity 
patterns, helping to manage 
relevance and cardinality. In 
the interface, the top 3 PwMS 
for each pattern are 
highlighted.

BarKA-MS39 Categorical: Anonymized 
PwMS IDs

Weather condition— 
metadata

Weather data from a pub
lic API is integrated for 
multimodal analysis of 
PwMS sequences, while 
maintaining patient 
anonymity

Weather may impose additional 
barriers for physical activity, 
as heat can worsen specific MS 
symptoms.

Openweathermap  
Public API40

Categorical: sunny, rainy, 
cloudy, snowy, etc.

Heart rate—data Wearables-based measure
ment of PwMS heart 
rate

Approximates sleep and stress 
evaluations

BarKA-MS39 Numerical

Steps—data Wearables-based measure
ment of PwMS step 
count

Approximates level of activity, 
and indicates possible fatigue 
episode

BarkaMS39 Numerical

Figure 5: Experts’ workflow when performing exploratory data analysis. First, experts get an overview of the patient, and define the formal 
characteristics of a pattern. Then, experts explore new patterns, or search for similar sequences. We support 2 main workflows: within-patient analysis 
(bottom arrows, in green), and across-patient analysis (top arrows, in blue).
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as sequences occurring on Thursday afternoons, blurred in  
Figure 1E for data privacy reasons.

In the between-PwMS analysis mode, experts can search 
and compare sequences across multiple PwMS to identify 
patterns and similarities (R6, U4), simplifying the selection of 
interesting PwMS for further analysis (R2). The interface 
allows for easy navigation between different PwMS analyses 
and supports iterative searches, where selecting a sequence 
from the result list can trigger a new search based on that 
sequence (R7). Appendix A—Case Study 2 exemplifies these 
results.

Contextualizing identified PwMS activity patterns
MS Pattern Explorer aids users in contextualizing sequence 
patterns, whether found through pattern exploration or 
sequence search. The Pattern Explorer View (B) offers a bar 
chart at the bottom of each SOM cell, showing the distribu
tion of selected metadata attributes, with a color legend 
explaining these attributes. An example includes the contex
tualization of heart rate patterns with time-of-day informa
tion, like morning or evening (U4). This tool is particularly 
useful in between-PwMS analyses, helping experts determine 
if patterns are common across multiple PwMS or specific to 
individuals (R6). Additionally, the Similar Pattern View (E) 
offers contextualization through bar charts indicating meta
data attribute occurrences, like time of day or day of the 
week, aiding in understanding search results (U1, U4, U5). 
For instance, it can show sequences primarily occurring in 
the afternoon, but not on Wednesdays or at night 
(Figure 4B). Appendix A—Case Study 1 exemplifies these 
results.

User-centered evaluation results of MS Pattern 
Explorer
In this section, we refer to the analysis tasks (T) identified in 
Appendix B to connect our user-centered development to our 
evaluation strategy. We observed distinct performance pat
terns among data scientists, medical experts, and non-experts 
in handling both closed and open questions. Data scientists 
consistently outperformed both medical experts and non- 
experts, with a notably lower variability in scores for open 
questions among participants of this group (Figure 6). Medi
cal experts had a marginal advantage over non-experts in 
closed questions, but their performances were comparable in 
open questions. When interacting with the Temporal Over
view of a PwMS (T1), data scientists mainly focused on data- 
specific insight like missing values, while non-experts 
observed general patterns (eg, morning activity), or related 
the time series to medical events (eg, physiotherapy). The 
identified patterns were assessed qualitatively through discus
sions with experts, in line with other studies on biomarker 
identification via fitness trackers.35,39,48

The biggest performance gap can be observed in questions 
T3–T5 (see Appendix B), where participants defined and 
explored patterns and gained additional knowledge through 
metadata attributes. Regarding the tool’s objectives (explora
tion, search, and contextualization of patterns in temporal 
activity data), data scientists scored higher in most tasks, 
especially in pattern identification and metadata interpreta
tion. However, there are no considerable performance differ
ences between user groups.

Discussion
Our results indicate that although domain experts using MS 
Pattern Explorer were sometimes overwhelmed by the 
parametrization-dependent analyses, they were able to inter
pret high-level patterns with ease. The tool provided simple, 
interpretable information usually inaccessible to them. We 
discuss the implications, possible extensions, and limitations 
of our work below:

Implications for clinician workflow
MS Pattern Explorer represents a meaningful development in 
medical informatics. Clinicians often hesitate to use wearable 
device data due to concerns about time investment, data vol
ume, and the challenge of extracting meaningful insights.48

Our tool aims to address these issues by making data more 
accessible and useful, offering a new range of analytical possi
bilities. It seeks to bridge the gap between data science and 
frontline healthcare by providing visual analyses that could 
facilitate the integration of wearable technology into routine 
care. The history functionality standardizes analyses, making 
them repeatable across time and patients, thus enhancing 
comparability. Additionally, clinicians can use predefined 
analysis sets to discuss physical activity and fatigue with 
patients, addressing a need identified by expert neurologists. 
By addressing these gaps, our tool aims to support clinicians 
in leveraging the potential of wearables, to enhance patient 
care.

Interactive data labeling
MS Pattern Explorer enables users to explore and compare 
time series patterns identified via precomputed features and a 
pretrained model. Our approach could benefit from the 
incorporation of additional knowledge from experts or 
PwMS, facilitated by interactive data labeling performed 
while using the tool. Future work may include allowing 
PwMS to comment on their wellbeing, like existing 
approaches in healthcare.49–51

Transferability to other domains
MS Pattern Explorer uses consumer sensing devices, making 
the analyzed signals generic. Feedback from medical experts 
suggests our approach could also be useful in other domains, 
such as long-COVID management.3 However, involving rele
vant stakeholders in selecting signals, processing data, creat
ing metadata, and designing the system is crucial. MS Pattern 
Explorer cannot be assumed to work as-is in a new disease 
context. Overall, the innovation of MS Pattern Explorer lies 
in the creation of its analysis and visualization toolbox, and 
the testing of its stakeholder activation strategy.

Performance gaps by user group
In questions T3-T5 (see Appendix B), we suspect the follow
ing reasons for a performance gap: (1) Non-experts and med
ical experts lacked exploratory data analysis experience, 
making it difficult to find interesting patterns. (2) Their lim
ited analytical background made interpreting clustering 
results hard. (3) They found a visualization of 7×7 clusters 
(default parameter settings) overwhelming. (4) Metadata 
attributes needed further explanation before being under
stood and valued. (5) While most data scientists were able to 
perform between-PwMS analyses (T8) with minimal guid
ance, others encountered difficulties steering multiple 
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parameters simultaneously. This suggests a need for further 
development iterations, or a training program for using the 
tool. Additionally, medical experts showed little interest in 
between-PwMS analysis, preferring the use of our approach 
in consultations with single patients.

Scalability
MS Pattern Explorer depends on the user-defined data granu
larity and sequence length, and so the computation of sequen
ces and model results happens at runtime. To address 
problems occurring for larger data sizes, we store every con
figuration in a database, enabling quick lookups of precom
puted results. However, the memory required for storing 
these values, and the computational complexity for larger 
data remain limiting factors.

Conclusions
We present MS Pattern Explorer, a VA system for the explo
ration, search, and contextualization of temporal activity 
data of PwMS. Designed with expert collaboration, it lever
ages interactive clustering and coordinated, interactive views. 
Our tool effectively aids exploratory sensor data analysis and 
insight generation for PwMS, with potential for its extension 
into cohort comparisons and applications to other chronic 
diseases.
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