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We aimed to replicate previous effects of functional magnetic resonance
imaging neurofeedback (fMRI-NF) in right inferior frontal cortex (rIFC)
on IFC activation during a Stop Task in a larger group of boys with
attention-deficit/hyperactivity disorder (ADHD). The present double-blind,
randomized controlled trial tested the effects of 15 runs of active versus
sham fMRI-NF of rIFC on performance and activation associated with
successful and failed inhibition versus Go trials during a tracking Stop
task in 88 boys with ADHD (44 active; 44 sham), controlling for age and
medication status. No significant group-by-time interaction effects were
observed for performance or brain activation during the successful stop
trials, and post hoc analysis showed very low numbers of active fMRI-NF
learners. Nevertheless, during error monitoring, there was a significant
group-by-time interaction effect on post-error reaction time slowing and
in left IFC activation, which were both increased after active compared
to sham fMRI-NF. The findings are in line with our previous observation
of left IFC upregulation after fMRI-NF of rIFC relative to active fMRI-NF
of parahippocampal gyrus. This highlights the potentially wider regional
effects that fMRI-NF of a particular self-control target region has on other
self-regulatory regions in ADHD.

This article is part of the theme issue ‘Neurofeedback: new territories
and neurocognitive mechanisms of endogenous neuromodulation’.

1. Introduction
Attention-deficit/hyperactivity disorder (ADHD) is characterized by
persistent, developmentally inappropriate and impairing symptoms of
inattention and/or hyperactivity/impulsiveness [1] and is one of the most
prevalent (5–7%) neurodevelopmental conditions [2]. ADHD has been
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associated with deficits in executive functions [3,4], with one of the most consistent deficits being problems with motor
inhibitory control as measured in Go/No-go and Stop tasks [5,6]. Furthermore, meta-analyses of functional magnetic resonance
imaging (fMRI) studies show consistent underactivation in fronto-striato-thalamic and fronto-parieto-cerebellar regions and
networks in ADHD [7–11] and underactivation in right inferior frontal cortex (rIFC) during tasks of inhibitory control is one of
the most consistent findings [7–9]. In addition, psychostimulant medication, which is the first-line pharmacological treatment
for ADHD [12], has been shown to consistently increase rIFC activation based on a meta-analysis of stimulant medication effects
in fMRI studies in children and adults with ADHD [13]. However, stimulants are not indicated for all children with ADHD, are
associated with side effects [12], and treatment adherence may be poor in adolescents [14]; further, evidence for their long-term
efficacy is limited [12,15], which may be related to brain adaptation to stimulant medication [16].

fMRI-based neurofeedback (fMRI-NF) presents a potential novel alternative to pharmacological treatment for ADHD. Based
on operant conditioning, fMRI-NF enables individuals to self-regulate activation in specific brain regions/networks by provid-
ing feedback on brain activity in real-time [17–19]. Electroencephalography neurofeedback (EEG-NF) has shown small and
non-significant effects in this population in recent meta-analyses [19]. However, compared to EEG-NF, fMRI-NF requires fewer
sessions [18,19] and has the advantage that it can target the deeper cortical and subcortical regions that have been shown to be
reduced in activation based on the last decade of fMRI studies in ADHD, such as the IFC and the basal ganglia [7–9].

We have previously conducted two pioneering fMRI-NF studies in children and adolescents with ADHD. In the first
proof-of-concept single-blind randomized controlled trial (RCT) of fMRI-NF in ADHD [20], ADHD boys were able to progres-
sively increase activation of either rIFC (active group; n = 18) or left parahippocampal gyrus (PHG; active control group; n = 13),
after four 1 h sessions of 11 runs of fMRI-NF with a significant transfer effect in the rIFC group. This was significantly associated
with improved ADHD symptoms in both groups relative to baseline, with no side or adverse effects. Although groups did
not differ in clinical or cognitive measures, at follow-up, the clinical improvement was more pronounced in the rIFC group
(Cohen’s d~1), while it was no longer significant in the control group, suggesting potential delayed consolidation or plasticity
effects [20]. The most pronounced group differences, however, were observed in fMRI activation during a tracking Stop-signal
task. The rIFC fMRI-NF group, compared to the left parahippocampal fMRI-NF group, showed significantly increased rIFC
and precuneus activation during successful inhibition [20] and increased left IFC activation during error monitoring after
compared to before treatment, which was furthermore correlated with treatment-related ADHD symptom changes [21]. This
was accompanied by increased functional connectivity in IFC-cingulo-striatal networks and decreased connectivity of rIFC with
areas of the default-mode network [22]. Interestingly, similar upregulation and even normalization effects have been observed
in the same regions with stimulant medication relative to placebo, using the same Stop task [13,23,24]. This suggests that
fMRI-NF of the rIFC has similar activation effects on the disorder as stimulant medication.

To overcome the limitations of the initial proof-of-concept RCT, such as small sample size, single-blindness and the lack
of a placebo condition, we conducted a larger double-blind, sham-controlled RCT in ADHD boys. We tested the efficacy
of 15 runs of 7.5 min active fMRI-NF versus sham fMRI-NF of rIFC over four 1 h sessions in a range of clinical, cognitive
and Stop task fMRI measures in 88 ADHD boys. We found mostly no significant group differences in clinical or cognitive
measures [25]. While the active group, relative to the sham group, showed enhanced activation in rIFC and other frontal and
temporo-occipito-cerebellar self-regulation areas, there was no progressive rIFC upregulation across runs, no correlation with
ADHD symptom scores, and no transfer effect of learning, as observed in the proof-of-concept study [25].

While the results of the larger study were unexpected, the smaller proof-of-concept RCT showed that fMRI-NF effects seem
to be more pronounced on activation during a Stop task than on clinical and cognitive measures [20–22]. Thus, we examined
the effects of active fMRI-NF versus sham fMRI-NF of rIFC on fMRI activation related to successful and failed inhibition during
a tracking Stop task in boys with ADHD. We hypothesized that as in the previous study [20,21], active fMRI-NF versus sham
fMRI-NF of rIFC would increase activation in the right IFC during successful stop trials and in left IFC during error monitoring.
We furthermore hypothesized that these changes would be associated with improved performance in the key performance
measures of inhibitory control and error monitoring, respectively, as well as with improvement in ADHD symptoms.

2. Methods
(a) Trial design
In this pre-registered (ISRCTN14491589) double-blind, sham-controlled, parallel RCT, participants were block-randomized into
an active or sham group with a 1 : 1 ratio and varying block sizes, stratified by medication status (non-medicated/on stable
ADHD medication) and by age group (up to or over 14 years and six months). Randomization was conducted independently by
the King’s Clinical Trials Unit.

Families, and researchers who were involved in data collection, were blind to the participants’ group allocation. Once
a participant was allocated to a treatment arm, one researcher was unblinded to administer the treatment condition to the
participant via a shielded computer terminal. This researcher, after unblinding, had no interaction with the participants/families
and was strictly prohibited from sharing the information with other team members. Blinding integrity was tested by asking
blinded participants, carers and researchers to guess group allocation at post-treatment and was successful for participants
and their parents, but not for researchers [25]. This trial received research ethics committee approval from the UK National
Health Service Health Research Authority, London Bromley Research Ethics Committee (ref. no. 17/LO/1368), was conducted
in accordance with the Declaration of Helsinki 1975 and is reported in line with Consolidated Standards of Reporting Trials
(CONSORT) guidelines [25].
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(b) Participants
Participants were 88 boys, aged 10–18 years, meeting the Diagnostic and Statistical Manual of Mental Disorders-5 (DSM−5 [1])
diagnostic ADHD criteria confirmed by the Kiddie Schedule for Affective Disorders and Schizophrenia interviews (KSADS;
[26]), and with a t-score of 60 or more in the Conners 3P [27] DSM−5 inattention and/or hyperactivity-impulsivity domains.
Participants were either medication-naïve or on stable ADHD medication for at least two weeks before baseline and until
post-treatment assessment. Stimulant users were requested to abstain from taking medication 24 h before each of the three
assessments but could remain on medication throughout the study if they wanted. Exclusion criteria were IQ less than 80
[28]; any co-occurring psychiatric disorder, except for oppositional defiant disorder and conduct disorder that is commonly
co-occurring in ADHD; neurological conditions or contraindications to MRI. Only boys with ADHD were included since the
selection of our NF target of rIFC was based on pediatric meta-analytic findings that included over 84% of ADHD males [7–9].
The inclusion of females in a neurotherapy study of rIFC upregulation would have been premature and not ethical given that,
in the absence of fMRI meta-analyses evidence in large number of females, it is currently unknown whether girls with ADHD
also have consistent rIFC underactivation. The parents/participants gave informed consent/assent. Participants received £180 to
participate in the study plus travel cost reimbursement.

(c) Procedure
Participants were invited for seven study visits, consisting of eligibility screening and baseline assessment (visit 1), fMRI-NF
interventions (visits 2–5), post-treatment (visit 6), and six month follow-up assessments (visit 7) (for further details, see Lam et
al. [25]). fMRI of the tracking Stop task was conducted at visit 2, before the first of the fMRI-NF runs and at treatment visit 5,
after the 15 fMRI-NF runs (figure 1a).

(i) Functional magnetic resonance imaging neurofeedback intervention

Treatment comprised 15 active or sham fMRI-NF runs over four 1 h scan sessions. Each run consisted of seven 30 s ‘rest’ blocks
and six 40 s ‘self-regulation’ blocks (i.e. 7.5 min total; figure 1b). During the rest blocks, the participants passively viewed a static
image of a dolphin and were instructed to relax and keep still. During the self-regulation blocks of active fMRI-NF, participants
were asked to move a gamified rocketeer—displayed on a screen in front of them during the scanning session—up into space
by any means they could. The rocketeer’s movement was based on the activation of the opercular and triangular parts of rIFC,
and participants received real-time visual feedback of their self-regulation through the rocketeer moving up or down on the
screen (see a brief video showing the rocketeer game animation at [29]). After each run, participants were given a score between
1 and 10 as feedback on their upregulation performance. The participants were not given specific instructions but were told
that concentrating might help self-upregulation of activation. After the last fMRI-NF run of the last session, a ‘transfer run’ was
performed, which was identical to the previous runs except that no feedback was provided [25].

(ii) Sham condition

The sham group underwent identical procedures, except that they received sham NF during the ‘self-regulation’ blocks, i.e. the
rocketeer moved according to brain activity generated by the last active participant rather than their own. The playlists of the
sham NF were generated using either fully completed active NF runs or for those active participants who did not complete 15
runs (but at least eight runs), some runs were repeated to create a full playlist, randomizing their order in the playlist. A sham
playlist using data from an active fMRI-NF pilot participant was created (18-year-old healthy control) in case the first study
participant was randomized to the sham group (for further details see Lam et al. [25]).

(iii) Acquisition and real-time data processing for functional magnetic resonance imaging neurofeedback signal

Imaging data were acquired at the Centre for Neuroimaging Sciences, King’s College London, on a GE Discovery MR750
3T scanner (GE Medical Systems, Chicago, USA) equipped with a 12-channel head coil for signal reception. fMRI-NF scans
were acquired using a T2*-weighted Echo planar imaging (EPI) sequence, sequentially from top to bottom [25]. Control of
the rocketeer game was enabled by real-time transfer and analyses of fMRI data, facilitated by the Analysis of Functional
NeuroImages (AFNI) software [30,31] and a custom real-time fMRI interface [32], consisting of a set of scripts installed on the
MRI scanner to test connection between all computers, and to easily stop, start and monitor AFNI’s real-time fMRI software
both on the scanner and on a remote Linux workstation image processing server (see the electronic supplementary material,
Methods).

(iv) Offline processing of the functional magnetic resonance imaging neurofeedback runs

The offline processing strategy of the fMRI-NF runs is presented in the electronic supplementary material, methods and was
also described fully in a previous publication [25]. The mean BOLD signal extracted from the significant cluster in the rIFC
across the 15 fMRI-NF runs for the active and sham groups is presented in figure 1c. Among those in the active group, seven
participants were categorized as ‘learners’ in an additional post hoc analyses, defined by a correlation of r > 0.15 between their
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rIFC brain activation and the number of runs [33], indicating progressive learning (figure 1d; electronic supplementary material,
Results table S1).

(v) Functional magnetic resonance imaging neurofeedback tracking Stop task

The 6 min fMRI version of the individually adjusted visual tracking Stop task used here has been described previously
[20,34–36]. Prior to scanning, each participant practised the 6 min rapid mixed trial, event-related Stop task. The task required
withholding a motor response to a Go stimulus when it was followed unpredictably by a Stop signal [34–36]. The basic task was
a choice reaction time task (left and right-pointing arrows: Go-signals) with a mean inter-stimulus interval of 1.8 s (156 Go trials)
where subjects had to press the corresponding left or right button when viewing the left or right arrows. In 20% of the trials,
pseudo-randomly interspersed, the Go-signals were followed (about 250 ms later) by arrows pointing upwards (Stop-signals),
and participants had to inhibit their motor responses (in a total of 40 Stop trials). A tracking algorithm changed the time interval
between Go-signal and Stop-signal onsets according to each participant’s inhibitory performance to ensure that the task was
equally challenging for everyone and to provide 50% successful and 50% unsuccessful inhibition trials at every moment of the
task. The task measured motor response inhibition in the 50% successful Stop trials as well as error/performance monitoring
in the 50% unsuccessful Stop trials. Participants perceived direct feedback of their inhibition failure by seeing the Stop signal
appear after they had made their motor response. The primary dependent behavioural variable for the motor inhibition capacity
is the Stop-signal reaction time (SSRT), which was calculated by subtracting the mean delay time from the mean reaction
time (MRT) to Go trials [37]. The post-error response time slowing (PERTS) was the primary dependent variable of the error
monitoring process. It was an index of the awareness of one’s own inhibitory failure (i.e. an indicator of slowing down after
making a mistake), which was computed by subtracting MRT to Go signals after a successful motor inhibition from MRT to Go
trials after an unsuccessful motor inhibition [38]. Other dependent variables of the Go process of the task were the MRT to Go
signals, intrasubject response time variability, and omission errors to Go signals.

(vi) Functional magnetic resonance imaging neurofeedback Stop task data acquisition

Before the first real-time fMRI-NF run and after the last fMRI-NF transfer run, functional scans for the fMRI Stop task
were collected. In each of 38 non-contiguous planes parallel to the anterior-posterior commissure, 200 T2*-weighted magnetic
resonance (MR) images depicting BOLD contrasts covering the whole brain were acquired with repetition time/echo time
(TR/TE) = 1800/30 ms, flip angle = 75°, 64 × 64 matrix size, field of view (FOV) = 211 mm, slice thickness = 3 mm, slice gap =
0.3 mm and voxel size = 3.3 × 3.3 × 3.3 mm3 (voxel dimensions matching the real-time fMRI-NF runs). At the start of the first
fMRI-NF session, a high-resolution T1-weighted structural sagittal ADNI GO ACC MPRAGE was also acquired with inversion

(a) Overall Trial Design
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Figure 1. The overall trial design, fMRI-NF set-up and rIFC activation across runs. (a) This study was part of a larger trial assessing the efficacy of fMRI-NF for children
with ADHD that consisted of seven visits including four fMRI scan sessions. The fMRI Stop task occurred during the scan visit A and D before the first fMRI-NF run and
after a transfer run. (b) This diagram depicts the fMRI-NF architecture. Each fMRI-NF run consisted of seven rest (R) and six self-regulation (S) blocks. During the S block,
(b(i)) the participant brain scan images were acquired in the MRI scanner, (b(ii)) reconstructed in the MRI station, (b(iii)) pre-processed using the Analysis of Functional
NeuroImages (AFNI) in a remote server to compute (b(iv)) fMRI-NF signal that enabled (b(v)) control of the rocketeer that was visually fed back to the participant.
(c) The average BOLD activation extracted from the rIFC cluster for the sham and the active groups is depicted across 15 runs. (d) The same signal from individuals in the
active group divided into those who were judged as learners and non-learners.
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time/TR/TE = 400 ms/7.312 ms/3.016 ms, flip angle = 11°, 196 slices, FOV = 270 mm, 256 × 256 matrix size and slice thickness 1.2
mm with no slice gap.

fMRI data of the participants were pre-processed using statistical parametric mapping (SPM12). The pre-processing steps
included slice-time correction, realignment of EPI series to middle volume to correct head motion, co-registration with the
individual’s structural T1 scan, segmentation, normalization to the Montreal Neurological Institute (MNI) EPI template and
smoothing with a 6 mm Gaussian kernel.

First, we conducted data analyses at the subject-level. BOLD responses were modelled by convoluting the canonical
hemodynamic response function with event onsets, while covarying for six translational and rotational motion parameters
[39–41] and for volumes with frame-to-frame motion greater than 1 mm as additional spike regressors [42,43] to control for
residual volume-to-volume head motion. We modelled the successful Stop trials, failed Stop trials, omission errors, and all other
errors, and used the correct Go trials as an implicit baseline. A high-pass filter (128 s) was applied to reduce low-frequency
noise, and a first-order autoregressive model was used to correct time series correlation. As stated in our pre-specified analysis
plan [44], the two primary outcome contrasts of interest were (i) successful Stop versus Go, and (ii) failed Stop versus Go,
reflecting motor response inhibition and performance/error monitoring, respectively.

Group-level analyses were conducted using the two contrasts. First, within-group brain activation associated with each
contrast for the sham and the active group at pre- and post- treatment were derived using a one-sample t-test at an uncorrected
voxel of p <0.001, and family-wise error (FWE)-corrected cluster extent of pFWE < 0.05. To investigate the effect of the fMRI-NF
treatment on motor inhibition or performance monitoring, we used the flexible factorial design in SPM12, defining the main
effects of group, time and the interaction of group x time as contrasts of interests, while covarying for age, medication status
and total movement. The analyses were undertaken with all participants data in the first instance and repeated in sensitivity
analyses excluding: (i) individuals with omissions errors of greater than 30% [45], and (ii) individuals whose total movement
made them outliers (i.e. with absolute total movement value 1.5 × interquartile range beyond the first and third quartile). These
analyses were conducted at the whole-brain level, with a follow-up small volume correction (SVC) applied to the left and right
IFC combining opercular and triangular parts, as both regions are key areas of motor response inhibition and error monitoring
[34,46–56] and were activated with fMRI-NF of rIFC in the proof-of-concept trial [20–22].

(d) Statistical analysis
Behavioural and questionnaire data preparation and statistical analyses were conducted using IBM SPSS Software 26 (Armonk,
NY). Participant characteristics pre-treatment were compared between groups (active, sham) using independent t-test, chi-
square test or Fisher’s exact test as appropriate. Changes in the Stop task performance measures across time between groups
were analysed using a series of 2 (group) × 2 (time) repeated analyses of covariance (ANCOVAs). In these ANCOVAs, each
behavioural measure (e.g. SSRT, PERTS) was entered as a dependent variable, while covarying for the participants’ age and
medication status pre-treatment. The main effects of group and time, and interaction between group x time, were examined for
SSRT and PERTS. The analysis was not corrected for multiple testing for the primary outcome variables, the SSRT and PERTS,
but it was corrected for multiple testing for all other variables per effect (main or interaction) using the false discovery rate
correction method [57]. Significant group × time interactions were explored using simple-effect analyses by extracting the mean
value of the cluster activation. The exploratory simple effect analyses were conducted without multiple testing.

To investigate the relationship between brain activation and cognitive or clinical changes, correlations were conducted
between the mean cluster activation values and the primary measure of cognitive function associated with the activation (e.g.
activation from the contrast of failed Stop versus Go with difference in PERTS post-fMRI-NF minus pre-fMRI-NF) and change
scores of ADHD-RS (i.e. post-fMRI-NF minus pre-fMRI-NF scores) in the active group. To examine the role of individual
differences, these correlational analyses were also conducted separately in the sham group. In line with a previous approach,
the brain-behavioural analyses were not corrected for multiple comparisons [20,21]. Finally, to examine whether performance
might be associated with learning status, we compared post hoc progressive learners (n = 7; 15.9%) versus non-learners (n = 37)
in their change scores using a series of independent t-tests.

3. Results
(a) Participants
Between 2 January 2018, and 11 March 2020, 122 families completed the baseline assessment and 94 (77.0%) were randomized
into active or sham groups (electronic supplementary material, S1). Six participants (6.4%) refused scanning and dropped out,
leaving 44 participants per group [25]. The trial was stopped prematurely owing to the COVID-19 lockdown, reducing the
sample from the target recruitment number of 100. Groups did not significantly differ at baseline (table 1), except that there
were more participants with ADHD-combined presentations in the active compared to the sham group (χ1, 88

2  = 6.47; p = 0.011).
Not all participants completed all 15 fMRI-NF runs (table 1); the number of runs completed by participants did not differ
between active and sham groups (M = 14.2 for each group; t1,86 = 0.17; p = 0.87).
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Table 1. Characteristics of the active and sham participant groups. (FSIQ, full-scale IQ; ODD, oppositional defiant disorder; CD, conduct disorder; DSM-5, Diagnostic and
Statistical Manual of Mental Disorders—5th edition; SCQ, social communication questionnaire; KSADS, Kiddie Schedule for Affective Disorders and Schizophrenia; n,
participants number; M, mean; s.d. = standard deviation; MPH, methylphenidate. p-values were uncorrected for multiple testing.)

active sham statistics

(n = 44) (n = 44)

(a) demographics M (s.d.) M (s.d.) t86 p-values

age, in months 13.1 (7.30) 13.3 (8.14) 0.46 0.65

education,in years 8.05 (1.93) 8.30 (2.32) 0.55 0.58

FSIQ 102.4 (13.6) 104.8 (12.4) 0.88 0.38

(b) dimensional trait measures M (s.d.) M (s.d.) t86 p-values

ADHD-RS

total score 37.3 (9.5) 37.8 (9.3) 0.25 0.8

inattention 19.8 (4.4) 21.3 (4.0) 1.76 0.08

hperactivity/impulsivity 17.5 (6.0) 16.5 (6.8) −0.78 0.44

Conners−3P

DSM−5 Inattention 80.0 (8.3) 81.1 (7.7) 0.67 0.51

DSM−5 hyperactivity/ impulsivity 84.3 (10.1) 81.4 (13.7) −1.11 0.27

DSM−5 ODD 72.5 (14.3) 69.3 (15.1) −1 0.32

DSM−5 CD 59.6 (14.1) 57.7 (16.1) −0.58 0.57

ADHD Index 14.5 (4.36) 13.5 (4.2) −1.05 0.3

SCQ 7.50 (4.63) 6.98 (5.93) 0.46 0.65

(c) KSADS diagnostic measures n (%) n (%) χ2a/FETb p

ADHD research diagnosis

combined presentation 36 (81.8) 25 (56.8) 0.01a

inattentive presentation 8 (18.2) 19 (43.2)

ODD 21 (47.7) 18 (40.9) 0.52a

CD 1 (2.3) 0 >0.99b

alcohol use 1 (2.3) 0 >0.99b

drug use 0 0 --

(d) medication n (%) n (%) FETb p

medication status

naïve 11 (25.0) 14 (31.8) 0.88b

currently medicated—off 15 (34.1) 15 (34.1)

currently medicated—on 14 (31.8) 12 (27.3)

not currently medicated 4 (9.1) 3 (6.8)

current medication type

no medication 11 (25.0) 14 (31.8) 0.62b

methylphenidate 24 (54.5) 26 (59.1)

(Lis)dexamfetamine 6 (13.6) 3 (6.8)

atomoxetine 2 (4.5) 1 (2.3)

MPH and guanfacine 1 (2.3) 0

(e) fMRI-NF M (s.d.) M (s.d.) t86 p-values

completed number of runs 14.2 (1.2) 14.2 (1.3) 0.17 0.87
ap-values for X2 statistics.
bp-values for Fisher’s exact test (FET).
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(b) Group differences in treatment-related changes in functional magnetic resonance imaging Stop-task performance
The probability of inhibition was approximately 50% for both the active (MPRE ± s.d. = 50.6 ± 3.46; MPOST ± s.d. = 51.7 ± 8.57) and
the sham group (MPRE ± s.d. = 51.3 ± 6.15; MPOST ± s.d. = 53.0 ± 6.72), indicating that the tracking mechanism of the fMRI stop
task was operational. Probability of inhibition did not differ between groups (F1,86 = 0.26, p = 0.61).

Repeated 2 × 2 ANOVA analyses revealed a significant effect of time (F1,86 = 4.47, p = 0.038) with a significant group x
time interaction (F1,86 = 4.37, p = 0.040) for PERTS (table 2). Simple-effect analyses showed significantly higher PERTS in the
sham relative to the active group at pre-treatment (p = 0.043) but not at post-treatment (p = 0.50), and a significant pre- to
post-treatment reduction of PERTS in the sham (p = 0.007) but not the active group (p = 0.84) (figure 2).

(c) Within-group contrasts of successful Stop versus Go and failed Stop versus Go
The contrast successful Stop versus Go (with Go as implicit baseline) evoked significant activation clusters in the active group
in bilateral anterior insula (AI)/orbital IFC during pre-treatment, extending to bilateral ventrolateral prefrontal cortex (vlPFC)
during post-treatment. The contrast evoked activation in the sham group during pre-treatment in bilateral AI/orbital IFC/vlPFC
extending to right IFC triangular/opercular parts/precentral/middle frontal cortices, as well as right inferior/superior parietal
lobe, and supplementary motor cortex extending to right superior frontal cortex; and during post-treatment in bilateral AI/
orbital IFC/vlPFC only (figure 3a-1).

The contrast failed Stop versus Go (with Go as implicit baseline) evoked no activation clusters in the active group pre-treat-
ment but evoked activation post-treatment in bilateral AI/orbital IFC. The same contrast evoked clusters of activation in bilateral
AI/orbital IFC in the sham group during both the post- and pre-treatment scans (figure 3a(ii)).

Pre-treatment

*

**

P
E

R
T

S

Time

Group x Time Interaction of PERTS

Post-treatment

0.00

20.00

40.00

60.00

SHAM

ACTIVE

80.00

Figure 2. Group × time Interaction of post error response time slowing (PERTS). Simple-effect analyses showed a significantly higher PERTS in the sham versus active
group at pre-treatment (p = 0.043) and a decrease of PERTS in the sham group from pre- to post-treatment (p = 0.007). Error bars indicate the standard error of the
mean. Significant thresholds: *p < 0.05, **p < 0.01.

Table 2. Stop task performance by group pre- and post-treatment. (ANCOVA, analysis of covariance; PRE/POST, pre-/post-treatment; M, mean, s.d., standard deviation;
SSRT, stop-signal reaction time; PERTS, post-error response time slowing; MRT, mean reaction time; RTV, response time variability.)

active sham repeated 2 × 2 ANCOVA

PRE POST PRE POST group time group x time

M (s.d.) M (s.d.) M (s.d.) M (s.d.) F1,86 p F1,86 p F1,86 p

SSRT 179.6 (124.8) 150.1 (163.3) 173.8 (144.4) 105.9 (144.6) 0.57 0.45 0.15 0.7 1.74 0.19

PERTS 32.6 (64.3) 34.7 (92.1) 61.6 (73.5) 24.3 (68.2) 0.48 0.49 4.47 0.038 4.37 0.04

MRT to Go 637.6 (126.4) 677.8 (135.3) 655.3 (108.4) 657.9 (118.0) <0.001 0.98 0.37 0.55 3.17 0.079

intrasubject
RTV

178.2 (44.0) 189.8 (53.6) 181.8 (40.8) 180.3 (36.9) 0.18 0.67 2.42 0.12 1.4 0.24

omission
errors

6.2 (7.80) 5.91 (6.85) 7.91 (11.2) 7.23 (9.13) 3.25 0.34 0.016 0.9 0.044 0.84
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(d) Group differences in treatment-related changes of functional magnetic resonance imaging activation
Total movement did not differ significantly between groups (F1,86 = 0.16, p = 0.90), nor did it change significantly across time
points (F1,86 = 2.50, p = 0.12). No interaction between group x time was evident (F1,86 = 0.35, p = 0.56) at the whole-brain level.
Total movement was included as a covariate in the model to remove residual within-group motions.

The flexible factorial model, covarying for total movement, age and medication status revealed no brain activation clusters
reflecting significant effects of group, time or interaction of group x time for the contrast successful Stop versus Go neither
in the whole-brain analysis nor in the SVC analysis in left or right IFC region only. The same model applied to the contrast
failed Stop versus Go equally showed no activation clusters in the whole-brain or the SVC analysis of rIFC. However, the SVC
applied on the left IFC revealed a significant cluster associated with a group x time interaction (p = 0.034, F = 20.1, MNI peak
coordinates (x = −40, y = 44, z = 6), cluster size (kE) = 47 voxels; figure 3b), which remained significant after removing individuals
who had more than 30% omission errors to Go trials (p = 0.029, F = 20.4, (−40, 44, 6), kE = 53 voxels) and after additionally
removing individuals who were outliers in terms of excessive movement (p = 0.048, F = 21.3, (−40, 44, 6), kE = 35 voxels). Simple
effect analyses of extracted data from the cluster showed significant differences between the active and sham at pre- (p = 0.002)
and post-treatment (p = 0.009) and a significantly reduced activation in the cluster for the sham group (p < 0.001), and a weak,
although not significant, increase of activation in the active group (p = 0.076). Post hoc exploration at a more lenient threshold for

1. SUCCESSFUL STOP versus GO

(i) ACTIVE – PRE

2. FAILED STOP versus GO

WITHIN-GROUP CONTRASTS(a)

GROUP x TIME INTERACTION CONTRAST(b)

(i) ACTIVE – PRE

(ii) ACTIVE – POST (ii) ACTIVE – POST

(iii) SHAM – PRE (iii) SHAM – PRE

(iv) SHAM – POST

–5 5 45 55 65

–5 5 45 55 65

–5 5 45 55 65

–5 5 45 –5 5 15

–5 5 15

6
5
4
3
2
1
0

–5 5 15

–5 5 15
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Left IFC
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–1.00

–2.00
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E
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tr
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d
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(iv) SHAM – POST

Figure 3. Within-group and group x time interaction brain activation clusters. (a) Within-group activation clusters, uncorrected at peak p < 0.001 and family-wise
corrected cluster level pFWE < 0.05, associated with (i) successful Stop versus Go trials, and (ii) failed Stop versus Go trials in the active and sham group at pre- and
post-treatment scans. The Go trials were modelled as an implicit baseline. (b) Group x time interaction revealed significant clusters at the left IFC after small volume
correction at the region of left IFC combined opercular and triangular parts at uncorrected peak p < 0.001.
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peak p < 0.01 (uncorrected) and FWE-corrected cluster-extent pFWE < 0.05, showed extension of the left IFC cluster frontally to
left dorso-, rostro and orbito-frontal PFC (electronic supplementary material, Results S2).

(e) Brain-behavioural relations
Correlations were not significant between the cluster of brain activation associated with the significant group x time interaction
in the left IFC and the change scores of PERTS (rp = 0.17, p = 0.28) and ADHD-RS total (rp = −0.13; p = 0.42), inattentive (rp =
−0.19, p = 0.22) and hyperactive scores (rp = −0.051, p = 0.75) in the active group, nor with change scores of PERTS (rp = −0.008, p
= 0.96) and ADHD-RS total (rp = 0.018; p = 0.91), inattentive (rp = 0.11, p = 0.48) and hyperactive scores (rp = 0.070, p = 0.66) in the
sham group.

(f) Behavioural change comparisons between learners and non-learners
Although mean values of PERTS and ADHD-RS total and subdomain change scores are in the favourable direction for the
active learner group, no differences were found between learners and non-learners in these variables (0.31<ps <0.98; electronic
supplementary material, Results table S2).

4. Discussion
In this study, we tested the effects of 15 runs of active fMRI-NF versus sham fMRI-NF of rIFC on the fMRI activation and
performance related to successful and failed inhibition during a tracking Stop task in 88 children and adolescents with ADHD.
We found no significant effects of active fMRI-NF versus sham fMRI-NF of rIFC on inhibitory task performance nor on rIFC
activation during successful inhibition. We found, however, a significant group x time interaction effect both for the post-error
reaction time slowing effect and on left IFC activation during error monitoring in the small volume correction analyses focused
on inferior prefrontal regions.

The finding of no treatment-related effect of fMRI-NF of rIFC on the activation of rIFC during the successful Stop condition
was unexpected, given that our proof-of-concept study in ADHD adolescents has shown significant upregulation in rIFC
associated with successful Stop after 11 runs of fMRI-NF of rIFC when contrasted with active fMRI-NF of the PHG [20].
Differences in trial design could account for the differences in findings. For instance, here we compared 15 runs of 7.5 min of
fMRI-NF of rIFC instead of 11 runs of 8.5 min in the previous study, but it is unlikely that the number or timing of the runs,
which was not sufficiently different between two studies, accounts for the finding differences.

One key difference between this study and the previous one, is the control condition. Here, the control condition was sham
fMRI-NF of the rIFC, while in the previous study it was active fMRI-NF in the left PHG, which is a posterior and left-hemi-
spheric region. The contrast of fMRI-NF of rIFC with fMRI-NF of a different brain region—as opposed to sham fMRI-NF of
the same region—may have enhanced the differential NF learning effects in both groups. We observed in the previous trial
that while the rIFC-fMRI-NF group showed progressively increased activation in rIFC after eight runs, activation in rIFC was
progressively reduced in the PHG-fMRI-NF group after eight runs, and vice versa (i.e. PHG increased in the PHG-fMRI-NF
group and decreased in the IFC-fMRI-NF group). In the study, however, we observed overall increased activation in rIFC in the
active fMRI-NF group relative to the sham fMRI-NF group, while the sham group also activated rIFC, albeit in a more ventral
location [25]. Furthermore, while there was overall increased activation in the active fMRI-NF versus sham fMRI-NF group in
rIFC when combined across all runs (as well as in other frontal, temporal and occipital regions), there was no progressively
increased activation across runs in rIFC, indicating no progressive learning effect [25].

It has been shown that the choice of contrasting conditions is critical for the outcome of fMRI-NF [58]. Sham fMRI-NF has
been shown to elicit activation in cognitive control regions [59], presumably because participants concentrate on the stimulus
and try to upregulate activation, including the rIFC, a key cognitive control region, even if they are not successful because
they receive incorrect feedback. It is, therefore, possible that our sham control condition, given that it also elicited activation
in the ventral rIFC, a crucial activation cluster for motor response inhibition, cancelled out potential effects of rIFC fMRI-NF
training on rIFC activation. Regions not involved in self-control and feedback monitoring may hence be a better choice of
control conditions than sham fMRI-NF [17,58,60].

Other explanations include the difference in participants’ age and medication status. In this study, participants were younger,
between 10 and 18 years old, with an average age of 13 years compared to the average age of 14 years in the previous trial,
which was in adolescents between 12 and 18 years [20–22]. Evidence suggests that fMRI-NF learning may be less efficient in
younger participants and in those with more severe ADHD symptoms, which are characteristics of lower age [61]. Furthermore,
most participants (i.e. 65%) were taking stimulant medication. This could have masked potential NF-related rIFC upregulation
effects, given that stimulants have shown to consistently increase activation in rIFC both after acute and chronic dosages
[8,9,13]. However, the proportion of stimulant-treated adolescents with ADHD in the previous trial was even higher (77%) and
yet we still observed increased rIFC activation during successful inhibition in the Stop task [20]. Alternatively, fMRI-NF may
interact with medication, which could explain why findings were positive in the previous trial where a higher proportion of
patients were medicated [20]. The negative findings of no improvement in successful Stop-task activation parallel the negative
findings of no rIFC fMRI-NF effects on clinical or cognitive performance [25].

Importantly, in an additional post hoc examination, we found a lower number of rIFC fMRI-NF progressive learners relative
to those in the previous trial (15.9 versus 44.4% [33]). The number or learners of fMRI-NF varies across studies (25–75%, e.g.
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[62–67]), which might be attributed to factors such as participant characteristics, target regions, or the definition of learners (i.e.
based on the slope of learning curves or last versus first run [17]). In EEG-NF, an estimated 15–30% individuals cannot operate
NF accurately [68]. For individuals with ADHD, successful learning of EEG-NF across definitions have been reported in up
to 50% of participants [69–71], with a study not identifying learning at a group level [72]. Across these fMRI-NF and EEG-NF
studies, therefore, it is common to find a high proportion of non-learners that seems to vary substantially.

Despite the relatively low number of learners, we found a significant group-by-time interaction effect of active fMRI-NF
versus sham fMRI-NF of rIFC on the activation in left IFC during error monitoring, in the failed Stop trials, as well as on the
associated performance measure of post-error slowing. This replicates the findings of our previous trial where we also observed
increased activation in the rIFC fMRI-NF group compared to the active PHG fMRI-NF control group after compared to before
treatment in a similar-sized cluster in left IFC, which reached ventrally to the insula, premotor cortex and putamen during
failed Stop trials [21]. Simple-effect analyses showed that the decrease in the sham group from pre- to post-treatment was larger
and significant compared to the more marginal increase in the active group (figure 3), which appears to have driven the group
by time interaction effects. This activation was significantly greater in left IFC in the sham group relative to the active group
before treatment and reversed to become significantly lower in the active group relative to the sham group after treatment. The
significant group-by-time effect for post-error slowing replicated the findings of our previous trial [21]. In the context of this
study, it was entirely owing to the sham group decreasing in post-error slowing after relative to before treatment, while the
active group appeared to show no significant differences of post-error slowing from pre- to post-treatment, although its mean
value was in the expected direction.

In typically developing individuals, there is usually a performance adjustment after mistakes, reflected by slowing down
in the following trials. This is thought to be a combination of self-monitoring (error detection/awareness) and adaptive control
(behaviour adjustment) [51,73–77]. Children and adults with ADHD usually have difficulties in error detection/performance
monitoring and do not slow down after mistakes, which has been observed in many cognitive tasks [49,75,77,78], including
in motor inhibition in the Go/No-go [74] and Stop tasks [73]. ADHD has thus been associated with difficulties in error
awareness [79] and it has even been hypothesized that the self-regulation difficulties in ADHD could be owing to impaired
error awareness [77].

While successful inhibition has been associated more prominently with rIFC [34,46–48], left IFC has more commonly been
linked to failed inhibition and error monitoring, together with other error-monitoring areas such as the anterior cingulate
cortex (ACC)/mesial frontal cortex/supplementary motor area (SMA), anterior insula, and basal ganglia [34,47,49–56]. During
error monitoring, individuals with ADHD have shown underactivation of left IFC as well as other regions such as rIFC, left
dorsolateral prefrontal cortex (which was also found in the post hoc exploration in this study), pre-SMA, posterior parietal and
thalamic areas [24,35,40,43]. While the medial prefrontal cortex/ACC seems to be responsible for action monitoring and serves
as an alarm after making mistakes, the left IFC seems to be in charge of the cognitive control aspect by reallocating attentional
resources and increasing the motor threshold [80–82], and hence appears to implement the behaviour adjustment following an
error [83]. While both components of error monitoring have been found to be lower in ADHD children [24,35,77], our findings
suggest that fMRI-NF of rIFC improves the mechanism underlying the control rather than the action monitoring aspects of error
monitoring.

The small increase in activation in the left IFC with fMRI-NF of the rIFC, compared to sham NF, is particularly noteworthy
because stimulant medication has been demonstrated to increase, and even normalize, activation in both the left and right IFC,
as well as in other error-monitoring regions, such as the insula, basal ganglia and parietal regions [24]. It thus appears that
fMRI-NF of rIFC has a similar effect as stimulants in increasing activation in the left IFC error monitoring region [25]. The
increase of left IFC activation during error monitoring with fMRI-NF of rIFC could suggest self-upregulation of an isolated
prefrontal region that has a more widespread effect on other frontal systems in ADHD, in this case of a left homologue region
mediating associated self-control and self-monitoring functions, which replicates our previous finding of left IFC upregulation
during error monitoring in the same task during fMRI-NF of rIFC [22].

Unlike in our proof-of-concept study, we found no significant correlation between fMRI-NF induced clinical changes and
changes in left IFC in the overall active group. This could also be related to the low number of learners in this study. Note
that ADHD-RS and PERTS change scores between learners and non-learners did not differ, although they were in the expected
direction. However, there were too few learners for a statistically powered comparison. Altogether, considering that we found
no effects of active vs sham fMRI-NF on clinical or cognitive measures, nor on brain activation during successful stop trials, the
findings suggest that the current fMRI-NF of rIFC set-up has a very limited effect on a very specific brain area that mediates the
cognitive control aspects of performance monitoring.

Our rigorous double-blind sham-control RCT remains, to our knowledge, the largest investigation on the effects of fMRI-NF
on symptoms and brain activation for children with ADHD to date. Limitations of the study include the involvement exclu-
sively of boys with ADHD which constrains the generalizability of findings to females with ADHD. Future neuroimaging
studies should more thoroughly investigate the underlying neurofunctional differences in females with ADHD and use these
as targets to develop neurotherapeutics in the female population. The sham group, relative to the active group, showed
increased left IFC activation and higher PERT at baseline, which could have influenced the findings. The inclusion of mostly
medicated participants could have confounded or masked fMRI-NF effects, and, despite the sample size, the study might still
be underpowered for detecting smaller effect sizes. The surprisingly low proportion of progressive learners in the current study
raises the need to develop fMRI-NF intervention designs that can shape the learning trajectory more optimally, which should be
addressed in future fMRI-NF intervention for ADHD.
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5. Conclusions
Our results show that active fMRI-NF relative to sham fMRI-NF of rIFC had no effect on rIFC activation during successful
motor inhibition. However, it was associated with a significant group by time interaction effect on left IFC activation, owing
to a small increase in the active and a significant decrease in the sham group after compared to before the treatment. The
upregulation of the left IFC activation after active fMRI-NF versus sham fMRI-NF of rIFC is in line with our previous findings
after fMRI-NF of rIFC relative to active fMRI-NF of PHG region [21]. The upregulation effect on left IFC is also similar to the
effects of the gold-standard, stimulant medication treatment on the same region [24], but with the advantage that fMRI-NF of
rIFC has no known side effects [25]. The findings show that fMRI-NF of a particular self-control target region has wider regional
effects extending to another self-regulatory region, such as, in this case, the typically functionally impaired left IFC during error
monitoring in ADHD. This was found despite the low number of progressive fMRI-NF learners in the current study.
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