
Introduction
Addiction can be delineated as a persistent and recurrent 
disorder, displaying an inherent compulsion to actively 
pursue and consume a particular substance, coupled with 
a diminished ability to exert control over intake. Notably, 
the emergence of a detrimental emotional state becomes 
apparent upon the obstruction of access to said substance.1 
The understanding of the neurobiology underlying 
addiction has advanced through the investigations of 
animal models and, more recently, by means of brain 
imaging investigations conducted on individuals affected 
by addiction. The activation of brain reward systems 
occurs upon the administration of drugs of abuse, and 
extensive research conducted on drug addiction has 
predominantly elucidated the neurocircuitry associated 
with the reward process.2

Drug addiction disrupts multiple brain regions and 
circuits, each of which is likely to contribute differentially 
to the intricate phenotype observed in addicted 
individuals. Although much focus has been put into 
the role of opioid system,3 dopaminergic signaling,4 and 
glutamatergic neurotransmission,5 in drug reward and 
development of addiction, emerging signaling systems 

with multiple implications in the central nervous system 
(CNS) have gathered attention. In this review, we aimed 
to gather evidence on the potential involvement of a 
relatively new system called apelin/APJ in addiction. We 
first provide an overview of the system along with its 
various neuroprotective roles. Based on the protective 
effects of apelin against drugs of abuse and its interplay 
with opioid receptors (OPRs), we further raise hypotheses 
on how apelin/APJ signaling might be a potential system 
worth exploring in the context of addiction.

An overview of the apelin/APJ system
APJ, discovered by O’Dowd in 1993, is a G protein-
coupled receptor (GPCR) derived from the human 
gene.6 Initially characterized as an orphan GPCR, APJ is 
composed of 380 amino acids and exhibits a hydrophobic 
region with a homology of 40% to 50% to the angiotensin 
type I receptor.7 Later in 1998, Tatemoto et al successfully 
isolated and purified the endogenous ligand of APJ from 
bovine gastric secretions. They subsequently named this 
ligand “apelin”.8

Apelin is expressed from the APLN gene and is 
initially synthesized as a 77-amino acid pre-propeptide.9 
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Proteolytic cleavage of the pre-proapelin molecule by 
specific proteases leads to the generation of various 
biologically active apelin peptide forms, such as apelin-13, 
apelin-12, apelin-17, and apelin-36s. Apelin-13 and 
apelin-36 are considered to be the most prevalent and 
biologically active fragments among the different apelin 
peptide forms.10,11

Both apelin and APJ mRNA exhibit broad expression 
patterns in various organs and tissues, encompassing the 
CNS, cardiovascular system, gastrointestinal tract, lung, 
kidney, and placenta.12,13 Apelin is mostly known for its 
pivotal physiological roles in cardiovascular physiology 
by regulating heart contractility, mediating vasorelaxation 
and facilitating neoangiogenesis.14,15 Furthermore, apelin 
is involved in bone physiology, modulation of immune 
system function, maintenance of body fluid homeostasis, 
and energy metabolism.16,17 The extensive involvement 
of apelin/APJ system in different physiological functions 
of the body has made it a potential target in developing 
drugs, particularly gathering attention as an emerging 
therapeutic target for neurological diseases.18

Role of apelin/APJ system in various neuropsychiatric 
disorders
The intricate interplay between molecular signaling 
pathways and the complex manifestations of 
neuropsychiatric disorders has captivated the attention 
of researchers worldwide. Among the fascinating 
avenues of investigation in recent years is the apelin/
APJ system, that has emerged as a potential key player 
in the pathophysiology of numerous neuropsychiatric 
disorders.19 This system has increasingly garnered 
attention for its involvement in diverse aspects of brain 
function and behavior. In this section, we explore the 
connections between the apelin/APJ system and several 
neuropsychiatric disorders, shedding light on its potential 
as a novel therapeutic target and offering fresh insights 
into the neurobiology underlying these debilitating 
conditions.

Initial investigations have demonstrated that apelin-13 
exhibits a dose-dependent capability to mitigate brain 
injuries and post-ischemic cerebral edema. These effects 
are believed to be achieved through the inhibition 
of apoptosis.20 Subsequent studies have provided 
additional evidence supporting the protective role of 
various isoforms of apelin, such as apelin-36, apelin-17, 
and apelin-12, in the context of ischemic stroke. These 
findings further underscore the significance of the apelin/
APJ system in the pathophysiology of ischemic stroke.21 
The neuroprotective properties of apelin extend into its 
impact on neurodegenerative diseases. Studies have shown 
that apelin-13 has the ability to alleviate the dopaminergic 
neurotoxicity induced by 6-hydroxydopamine (6-
OHDA), a neurotoxin known for selectively damaging 
dopaminergic neurons in the animal model of Parkinson’s 

disease (PD).22 Apelin could also significantly improve 
cognitive and motor impairments in PD rats.23,24 Other 
studies have pointed out the neuroprotective effects of 
apelin in animal models of Alzheimer’s disease (AD). 
An illustrative example is the potential of apelin-13 to 
ameliorate autophagy and apoptosis by modulating the 
mTOR signaling pathway. This mechanism has been 
shown to contribute to the improvement of working and 
spatial memory impairments induced by amyloid-beta 
(Aβ), a hallmark feature of AD,25 suggesting its potential 
as a promising target for AD prevention and treatment.26

Besides its impact on neurodegenerative neurological 
diseases, apelin exerts several behavioral and cognitive 
effects on mental disorders. Preliminary studies have 
indicated the presence of apelin and APJ receptor mRNA 
in brain regions such as the hypothalamus, amygdala, and 
dentate gyrus, implying that the apelin/APJ system might 
be involved in the regulation of emotional behaviors.27,28 
In line with this, recent studies have underscored the 
role of apelin in the amelioration of stress-induced 
depression-like phenotypes,29 as well as in reversing the 
memory impairments following chronic stress.30

Given the substantial involvement of the apelin/APJ 
system in neurological and psychiatric disorders, it is not 
surprising that its role may extend to the neurobiology 
of addiction and the underlying mechanisms related to 
drug response. In the subsequent sections, we highlight 
current research studies that underscore the potential of 
the apelin/APJ system within the context of addiction 
(Figure 1). 

Protective effects of apelin against drugs of abuse
Besides its protective properties in various neurological 
disorders, several studies have suggested that apelin 
possesses cytoprotective effects against drugs of abuse. 
Foroughi and colleagues showed that apelin-13 decreased 
the apoptotic response post-methamphetamine exposure 
in PC12 cells by increasing cell viability and reducing 
apoptotic rates. Moreover, apelin could reduce autophagy 
as well as intracellular reactive oxygen species (ROS) 
in methamphetamine-exposed cells.31 These findings 
indicate that apelin could potentially ameliorate drug-
induced neurotoxicity via the decrease in oxidative 
damage, apoptosis, and autophagy cell death. Therefore, 
apelin could be considered a neuroprotective agent 
against neurodegeneration caused by psychostimulant 
drugs. 

Alterations in apelin expression have also been 
reported following morphine dependence. Yildiz 
et al demonstrated that morphine-dependent rats 
exhibited a slight increase in apelin gene expression 
in the hippocampus compared to the control group, 
suggesting that apelin expression might have been 
altered to compensate for the neurodegeneration caused 
by morphine addiction.32 Similar observations were 
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reported in another study where morphine-dependent 
rats exhibited significant increases in serum apelin levels 
compared to their healthy counterparts.33

Several studies have also pointed out the 
neuroprotective effects of apelin on alcohol neurotoxicity. 
For instance, it has been demonstrated that apelin-13 
could significantly alleviate the cognitive impairment 
and anxiety-like behavior associated with fetal alcohol 
spectrum disorder in pups of rats exposed to ethanol.34 
Moreover, apelin could significantly increase the brain-
derived neurotrophic factor (BDNF) and decrease 
necrotic cell death induced by alcohol neurotoxicity.34 In 
another study, apelin-13 could alleviate ethanol-induced-
hippocampal neurotoxicity through anti-oxidative, anti-
inflammatory, and anti-apoptotic mechanisms.35

The protective effects of apelin in addicted individuals 
extend beyond its preventive actions against neurotoxicity. 
For instance, while Tavanai et al reported that opium-
addicted patients with acute myocardial infarction did not 
exhibit altered serum levels of apelin compared to non-
addicted patients, they suggested that apelin is associated 
with the protection of cardiomyocytes in addicted 
patients.36 An overview of studies on the protective 
effects of apelin against drugs of abuse is presented in 
Table 1. Overall, these findings suggest that apelin might 
provide clinical utility against the cytotoxicity of abused 
substances. However, there is a paucity of studies in 
this field, particularly on other psychostimulant drugs, 
including cocaine, which warrants further research.

The interplay between APJ and opioid receptors: 
insights into the potential involvement of apelin/APJ 
system in addiction
OPRs represent a well-established class of GPCRs that 
participate in numerous physiological processes within 
the body. These receptors consist of three primary 
subtypes: mu, delta, and kappa. Each subtype plays a 
distinct role in mediating the effects of endogenous 
opioids and exogenous opioid drugs, thereby influencing 
pain perception and other related physiological responses, 
including addictive behavior.37 There are several findings 
indicative of the interplay between the apelin/APJ system 
and opioid signaling, suggesting that this system might 
be involved in the neurobiology of addiction. Herein, we 
focus on two opioid-related signalings associated with the 
apelinergic system that strengthen the possibilities of its 
involvement in addiction. 

Hypothalamic mu receptor signaling and apelin in 
hedonic homeostasis
The lateral hypothalamus is involved in the regulation 
of motivated behaviors and serves as a crucial player in 
modulating reward processes.38 This hypothalamic region 
comprises intrinsic neuronal populations that establish 
connections with reward-related regions, including the 
ventral tegmental area and nucleus accumbens.39-41 The 
activation of lateral hypothalamus neurons contributes 
significantly to the modulation of the hedonic properties 
associated with both natural rewarding stimuli and 
substances of abuse.42 Research findings have indicated 

Figure 1. An overview of the potential of apelin/APJ system in addiction. Interaction of mu receptor and apelin in lateral hypothalamus, as well as the 
heterodimerization of APJ and kappa opioid receptor (KOR), along with neuroprotective effects of apelin against drugs of abuse contribute to its potential 
involvement in addiction medicine
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that lateral hypothalamus neurons mediate certain aspects 
of the rewarding effects observed with morphine.43,44 The 
mu opioid receptor (MOR) is responsible for generating 
rewarding effects through direct activation by morphine, 
as well as indirect activation by various other drugs of 
abuse, such as tetrahydrocannabinol, nicotine, cocaine, 
and alcohol.45-48 Additionally, the MOR can be stimulated 
by naturally occurring endogenous opioids, leading 
to rewarding experiences.49 As a result, this receptor is 
consistently engaged throughout episodes of drug intake, 
and excessive stimulation of the MOR probably plays 
a role in the disruption of reward systems observed in 
individuals who are dependent on drugs.

It has been demonstrated that chronic stimulation 
of MORs modifies transcriptional activity within the 
lateral hypothalamus. Befort et al reported that chronic 
activation of MOR in the lateral hypothalamus resulted 
in the downregulation of apelin gene, indicating the 
potential role of apelin in opioid signaling and hedonic 
homeostasis.50 The discovery of decreased apelin transcript 
levels in the lateral hypothalamus of animals dependent 
on morphine has two significant implications. Firstly, this 
observation suggests the potential involvement of apelin 
peptide in maintaining hedonic homeostasis. Findings of 
two other studies indicating altered levels of hypothalamic 
and serum apelin in morphine-dependent rat support 
this notion.32,33 Secondly, there is evidence demonstrating 
the interaction between endogenous opioids of the 
brain and various peptides, including cholecystokinin 
and neuropeptide FF.51 Apelin is now identified as a 
novel opioid-related neuropeptide and the interaction 
between this peptide and MOR signaling in the lateral 
hypothalamus, suggests that it could be involved in the 
reward system and development of addiction.

Heterodimerization of kappa opioid receptor and APJ: a 
lead for further investigation
The kappa opioid receptor (KOR) and its endogenous 
ligands, dynorphins, exhibit widespread expression 
in the CNS.52 Upon activation, KOR exerts significant 
influence on a range of physiological and pharmacological 
responses, including analgesia, dysphoria, and attenuation 
of drug-seeking behavior in individuals with substance 

use disorders.53 KOR agonists have the ability to inhibit 
the rewarding effects associated with morphine and 
psychostimulants like cocaine54-56; hence, due to their ability 
to attenuate the rewarding effects of addictive substances, 
KOR agonists hold promise as potential therapeutic agents 
for the treatment of drug abuse. Furthermore, the use of 
KOR antagonists, such as norbinaltorphimine (nor-BNI) 
and 5’-guanidinonaltrindole (5’-GNTI) has demonstrated 
efficacy in alleviating depressive and anxiety-related 
disorders, which often arise as common withdrawal 
symptoms and can contribute to relapse in drug use.57 By 
targeting the KOR system, these antagonists have shown 
potential in mitigating these adverse effects and reducing 
the likelihood of relapse in individuals recovering from 
substance abuse.57

The current understanding of GPCRs has evolved 
to recognize their existence and functional activity as 
dimers. It is now widely accepted that GPCRs can form 
dimers, and emerging evidence suggests the physiological 
relevance and significance of GPCR heterodimers. Studies 
have revealed that human APJ forms a heterodimer 
with KOR resulting in increased protein kinase C and 
decreased protein kinase A activity.58 Notably, the apelin/
APJ and KOR share similar signaling pathways, most 
possibly due to their heterodimerization, in various 
critical cellular processes, including cell proliferation, 
pain regulation, blood pressure maintenance, and 
gastrointestinal transit (for review, see 59). For instance, 
activation of APJ results in pain modulation through 
enhanced dynorphins/KOR signaling.60 Given the close 
interaction of downstream signaling pathways and the 
heterodimerization of these two receptors, it is not far-
fetched to imagine that the apelin/APJ system may play 
a role in KOR-mediated actions within the neurobiology 
of addiction. The extensive distribution of APJ and 
KOR in neuroanatomical regions involved in the reward 
system, including the nucleus accumbens, strengthens 
this hypothesis.61,62 Indeed, further research is required 
to elucidate the intricate cross-talk between these systems 
and their implications in the neurobiology of addiction.

Concluding remarks and future perspectives
Overall, growing evidence suggests that the apelin/APJ 

Table 1. Protective effects of apelin against drugs of abuse

Drug Type of species Apelin isoform (dose) Cytoprotective effects Reference

Methamphetamine PC12 cells of rat Apelin-13 (4 mM) Reduction of oxidative damage, apoptosis, and autophagy cell death 31

Morphine Male Wistar rats Hippocampal apelin
Increased expression of apelin in compensation for morphine-induced 
neurodegeneration

32

Morphine Male Wistar rats Serum apelin Significant increase in serum apelin levels of morphine-dependent rats 33

Opium
Acute myocardial 
infarction patients

Serum apelin Cardioprotective role of apelin in opium addicted patients 36

Ethanol Wistar rats Apelin-13 (25 and 50 µg)
Amelioration of cognitive impairment and anxiety-like behavior. 
Increase in BDNF expression and decrease in necrotic cell death

34

Ethanol Wistar rats Apelin-13 (25 and 50 µg)
Alleviation of spatial memory impairment through anti-oxidative, anti-
inflammatory, and anti-apoptotic mechanisms

35

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-kinase-a
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system may have implications for addiction, given its 
protective effects against drugs of abuse and its interplay 
with OPRs. The exploration of the apelin/APJ system in 
addiction opens up exciting avenues for future research. 
Understanding these mechanisms will not only provide 
valuable insights into the neurobiology of addiction but 
may also pave the way for the development of novel 
therapeutic strategies. Based on the existing evidence on 
the interplay between the apelin/APJ system and OPRs, 
further studies are needed to unravel the significance 
of these interactions in the development of addictive 
behaviors. 
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