Table 2.
Segmentation Performance of Deep Learning Models With and Without the AWTFE method on the Validation set
| Network Architecture | Backbone Network | Precision (%) | Recall (%) | IoU (%) | Dice (%) |
|---|---|---|---|---|---|
| UNet | MobileNet | 94.09 | 94.69 | 89.52 | 94.15 |
| UNet + AWTFE | 95.86 | 95.89 | 92.28 | 95.66 | |
| LinkNet | 93.47 | 93.90 | 88.27 | 93.14 | |
| LinkNet + AWTFE | 95.52 | 95.49 | 91.63 | 95.27 | |
| FPN | 93.53 | 93.97 | 88.37 | 93.46 | |
| FPN + AWTFE | 95.67 | 96.33 | 92.45 | 95.79 | |
| UNet | DenseNet169 | 94.72 | 94.92 | 90.28 | 94.63 |
| UNet + AWTFE | 96.47 | 96.57 | 93.45 | 96.39 | |
| LinkNet | 94.43 | 94.60 | 89.74 | 94.31 | |
| LinkNet + AWTFE | 96.08 | 96.44 | 92.99 | 96.13 | |
| FPN | 94.20 | 94.78 | 89.68 | 94.28 | |
| FPN + AWTFE | 96.39 | 96.49 | 93.26 | 96.31 | |
| UNet | ResNet50 | 94.86 | 95.12 | 90.57 | 94.77 |
| UNet + AWTFE | 96.64 | 96.49 | 93.49 | 96.41 | |
| LinkNet | 94.35 | 94.68 | 89.71 | 94.28 | |
| LinkNet + AWTFE | 95.99 | 96.63 | 93.04 | 96.14 | |
| FPN | 94.61 | 94.79 | 90.06 | 94.47 | |
| FPN + AWTFE | 96.36 | 95.99 | 92.79 | 95.98 | |
| UNet | VGG16 | 94.96 | 95.04 | 90.58 | 94.79 |
| UNet + AWTFE | 96.63 | 96.03 | 93.11 | 96.18 | |
| LinkNet | 94.25 | 94.65 | 89.63 | 94.19 | |
| LinkNet + AWTFE | 96.33 | 96.07 | 92.85 | 95.99 | |
| FPN | 94.99 | 95.45 | 91.00 | 95.03 | |
| FPN + AWTFE | 96.41 | 96.87 | 93.66 | 96.52 |
Bold fonts indicate the better performance across models.
AWTFE = adaptive wavelet tensor feature extraction; FPN = Feature Pyramid Network; IoU = Intersection Over Union; VGG16 = Visual Geometry Group 16.