Skip to main content
. 2024 Aug 22;5(1):100597. doi: 10.1016/j.xops.2024.100597

Table 2.

Segmentation Performance of Deep Learning Models With and Without the AWTFE method on the Validation set

Network Architecture Backbone Network Precision (%) Recall (%) IoU (%) Dice (%)
UNet MobileNet 94.09 94.69 89.52 94.15
UNet + AWTFE 95.86 95.89 92.28 95.66
LinkNet 93.47 93.90 88.27 93.14
LinkNet + AWTFE 95.52 95.49 91.63 95.27
FPN 93.53 93.97 88.37 93.46
FPN + AWTFE 95.67 96.33 92.45 95.79
UNet DenseNet169 94.72 94.92 90.28 94.63
UNet + AWTFE 96.47 96.57 93.45 96.39
LinkNet 94.43 94.60 89.74 94.31
LinkNet + AWTFE 96.08 96.44 92.99 96.13
FPN 94.20 94.78 89.68 94.28
FPN + AWTFE 96.39 96.49 93.26 96.31
UNet ResNet50 94.86 95.12 90.57 94.77
UNet + AWTFE 96.64 96.49 93.49 96.41
LinkNet 94.35 94.68 89.71 94.28
LinkNet + AWTFE 95.99 96.63 93.04 96.14
FPN 94.61 94.79 90.06 94.47
FPN + AWTFE 96.36 95.99 92.79 95.98
UNet VGG16 94.96 95.04 90.58 94.79
UNet + AWTFE 96.63 96.03 93.11 96.18
LinkNet 94.25 94.65 89.63 94.19
LinkNet + AWTFE 96.33 96.07 92.85 95.99
FPN 94.99 95.45 91.00 95.03
FPN + AWTFE 96.41 96.87 93.66 96.52

Bold fonts indicate the better performance across models.

AWTFE = adaptive wavelet tensor feature extraction; FPN = Feature Pyramid Network; IoU = Intersection Over Union; VGG16 = Visual Geometry Group 16.