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Abstract
Background: The delineation of clinical target volumes (CTVs) for radiotherapy
for nasopharyngeal cancer is complex and varies based on the location and
extent of disease.
Purpose: The current study aimed to develop an auto-contouring solution fol-
lowing one protocol guidelines (NRG-HN001) that can be adjusted to meet other
guidelines, such as RTOG-0225 and the 2018 International guidelines.
Methods: The study used 2-channel 3-dimensional U-Net and nnU-Net frame-
work to auto-contour 27 normal structures in the head and neck (H&N) region
that are used to define CTVs in the protocol. To define the CTV-Expansion
(CTV1 and CTV2) and CTV-Overall (the outer envelope of all the CTV con-
tours), we used adjustable morphological geometric landmarks and mimicked
physician interpretation of the protocol rules by partially or fully including select
anatomic structures. The results were evaluated quantitatively using the dice
similarity coefficient (DSC) and mean surface distance (MSD) and qualitatively
by independent reviews by two H&N radiation oncologists.
Results: The auto-contouring tool showed high accuracy for nasopharyngeal
CTVs. Comparison between auto-contours and clinical contours for 19 patients
with cancers of various stages showed a DSC of 0.94 ± 0.02 and MSD of
0.4 ± 0.4 mm for CTV-Expansion and a DSC of 0.83 ± 0.02 and MSD of
2.4 ± 0.5 mm for CTV-Overall. Upon independent review, two H&N physicians
found the auto-contours to be usable without edits in 85% and 75% of cases. In
15% of cases, minor edits were required by both physicians. Thus, one physi-
cian rated 100% of the auto-contours as usable (use as is, or after minor edits),
while the other physician rated 90% as usable. The second physician required
major edits in 10% of cases.
Conclusions: The study demonstrates the ability of an auto-contouring tool to
reliably delineate nasopharyngeal CTVs based on protocol guidelines. The tool
was found to be clinically acceptable by two H&N radiation oncology physicians
in at least 90% of the cases.
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1 INTRODUCTION

The incidence of nasopharyngeal cancer (NPC) varies
substantially across the globe, with higher rates in
endemic areas such as Southeast Asia, and North
Africa, and lower rates in North America and Europe.1

Curative treatment of non-metastatic NPC currently
necessitates radiation therapy, which requires careful
planning and precise treatment delivery to ensure req-
uisite dose to the tumor and to minimize irradiation of
adjacent normal tissues.2 Over the years, there have
been numerous publication of guidelines,protocols,and
tools to improve diagnosis, treatment, and prognostica-
tion for NPC3–9 that have underscored the importance
of meticulous planning for treatment success. Recent
technological advancements, especially those involv-
ing automation, have improved the consistency and
quality of care for patients with diseases such as
NPC.10–12

In countries with a high incidence of NPC, such
as China, the abundance of available data facilitates
data-intensive methods of treatment research, such as
deep learning to delineate clinical target volumes (CTV).
These data provide a foundation for practical training
in artificial intelligence techniques for NPC treatment
methodologies. Men et al.’s use of a convolutional neu-
ral network for CTV delineation was supported by data
from 230 patients.13 Their work on convolutional neural
networks for overall CTV segmentation further benefited
from a dataset of 600 patients, facilitating advance-
ments in 3-dimensional (3D) segmentation and slice
labeling.14 Xue et al. also showed that a sequential
and iterative U-net (SI-Net) model outperforms the U-
net model for segmenting CTVs with high-risk tumors,
a feat made possible by including data from 150
patients. As demonstrated by these works, high-quality
datasets with more than 100 patients were instrumen-
tal for developing accurate CTV contouring tools for
treatment of NPC.15 However, such datasets are not
always available, especially in regions where NPC is
rare, or when a change is made to the contouring
guideline.

Our study adopts a landmark-based approach for
auto-contouring, which requires less training data, con-
trasting with the current state-of -the-art methods that
rely heavily on extensive datasets. In our approach, we
used deep learning to initially outline anatomical struc-
tures and organs at risk (OARs), but we then applied an
algorithm that uses the NRG-HN001 protocol to identify
specific landmarks that guide the definition of CTVs.16

This approach is more akin to the contouring process
that radiation oncology physicians undergo, and was
thus hypothesized to provide reliably accurate targets
with more limited datasets

2 METHODS

2.1 Datasets

Two different cohorts of patients were studied. The
first was termed “Cohort 1” and was composed of 99
patients diagnosed with stage I through stage IV NPC
at the University of Texas MD Anderson Cancer Center
between 2010 and 2020. Non-contrast CT scans were
used for patients in this cohort. Pixel sizes ranged from
0.98 to 1 mm and slice thicknesses ranged from 2 to
2.5 mm.

The second patient cohort was termed “Cohort 2”
and was composed of 19 patients treated for NPC
at Stanford University per the NRG-HN001 protocol
guidelines. This cohort was used for final testing and
represented various NPC disease scenarios, specifi-
cally, patients with stages II–IV NPC as well as patients
with N1–N3 lymph node status. All CT scans were
contrast enhanced. Pixel sizes ranged from 0.98 to
1.36 mm and slice thicknesses between 1.25 and
2.5 mm.

2.2 Deep-learning model

For this research, we selected the 3D U-net full
resolution configuration of the nnU-net17 because
of its superior performance in medical segmentation
challenges18,19 and other studies published in the
literature.20,21 This model was used to segment 10 dis-
tinct structures within the head and neck (H&N) region.
These structures were brain, clivus, cricoid, hyoid, left
mastoid, right mastoid,maxillary sinus,nasopharynx, left
orbit, and right orbit. Cohort 1 was randomly divided into
79 and 20 patients, aligning closely with an 80/20 split,
for training and validation purposes, respectively.

During pre-processing, images were resized,
windowed,and z-normalized using parameters automat-
ically determined by the nnU-Net framework. All scans
were interpolated to a slice thickness of 2.5 mm.Training
began with the He initialization and stochastic gradient
descent using Nesterov momentum.22–24 The study
employed nnU-Net’s default hyperparameters17: initial
learning rate 0.01, combined dice and cross-entropy
loss, Stochatic Gradient Descent (SGD) optimizer with
Nesterov momentum (µ = 0.99), batch size 2, and 1000
epochs. Data augmentation included rotations, scaling,
noise, blur, brightness/contrast adjustments, and mirror-
ing. The framework automatically optimized patch size,
network depth, and features per layer. A five-fold cross-
validation was performed, with ensemble aggregation
by softmax probability averaging. Image preprocessing
included resampling to median spacing and intensity



3 of 13 SJOGREEN ET AL.

F IGURE 1 Flowchart of the automated contouring pipeline for nasopharyngeal cancer. The diagram illustrates the process from input data
(CT images, GTVp, GTVn, and tumor stage) through various stages of CTV creation, including structure auto-contouring, preprocessing,
landmark identification, and contour refinement, to the final output of CTVs (CTV1, CTV2, CTV3, and CTV4 where applicable).

normalization for CT images. Detailed results for
each fold are provided in the supporting information
(Figure S1).

2.3 Pretrained models

In addition to our primary 3D model used to segment 10
key anatomical structures, our study also included pre-
trained deep learning models.These models,developed
in-house, were designed for segmentation of normal
structures in the H&N region. From Rhee et al., this
model was used to segment the brainstem, cochlea,
mandible, optic nerve, parotid gland, spinal cord, esoph-
agus, and optic chiasm.25 From Netherton et al., this
model was used to segment the cervical and spinal
vertebrae.26 From Cardenas et al. and Netherton et al.,
these models were used to segment the lymph node

levels Ia-V, Ib-V, II-IV, and retropharyngeal (RP) lymph
nodes.27,28 The combination of these pre-trained mod-
els with our primary 3D U-net model provided a
framework for the creation of our CTV automation tool.
For more detailed information about these pre-trained
models, please refer to the cited works.25–28

2.4 Creation of the automatic CTVs
using the protocol guidelines

The set of steps described in this subsection outlines
our approach for the automated delineation of CTVs in
the treatment of NPC. This approach was applied to the
Cohort 2. A detailed flowchart illustrating these steps
is provided in Figure 1. We used CT images, primary
gross tumor volume (GTVp), nodal gross tumor volume
(GTVn), and tumor stage as fundamental inputs.
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1. Auto-contour structures: This procedure systemati-
cally auto-contours 27 vital structures for construct-
ing the CTV. The contouring structures, located in
the H&N region,such as the central nervous system,
and supporting structures including the brain,clivus,
skull base, C1 and C2 vertebral bodies, and spinal
cord. Sensory organs and associated structures
encompass the left and right orbits,optic nerves,and
optic chiasm. Respiratory and oropharyngeal struc-
tures consist of the nasopharynx,maxillary sinuses,
and sphenoid sinus. Bone and cartilage structures
incorporate the hyoid bone and cricoid cartilage.
The lymphatic system covers lymph nodes, and
the facial and neck muscles and glands comprise
pterygoid fossae, parotid glands, and larynx.

2. Sphenoid sinus targeting: Entire sphenoid sinus or
just its inferior section may be targeted, for stage
>2 or ≤2, respectively. The process begins by cal-
culating the sphenoid sinus’s volume to identify its
geometric center, which acts as the centroid in the
3D space. The centroid’s longitudinal coordinate
is located, and a plane is created at this level in
the axial axis, dividing the sphenoid sinus into two
halves. This division allows for the identification of
the inferior section of the sphenoid sinus.

3. Localization of the GTVp using the sagittal plane: A
sagittal plane is used to bisect the 3D image into two
symmetrical halves. It is then determined whether
the GTVp is confined to one side or extended to both
sides.

4. Create CTV1p: The clinical target volume 1 primary
(CTV1p) is created by expanding GTVp volumetri-
cally by 3 mm following the protocol (see Table 1).
CTV1p represents the high-dose CTV.

5. Create CTV3p-expansion: A 5-mm volumetric
expansion from CTV1p, named CTV3p-expansion,
is created following the protocol guidelines (see
Table 1).

6. GTVp localization: In the GTVp localization phase,
we identified the GTVp’s location within the
nasopharynx, examining its relation to structures
such as the clivus, skull base, pterygoid fossae,
sphenoid sinus, nasal cavity, and maxillary sinuses.
The findings from this step,along with items 7 and 8,
directed our landmark selection in item 9 for defining
treatment areas.

7. Axial positioning and grouping of structures using
longitudinal coordinates: The longitudinal coordi-
nates of each structure is used to group the
structures as detailed in Table 2, and visual repre-
sentation can be seen in Figure 2(a).

8. Generation of evenly spaced points within bounding
boxes for contoured structures: For each contoured
structure, rectangular bounding boxes are estab-
lished to demarcate their spatial boundaries. Within
these boxes,points are systematically spaced along
the x and y axes, using a grid pattern of 7 by 7,

TABLE 1 The protocol guidelines.

Description
Treatment specification /
Margin adjustment

High dose clinical target
volume
(CTVp1)

Margin from GTVp GTVp + 3 mm

Minimal margin if tumor is in
close proximity to critical OARs

GTVp + 0 mm

High dose clinical target
volume
(CTVn1)

Margin from GTVn GTVn + 3 mm

Intermediate dose clinical
target volume (CTVp2)

Margin from GTV GTVp + 8 mm + whole
NP

Nasal cavity – Posterior part 1/4

Maxillary sinuses – Posterior part 1/4

Posterior ethmoid sinus Not stated

Skull base Cover foramina oval and
rotundum + rotundum
lacerum and petrous tip

Cavernous sinus If T3−4 (involved side only)

Pterygoid fossae + Included for all cases

Parapharyngeal spaces + Included for all cases

Sphenoid sinus Only the inferior section is
targeted for T1–T2 tumors,
and the whole tumor is
targeted for T3–T4 tumors

Clivus 1/3 of the clivus is targeted
if there is no tumor invasion,
and the whole structure is
targeted if there is invasion

Minimal margin if tumor in close
proximity to critical OARs

GTVp + 1 mm

Intermediate dose clinical
target volume (CTVn2)

Margin from GTVn GTVn + 5 mm

Lymph nodes – bilateral + Included for all cases

RP, level II, III, & Va + Included for all cases

Level Ib Optional if T1/2N0

Low dose clinical target volume + Included for all cases

Abbreviations: GTVp, primary gross tumor volume; GTVn, nodal gross tumor
volume; OARs, organs at risk; NP, nasopharynx; RP, retropharyngeal.

to ensure uniform distribution. This method facil-
itates a comprehensive and detailed mapping of
each region of interest (Figure 2b,c).

9. Landmark identification for CTV3p:To determine the
intermediate-dose CTV (CTV3p), key points within
the treatment area are identified and selected to
establish essential landmarks. For example, for the
maxillary sinuses, landmarks are selected at points
within the 1/4 anterior section, specifically along the
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F IGURE 2 An illustration of the auto-contouring process. (a) GTV (green) and initial segmentation of anatomical structures. (b)
Identification of anatomical structures. (c) Establishment of landmarks, and generation of polygon based on landmarks. (d) Creation of contours
with the polygon, and expansion (red) from GTV. (e) Final contour. (f) Comparison between clinical contour (yellow) and automatic contour (blue).

TABLE 2 Grouping of delineated structures based on axial
positioning using longitudinal coordinates.

Group
number Structures included

Group 1 Left and right retropharyngeal lymph nodes as well as
left and right pterygoid fossae

Group 2 Left and right mastoid, left and right retropharyngeal
lymph nodes, left and right pterygoid fossae, and
nasopharynx

Group 3 Left and right retropharyngeal lymph nodes, left and
right pterygoid fossae, and nasopharynx

Group 4 Clivus, left and right pterygoid fossae, and
nasopharynx

Group 5 Clivus, left and right pterygoid fossae, nasopharynx,
and maxillary sinus

Group 6 Clivus, maxillary sinus, and sphenoid sinus

Group 7 Maxillary sinus and sphenoid sinus

Group 8 Sphenoid sinus

Note: This table presents the organization of structures into groups based on
their locations along the axial axis, using longitudinal coordinate analysis.

borders of the box that are determined in item 9 in
axial slices. In the clivus,points at the corners of the
box in its most anterior part are chosen. For the RP

lymph nodes and pterygoid fossae, landmarks are
established anteriorly along the mid-vertical line of
the defined box.The positioning of landmarks in the
pterygoid area varies,adapting to the location of the
GTV. These points are selected in accordance with
the structures present in each axial slice,as detailed
in Table 2 (Figures 2c and 3).

10. Curve generation and smoothing: For each axial
plane, landmarks are connected with lines to form
polygons (Figure 2d). Subsequently, these polygons
are refined using Chaykin’s algorithm for curve
smoothing and polygonal approximation,29 enhanc-
ing the contour target volume (CTV3p) (Figure 2c,d).

11. Formation of CTV3p by integrating refined contours
and expansion elements: The CTV3p is formed by
integrating the refined contours from step 10 with
the CTV3p-expansion outlined in item 5. This pro-
cess merges both elements to create a unified 3D
volume designated as CTV3p, ensuring a compre-
hensive coverage that encapsulates the expanded
and refined target areas (Figure 2d).

12. Localization of GTVn: The localization of GTVn is
followed by a procedure similar to that outlined in
item 3 for the GTVp. A sagittal plane is employed
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F IGURE 3 Illustration of the methodology employed for landmark identification. CT images display marked anatomical landmarks (c–e,
etc.) connected by colored lines to form polygons, delineating targeted regions for radiation therapy. The lowercase letters correspond to the
segments between each landmark point.

to bisect the 3D image into two symmetrical halves,
facilitating the determination of GTVn distribution –
whether it is confined to one side or extended to
both. Boolean variables are assigned to each half
to denote the presence or absence of GTVn, ensur-
ing a systematic and comprehensive assessment of
their spatial distribution.

13. In the comparative analysis of GTVn volumes
against sphere diameter criteria, we classify treat-
ment regions, specifically for small-volume lymph
nodes with a GTVn ≤2 cm. This is crucial in areas
like level IB, where it guides the decision between
CTV1n or CTV2 classifications in step 16.

14. Anatomical orientation and categorization of GTVn
and lymph node structures: For each volume within
the GTVn, the criteria established in step 13 are
applied to determine their specific anatomical orien-
tation,categorizing them as either left- or right-sided.
This method is applicable to lymph node structures
at levels Ib, II, III, IV, Va, and Vb, identifying their
position on either side. The guidelines encompass
at-risk nodal levels, including the upper deep jugular,
subdigastric, midjugular, low jugular, supraclavicu-
lar regions, upper- and mid-level V, RP areas, and
bilateral level IB when directly involved.

15. Creation of CTV3n and CTV4 using results from
steps 13 and 14: CTV3n and CTV4 are created

by integrating results of steps 13 and 14, aligning
with the scenarios outlined in Table 3 (Scenarios
1−9).This process involves spatial analysis and vol-
ume measurements of GTVn to accurately define
these CTVs. Notably, CTV4 may be used for sin-
gle intensity-modulated radiation therapy plans on
heminecks that do not have grossly involved low-
lying neck nodes in Level IV,VB,and supraclavicular
nodes.

16. Formation of CTV2 from steps 13 and 14: Following
the results from steps 13 and 14,CTV2 is created to
align with the different scenarios outlined in Table 4
(Scenarios 1−3).This step involves synthesizing the
spatial and volumetric data of GTVn for accurate
CTV2 formation.

17. Creation of CTV1n: The CTV1 for nodes (CTV1n)
is formulated in accordance with the contouring
guidelines, integrating insights from our earlier local-
ization and volume determination processes (items
13 and 14). Following these guidelines, CTV1n is
created by adding a margin of 3 mm to each GTVn.
However, in line with the flexibility allowed by the
guidelines, this margin is automatically adjusted as
needed, potentially reduced to as low as 0 mm.
Such adjustments are made in cases where tumors
are adjacent to critical structures. The process
involves a thorough analysis of GTVn positioning
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TABLE 3 Clinical target volume (CTV3n) construction for
different scenarios based on the protocol guidelines.

Scenario Conditions
CTV3n and CTV4
construction

1 No GTVn present Combine lymph nodes
II, III, and Va to form
CTV3n. Add lymph
nodes IV and Vb to
create CTV4.

2 GTVn present on both
sides of the neck but not
localized in lymph nodes
IV or Vb

Merge lymph nodes Ib,
II, III, and Va to create
CTV3n. Add lymph
nodes IV and Vb to
create CTV4.

3 GTVn present on the left
side of the neck but not
localized in lymph nodes
IV or Vb

Combine lymph nodes
Ib L, II, III, and Va to
create CTV3n. Add
lymph nodes IV and
Vb to create CTV4.

4 GTVn present on the
right side of the neck but
not localized in lymph
nodes IV or Vb

Combine lymph nodes
Ib R, II, III, and Va to
create CTV3n. Add
lymph nodes IV and
Vb to create CTV4.

5 GTVn present on both
sides of the neck and
localized in both sides of
lymph nodes IV or Vb

Combine lymph nodes
Ib, II, III, IV, Va, and Vb
to create CTV3n.

6 GTVn present on both
sides of the neck but
localized only on the left
side of lymph nodes IV
or Vb

Combine lymph nodes
Ib, II, III, Va, IV L, Va,
and Vb L to create
CTV3n. Add lymph
nodes IV R and Vb R
to create CTV4.

7 GTVn present on both
sides of the neck but
localized only on the right
side of lymph nodes IV
or Vb

Combine lymph nodes
Ib, II, III, Va, IV R, Va,
and Vb R to create
CTV3n. Add lymph
nodes IV L and Vb L
to create CTV4.

8 GTVn present only on
the left side of the neck
and also localized on the
left side of lymph nodes
IV or Vb

Combine lymph nodes
Ib L, II, III, Va, IV L, Va,
and Vb L to create
CTV3n. Add lymph
nodes IV R and Vb R
to create CTV4.

9 GTVn present only on
the right side of the neck
and also localized on the
right side of lymph nodes
IV or Vb

Combine lymph nodes
Ib R, II, III, Va, IV R, Va,
and Vb R to create
CTV3n. Add lymph
nodes IV L and Vb L
to create CTV4.

(step 13), and a careful evaluation of their volumes
(item 14).

18. Combine CTV3p and CTV3n to form CTV3: The
CTVs for primary tumors (CTV3p) and nodes
(CTV3n) are merged, resulting in the formation of
a unified CTV, designated as CTV3 (Figure 4).

19. Join islands within CTV3 using Alphashape algo-
rithm: During the formation of CTV3, a number

TABLE 4 Clinical target volume (CTV2) construction based on
different conditions.

Scenario Conditions CTV2 construction

1 Using the procedure
described in item 14, we
determined the size of
GTVn in the Ib lymph
node, identifying if its
diameter was less than
2 cm.

Expand the GTVn by
3 mm to construct
CTV2.

2 GTVn is positioned in
lymph node IV or Vb

Expand the GTVn by
3 mm and add to
CTV2.

3 Both scenarios 1 and 2
apply

Amalgamate the
outcomes from both
scenarios to generate
CTV2.

of discrete regions, akin to islands, emerge. Some
of these regions are isolated from the main body
of CTV3. The Alphashape algorithm is employed
to seamlessly integrate these regions into the
larger CTV3 structure. This approach ensures the
inclusion of smaller nearby areas, effectively cre-
ating a unified, non-convex shape. The use of the
Alphashape algorithm allows for the comprehen-
sive encapsulation of these diverse and irregularly
shaped regions, resulting in a connected and com-
plete volume representation of CTV3.30–32

20. Remove normal structures from targets: The brain,
spinal cord, optic nerves, chiasm, orbits, verte-
bral columns, vertebral bodies, hyoid, cricoid, and
mandible are subtracted from the CTVs (CTV1,
CTV2, CTV3, and CTV4).

21. Refinement of final contours through morphological
operations:Morphological operations are applied as
a post-processing step to refine the final contours.
These operations included binary opening, binary
closing, removal of small holes, and elimination of
minor contours. This refinement enhanced the clar-
ity of the contours.Examples of this process and the
resultant contours are illustrated in Figures 2 and 4

2.5 Evaluation of the auto-contouring
tool

The performance evaluation of the auto-contouring tool
based on the protocol guidelines was conducted using
quantitative and qualitative analyses.

Quantitative evaluation was conducted by compar-
ing auto-generated and manual contours, using the
dice similarity coefficient (DSC) and the mean surface
distance (MSD).33–35

Two radiation oncologists, each with specialized
expertise in H&N cancers and extensive experience in
treating NPC, conducted independent reviews of the
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F IGURE 4 Examples of the clinical contours (yellow) versus auto-delineated contours (blue). (a) Axial view. (b) Sagittal view. (c) Coronal
view.

TABLE 5 Likert scale scoring criteria for clinical acceptability
assessment of auto-contoured clinical target volumes (CTVs) by
independent physicians.

Likert
scale Explanation for this study

5 Strongly agree: Use as is (i.e., clinically acceptable and
could be used for treatment without change)

4 Agree: Minor edits that are not necessary. Stylistic
differences but changes that are not clinically important.
The current contours/plan are acceptable.

3 Neither agree nor disagree: Minor edits that are
necessary. Minor edits are those that the review judges
can make in less time than starting from scratch or are
expected to have minimal effect on treatment outcome.

2 Disagree: Major edits needed. This category indicates
that the necessary edits are required to ensure
appropriate treatment, and sufficiently considerable that
the user would prefer to start from scratch.

1 Strongly disagree: Unusable. This category indicates
that the quality of the automatically generated contours
or plan are so poor that they are unusable.

clinical acceptability of the auto-contours. Utilizing a
previously established 5-point Likert scale,20 they sep-
arately evaluated and scored the contours, offering
insights into their clinical usability. Qualitative assess-
ments used a 1-to-5 Likert scale, where 1 marked
unusable contours and 5 indicated contours can be
“use-as-is”. Detailed scoring criteria are provided in
Table 5.

3 RESULTS

3.1 Segmentation performance of the
structures necessary to create the CTVs

In our evaluation of the automated anatomical struc-
tures, we compared the automated and reference
contours to assess the performance of our automated
contouring process,as shown in Table 6 provides a com-
prehensive breakdown of these metrics across various
structures.

TABLE 6 Comparative analysis of DSC and MSD across
various structures.

Structures Mean DSC Mean (mm) MSD

Brain 0.99 ± 0.00 0.5 ± 0.1

Clivus 0.89 ± 0.04 0.9 ± 0.3

Cricoid 0.82 ± 0.14 1.2 ± 1.1

Hyoid 0.86 ± 0.10 0.7 ± 0.5

Left mastoid 0.83 ± 0.07 1.1 ± 0.4

Right mastoid 0.81 ± 0.10 1.3 ± 0.5

Maxillary sinus 0.94 ± 0.03 0.7 ± 0.2

Nasopharynx 0.89 ± 0.06 1.1 ± 0.4

Left orbit 0.94 ± 0.02 0.9 ± 0.2

Right orbit 0.94 ± 0.02 0.9 ± 0.2

Pterygoid fossae 0.88 ± 0.02 1.3 ± 0.2

Sphenoid sinus 0.91 ± 0.09 0.8 ± 0.6
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F IGURE 5 Box and whisker plots of dice similarity coefficient
(DSC) distance between ground-truth and automatically generated
contours by our tool CT images. For this analysis, CTV3 represents
the aggregate of CTV3p and CTV3n, while CTV1 is constituted by
the sum of CTV1p and CTV1n. The central line represents the
median value. The border of the box represents the 25th and 75th
percentiles. The outliers are represented by circles markers.

3.2 Segmentation performance
protocol-based CTVs

In the evaluation of Cohort 2 (contoured per proto-
col guidelines) using an auto-contouring tool, the tool
achieved with the CTV-Expansion (i.e., the combination
of CTV1 and CTV2) a DSC of 0.94. This deviation from
the ideal score of 1.0 is because this is not just a simple
expansion and is attributed to the manual adjustments
made to the clinical contours and the automatic mod-
ifications applied by our tool. These modifications are
typically necessary when tumors are adjacent to criti-
cal structures. Moreover, the MSD of 0.4 mm, again not
achieving the ideal zero, for the same reasons affect-
ing the DSC in the CTV-Expansion. For CTV-Overall
(the outer envelope of all the CTV contours), the tool
achieved a DSC of 0.83 and an MSD of 2.4 mm,
(Figures 5 and 6). Variations were observed across dif-
ferent CTVs. In the review by two independent H&N
physicians,90% of the auto-contours were rated as clin-
ically suitable, often requiring little to no modification
(Figure 7).

Using the DSC, CTV-Expansion had the highest aver-
age DSC at 0.94. In contrast, CTV2 had the lowest
DSC average at 0.56, with noticeable variability in DSC
values, particularly for CTV2 and CTV4 (Figures 5
and 6).

F IGURE 6 Box and whisker plots of mean surface distance
(MSD) distance between ground-truth and automatically generated
contours by our tool’s CT images. For this analysis, CTV3 represents
the aggregate of CTV3p and CTV3n, while CTV1 is constituted by
the sum of CTV1p and CTV1n. The central line represents the
median value. The border of the box represents the 25th and 75th
percentiles. The outliers are represented by circles.

CTV-Overall had an average MSD of 0.4 mm,demon-
strating a high level of precision,whereas CTV2 showed
a higher average MSD of 11.3 mm, indicating greater
variability in its precision metrics. This highlights the
differences in segmentation accuracy across various
CTVs (see Figures 5 and 6).

In a separate consideration, interpretation differences,
particularly with CTV2 and CTV4, contribute to the
observed variability. The decision to merge CTVs, as
in the case of combining CTV1 and CTV2 into CTV-
Expansion, appears to reduce such inconsistencies.
This finding suggests that strategic combinations of
CTVs can enhance overall accuracy in segmentation.

The observed variations can be attributed to subjec-
tive interpretation differences,particularly at the borders
between CTV2 and CTV1n, where the choice between
classifications is left to the discretion of the physicians.
This leads to differing decisions on whether a specific
area should be classified under one category or the
other, causing variability in segmentation. A similar situ-
ation arises with CTV4 and CTV3n,where distinguishing
their boundaries presents comparable challenges. Fur-
ther clarification on these interpretation differences,
particularly in the context of the comparative analysis
between the two physicians, will be provided in the dis-
cussion section. These differences are hidden when we
consider the overall CTV.
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F IGURE 7 Stacked bar plots of contour scores by Physician A and Physician B. Unlike previous figures that presented aggregate data for
CTV3 and CTV1, this figure provides a detailed breakdown. Here, CTV3 is dissected into CTV3p and CTV3n, and CTV1 is segmented into
CTV1p and CTV1n, offering a more granular view of the contour scores for these subdivisions.

To subjectively assess compliance with protocol
guidelines, two physicians quantitatively assessed
CTVs specifically for the cohort 2 (which was contoured
per protocol guidelines). Figure 7 provides a visual
representation of the evaluations made by Physicians
A and B, using a stacked bar plot to depict the differ-
ences in contour scores. Physician A consistently rated
all CTVs with a score of at least 3, suggesting minor
necessary edits.

Physician B’s evaluations displayed more variation;
90% of their ratings for all CTVs were 3 or higher, but
only 54% of ratings for specific CTVs, such as those
for CTV2, met this mark. Physician B reviewed 11 cases
classified as CTV2, while Physician A reviewed only 10
such cases. This discrepancy occurred because Physi-
cian B reclassified one case from CTV1n to CTV2.
Consequently, Physician B’s review included this addi-
tional case, resulting in a total of 11 CTV2 cases,
compared to the 10 reviewed by Physician A.

In the lower neck region, Physician A proposed minor
modifications for cases where CTV4 was deemed overly
large, favoring limited muscular coverage. Conversely,
Physician B did not think of a need for such minor edits,
indicating different approaches to regional coverage.

4 DISCUSSION

The method proposed in this study combines deep
learning with a clinical rule-based algorithm to create

an automated strategy for CTV contouring that more
closely mimics the natural physician contouring pro-
cess. It is more directly based on clinical guidelines
rather than on variable human-drawn CTV contours, so
it should be relatively straightforward to adapt to new
protocols. Beyond being flexible, the method produces
CTV contours in close agreement with contours drawn
by experts, as demonstrated by our findings of average
DSCs of 0.94 for CTV-Expansion and 0.83 for CTV-
Overall and MSDs of 0.4 mm for CTV-Expansion and
2.4 mm for CTV-Overall. These outcomes were further
validated by the assessments of two H&N physicians,
who scored 90% of the contours as a three or greater,
indicating they are clinically satisfactory and generally
require only minor edits.

Although impact of image quality on auto-contouring
performance was not specifically addressed in this work,
Huang et al.36 conducted a study on this matter. They
showed that auto-contouring performance was mini-
mally affected by slice thicknesses up to 3 mm, pixel
sizes between 0.49 and 1.17 mm, and varying CT dose
levels, which are within the range of the clinical proto-
cols of the current study. They found that reducing the
CT dose had a minimal effect on auto-contouring accu-
racy,with the CNN-based method being less sensitive to
dose level changes compared to the multiatlas-based
method. These findings suggest that the autocontour-
ing tool described in the current work can perform
robustly within the range of typical clinical imaging
parameters.
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Furthermore, the auto-contouring tool in this work
addresses concerns related to tumor heterogeneity and
anatomical variations by using GTVs and tumor stage
as inputs,allowing the planner to account for the hetero-
geneity of the GTV before initiating the auto-contouring
process. The use of MRI, particularly during the diag-
nostic workup and simulation, can help guide GTV
delineation by identifying features such as pterygoid
involvement, clivus involvement, or perineural spread at
the skull base. These factors can influence the extent
of CTV coverage, as mentioned in the NRG-HN001
protocol. By relying on input GTVs and adhering to
the protocol guidelines, the tool in this work effectively
addresses concerns related to tumor heterogeneity and
anatomical variations.

Our landmark approach, emphasizing rule-based
methodologies, offers notable flexibility for adapting to
different guidelines.In contrast to the methods employed
in studies that focus on dataset-centric, model training
for CTVs13,15,14, our study adopts a different approach.
This method resulted in a DSC of 0.83 and an MSD
of 2.4 mm, showcasing the feasibility of reliable out-
comes without reliance on extensive training datasets
for the CTVs. These results, together with positive
clinician feedback, highlight the potential efficacy of
guideline-adherent, landmark-based auto-contouring in
NPC treatment.

The protocol defines fixed margins for CTV expan-
sions,such as 3 mm for CTV1p and CTV1n.However,the
protocol also allows for margin reduction down to 0 mm
when tumors are adjacent to critical structures. We rec-
ognize that using these fixed margins may not always
consider individual patient characteristics or specific
clinical scenarios. To address this, our algorithm allows
for flexible margin adjustments, as described in step 17
of the auto-contouring process, enabling the margins
to be reduced to as low as 0 mm when necessary, in
line with the protocol guidelines. Future research should
explore the impact of personalized margin expansions
on treatment volume estimation.

Although we did not perform interobserver variability
studies and instead focused on geometric comparisons,
other studies have shown that autocontouring can help
mitigate interobserver variability and improve efficiency
in the treatment planning process, even when some
manual editing is required. Maduro Bustos et al.37 found
that an AI-based autocontouring algorithm for OAR in
the pelvis, thorax, and H&N regions yielded substan-
tial time-saving efficiency, ranging from 67% to 84%,
despite the need for some manual refinement. Similarly,
McCarroll et al.38 reported that 87% of autocontours
for H&N normal structures were clinically acceptable
without edits, and when minor edits were needed, the
autocontours still served as reliable starting points.

Regarding the transition between CTV3p and CTV3n,
Physician A generally scored cases as clinically accept-
able or needing minor changes, but Physician B scored

cases with more variation. Namely, the scores from
Physician B showed a near-even split between cases
requiring minor edits and those that did not. This vari-
ation highlights the individualized aspect of clinical
judgment. The distinct difference in their evaluations of
CTV3p, with Physician A at 95% approval versus Physi-
cian B at 63%, notably reflects differing interpretation of
the contouring guide.

Liu et al.39 demonstrated that while target volumes
delineated by different physicians had high similarity,sig-
nificant differences were found in the maximal distances
between outer contours, particularly in patients with
advanced T stages. These deviations led to significant
differences in dose distributions. The autocontouring
tool described in the current study, which incorporates
a rule-based algorithm following the NRG-HN001 proto-
col,aims to mitigate interobserver variability by providing
consistent contours based on established guidelines.
The high acceptance rates of our autocontours by mul-
tiple physicians suggest that the tool can effectively
generate clinically acceptable contours, even in the
presence of interobserver variability.Our autocontouring
tool serves as a good starting point for manual refine-
ment treatment planners, reducing effort required for
contouring.

The observed variance in clinical acceptability of
our auto-contours, particularly the 10% discrepancy
where one physician required major edits while the
other found the contours usable, aligns with the chal-
lenges in defining “clinical acceptability”’ highlighted by
Baroudi et al.40 This variability reflects the subjec-
tive nature of contour assessment in radiation therapy,
which exists in both manual and automated processes.
Despite this discrepancy, our tool’s overall high accep-
tance rate (90% deemed clinically suitable) suggests
its value as a consistent starting point for treatment
planning. Baroudi et al. emphasize that automated tools
can help standardize contouring practices and reduce
interobserver variability over time.40 In this context, our
auto-contouring tool provides a standardized foundation
that could improve workflow efficiency, even when some
edits are necessary. The observed differences in physi-
cian assessments underscore the need for continued
refinement of auto-contouring algorithms, potentially
incorporating more detailed protocol-specific rules to
further enhance clinical acceptability and reduce major
editing requirements.

It is important to note that the cases where Physi-
cian B scored below acceptability were primarily related
to disagreements between CTV1n and CTV2 classi-
fications, rather than issues with the overall contour
quality. This discrepancy stems from the interpretabil-
ity of the protocol rules, particularly in border regions
where the decision between CTV2 and CTV1n is less
clear-cut. Notably, 80% cases that were deemed not
acceptable occurred in patients with N3 stage disease,
highlighting the increased complexity and variability in
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interpretation for advanced nodal disease. Interestingly,
the auto-contouring tool performed very well for primary
tumor stages T2, T3, and T4, with the main challenges
arising in the delineation of lymph node regions. This
observation underscores the difficulties in standardizing
contours for extensive lymph node involvement, where
the boundaries between different CTV levels become
more intricate and subject to clinical judgment, despite
accurate handling of the primary tumor extent.

Interestingly, even in cases where physicians identi-
fied a need for modifications, the quantitative metrics
(DSC and MSD) remained relatively high. For instance,
in the cases requiring minor edits,we observed DSC val-
ues ranging from 0.79 to 0.97 and MSD values between
0.2 and 3.5 mm. This observation suggests that while
these metrics are valuable for overall assessment, they
may not fully capture the nuances of clinical usability.
High DSC and MSD scores do not necessarily guaran-
tee that a contour will be clinically acceptable without
modification.This discrepancy highlights the importance
of combining quantitative metrics with expert clinical
evaluation to comprehensively assess auto-contouring
performance.

A discrepancy arose in a case involving GTVn in the
upper border of a patient’s lower left neck. Physician
A considered the GTVns appropriately addressed with
different treatments based on size distinctions, suggest-
ing CTV3 over CTV4 for a specific zone. In contrast,
Physician B identified inconsistencies, advocating for a
uniform approach with CTV4.

5 CONCLUSIONS

This study assesses an innovative auto-contouring tool
for NPC treatment, focusing on anatomical structures.
The tool showed good agreement with clinical contours
in both quantitative and subjective evaluations, suggest-
ing its potential to effectively aid in radiation therapy
planning and protocol standardization.
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