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Abstract 

Background Heart rate is one of the most crucial vital signs and can be measured remotely using microwave 
Doppler radar. As the distance between the body and the Doppler radar sensor increases, the output signal 
weakens, making it difficult to extract heartbeat waveforms. In this study, we propose a new template-matching 
method that addresses this issue by simulating Doppler radar signals. This method extracts the heartbeat waveform 
with higher accuracy while the participant is naturally sitting in a chair.

Methods An extended triangular wave model was created as a mathematical representation of cardiac physiology, 
taking into account heart movements. The Doppler radar output signal was then simulated based on this model 
to automatically obtain a template for one cycle. The validity of the proposed method was confirmed by calculating 
the PPIs using the template and comparing their accuracy to the R-R intervals (RRIs) of the electrocardiogram for five 
participants and by analyzing the signals of eight participants in their natural state using the mathematical model 
of heart movements. All measurements were conducted from a distance of 500 mm.

Results The correlation coefficients between the RRIs of the electrocardiogram and the PPIs using the proposed 
method were examined for five participants. The correlation coefficients were 0.93 without breathing and 0.70 
with breathing. This demonstrates a higher correlation considering the long distance of 500 mm, and the fact 
that body movements were not specifically restricted, suggesting that the proposed method can successfully 
estimate RRI. The average correlation coefficients, calculated between the Doppler output signals and the templates 
for each of the eight participants, exceeded 0.95. Overall, the proposed method showed higher correlation coef-
ficients than those reported in previous studies, indicating that our method performed well in extracting heartbeat 
waveforms.

Conclusions Our results indicate that the proposed method of remote heart monitoring using microwave Doppler 
radar demonstrates higher accuracy in estimating the RRI of the electrocardiogram while at rest sitting in a chair, 
and the ability to extract the heartbeat waveforms from the measured Doppler output signal, eliminating the need 
to create templates in advance as required by conventional template matching methods. This approach offers more 
flexibility in the measurement environment than conventional methods.
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Background
Vital signs are instrumental in the detection and monitor-
ing of physical medical problems. One important means 
of observing vital signs [1–3] is monitoring the heart, 
commonly done by electrocardiography (ECG) [4–6], 
photoplethysmography (PPG) [7–12], sphygmomanom-
eter [13–15], ultrasound [16–18], computed tomography 
(CT) [19–21], and magnetic resonance imaging (MRI) 
[22–24]. Although these heart monitoring procedures 
are provided during medical checkups such as routine 
physicals using dedicated equipment by professional staff 
at medical facilities, they may not be sufficient for early 
detection of diseases. This problem can be improved by 
routine self-checks of heart conditions at home [25, 26]. 
Among these means, PPG and sphygmomanometer are 
examples of heart monitoring systems [27] that are com-
monly used to monitor heart rate at home. In recent 
years, there are also wearable watch-type ECGs [27–
29], but even slight body movements create noise. PPG 
measures heart rate by transmitting red or infrared light 
through the skin to detect blood volume changes in the 
microvascular bed tissue inside the fingers, wrists, and 
ears, but again the infrared light in the environment adds 
noise to the measurement. The digital sphygmomanom-
eter [30] is the most popular home device because it can 
measure pulse rate and blood pressure simultaneously. It 
is an automated version of the conventional stethoscope 
method, and since they share similar detection princi-
ples, the measurement results are highly interchange-
able [31, 32]. However, it also has a drawback in that the 
measurement results can vary depending on the way the 
cuff [32, 33] is worn. There are portable and home-use 
ECGs with a smaller number of electrodes [34, 35]. The 
quality of ECG results is affected by electrical noise such 
as changes in the surface impedance between the elec-
trodes and the skin surface due to the state of electrode 
attachment, so there are challenges such as the way elec-
trodes are attached to the body surface. The most con-
venient way to eliminate the problems associated with 
wearing these devices is remote heart monitoring. In this 
study, we developed a new method based on a mathemat-
ical model for remote estimation of the heart rate using a 
Doppler radar sensor. Conventional methods for remote 
heart rate measurement include laser [36–38] and radar 
[11, 12, 39–47]. The radar method cannot measure from 
as far away as the laser method, but it has advantages as 
a home monitoring system because it can penetrate non-
metallic objects such as clothing and walls depending 
on its frequency. In some previous studies using radar 
methods, signals are transmitted toward the chest and 
the received signals are analyzed using various digital sig-
nal processing techniques [36, 43, 45, 47–52]. The main 

challenge of remote heart monitoring methods is elimi-
nating the influences such as body movements or breath-
ing, which make it difficult to detect the peaks of the 
heartbeat signal. Consequently, many studies have been 
carried out at close range, no more than 30 mm, under 
controlled conditions where the participants are lying in 
bed and holding their breath.

This paper describes a new remote heart monitor-
ing method using a Doppler radar sensor. The key point 
of this study is that templates are generated through 
simulations of Doppler radar output signals based on a 
mathematical model of heart movements. While the 
conventional template matching method [36, 47, 53–55] 
provides higher accuracy in detecting peaks even with 
natural body movements and breathing, it requires sig-
nificant effort. Our approach eliminates the need for 
prior signal measurements, unlike conventional tem-
plate matching methods, and enables the generation of 
templates under various heart monitoring conditions 
through simulation. Therefore, the proposed method 
allows for heart monitoring from a greater distance com-
pared to conventional methods, reducing the constraints 
of the measurement environment.

To validate the proposed method, the correlation 
between RRIs and PPIs of five participants, and the heart 
monitoring of eight participants were examined at rest 
while breathing and body movements were unrestricted. 
In this study, RRI refers to the interval between the peaks 
of the R wave in the QRS complex, which is a typical pat-
tern based on the electrical activity of the heart. On the 
other hand, PPI refers to the interval between the peaks of 
the correlation coefficient curve calculated between simu-
lated and measured heartbeat waveforms of the Doppler 
output signal, which reflects shape changes due to systole 
and diastole of the heart. Since both RRI and PPI param-
eters reflect the periodicity of cardiac activity, they are 
considered to be in good agreement. The novelty of the 
proposed method is demonstrated in the discussion, and 
finally, future insights into the method are provided.

Materials
Doppler radar sensor
A commercially available Doppler radar sensor (IPS-154, 
InnoCenT GmbH, Germany) was used for the 24 GHz 
radar measurements. In this study, a 24-GHz micro-
wave radar was selected because of its high resolution for 
measuring heart movements from a certain distance [47, 
53, 56–58]. The sensor has a normal output of 40 mW 
(maximum: 100 mW), a gain of 20 dB, and a full beam 
width (45° × 38°). After the signal output from the sensor 
was filtered and then amplified, the signal was sampled 
at a sampling interval of 1000 Hz by an A/D converter 
(CONTEC AI-16068AY-USB) and saved on a PC.
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Experimental setup and participants
The experimental setup is shown in Fig. 1. The Doppler 
radar sensor was fixed to a tripod set 500 mm away from 
the chest surface on the experimental table and focused 
on the underside of the sternum. Previous studies have 
not reported successful PPI measurements to estimate 
RRI, including Doppler sensor and other means, at dis-
tances greater than 30 mm [14, 15, 51, 59, 60]. We also 
used a wearable 2-lead electrocardiograph (myBeat, 
Union Tool Co.) as a reference [61–63], obtaining meas-
urements with electrodes directly attached to the body 
at V1 and V2 positions of the precordial ECG. Healthy 
participants took part in each experiment, with all 

measurements being taken on the same day following a 
standardized procedure. The sensor height was adjusted 
to match each participant. The participants were seated 
in chairs, wearing their normal clothing, and were in a 
rested state during the measurements. The only excep-
tion was during a part of Experiment 1, where they were 
asked to hold their breath.

Experimental protocol
Experiment 1
The participants were one female and four healthy male 
participants. Table 1 shows the physical characteristics of 
these five participants. Figure 2 depicts the experimental 

Fig. 1 Schematics of experimental environment

Table 1 Physical characteristics of the five participants

M Male, F Female, SD Standard deviation

Experiment Participant Age Sex Height (cm) Weight (kg) BMI

1 A 22 M 171 53 18.13

B 22 M 168 56 19.84

C 24 M 174 63 20.81

D 30 F 157 67 27.18

E 58 M 174 68 22.46

Average 31.20 168.80 61.40 21.68

SD 13.72 6.31 5.95 3.09

2 F 22 F 154 51 21.50

G 23 M 180 65 20.06

H 23 F 155 44 18.31

I 23 M 181 66 20.15

J 22 M 172 70 23.66

K 23 M 180 72 22.22

L 22 M 177 77 24.58

M 22 F 157 49 19.80

Average 22.50 169.54 61.75 21.29

SD 0.50 11.26 11.33 1.98
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protocol. After a 1-min rest, the participants were seated 
in a chair and measured for 1 min at rest, with breath-
ing allowed and their backs not touching the chair back. 
Then, they were measured again, but this time, the par-
ticipants held their breath for 30 s to evaluate the effect 
associated with breathing. This set was repeated twice.

Experiment 2
Experiment 2 aims to measure and analyze the R and K 
values, which represent heart radius and heart movement 
in the mathematical model. The participants were three 
females and five males, all healthy. The physical charac-
teristics of the participants and the experimental protocol 
are shown in Table 1 and Fig. 2, respectively. Experiment 
2 essentially followed the same conditions as Experiment 
1, with the participants breathing at rest, their backs rest-
ing without holding onto a chair back, and measurements 
were repeated twice with a 1-min rest in between.

Digital data processing
All signals were processed and analyzed offline according 
to the diagram shown in Fig. 3. The signal was bandpass 
filtered from 0.8 to 5 Hz, a setting that covers a range of 
48 to 300 heartbeats per minute, to enhance the heart-
beat waveform to a certain extent. After filtering, the 
FFT spectrum was checked, and the strongest peak was 
assumed to correspond to the heartbeat. The cycle of 
heart movements in the model was calculated from the 
inverse of the peak frequency, and one cycle of the output 
signal was calculated from a Doppler radar signal simu-
lation using a mathematical model of heart movements 
and saved as template data. The correlation coefficient 

was calculated for each cycle, and the output signal was 
evaluated by setting a search window for the template 
and shifting the search window at the measurement time 
to calculate the correlation coefficient with the measured 
values over time as shown in Fig.  4a. Next, the median 
value of the peaks of the correlation coefficient curve was 
calculated, optimal K and R values were searched by max-
imizing the median value, and the peaks were detected 
using the phenofit library [64] of R (see Fig. 4b). Finally, 
the instantaneous PPI was estimated from each interval 
of the peaks over time. A PPI series, with the effect of 
respiratory sinus arrhythmia removed, was calculated by 
applying a low-pass FIR filter with a cut-off frequency of 
0.05 Hz to eliminate respiratory variability [65, 66]. After 
the data processing described above, all data were saved 
on a PC. In this paper, only the in-phase signal from the 
I/Q modulator was used (Eq. (7)) among the output sig-
nals. The same estimation method can be used for analy-
sis with the Q wave.

Doppler radar signal simulation
The received signal is converted by an I/Q modulator, 
and its phase change can be used to calculate the change 
in distance between the sensor and the participant. The 
round-trip time, Tr , from when the sensor transmits 
microwaves to when it receives them, can be expressed 
as follows: where time is t , the speed of light is c , the dis-
tance of the object from the sensor is D(t) , and the veloc-
ity of the object is v(t).

Tr =
2D(t)

c
=

2

c
l0 +

t

0

v(t)dt

Fig. 2 Experimental protocols of experiments 1 and 2

Fig. 3 Schematic diagram of Doppler radar output signal processing and analysis
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The signal received has a round-trip time delay, which 
results in a phase shift φ . This phase shift can be calcu-
lated using the following equation, where f0 represents 
the transmission frequency.

Of the signals modulated by the I/Q modulator, high-
frequency components are removed using a low-pass 
filter to obtain the following in-phase and quadrature sig-
nals. As and Ar are the amplitudes of the transmitted and 
received waves, respectively.

(1)φ(t) = 2π f0Tr(t) =
4π f

c
D(t)

(2)I(t) =
AsAr

2
cos(φ(t))

(3)Q(t) =
AsAr

2
sin(φ(t))

This indicates that the output signal of the Doppler 
radar sensor depends on D(t) . In this study, we modeled 
the heart to calculate the distance D between the sensor 
and the chest surface of the participant. As depicted in 
Fig. 5, we assumed the heart to be a sphere with radius 
R . The distance D was then calculated by integrating Lxy , 
which represents the distance between a point ( x , y , 0 ) 
on the x-y plane and the sensor, across the plane.

Equation (4) is expanded by substituting Eq. (5), which 
represents the sphere, into Eq. (4).

(4)D = 2π

∫

Lxydx = 2π

∫ R

0

√

(d − x)2 + y2dx

(5)
y =

√
R2 − x2

D = 2π
∫ R
0

√

(d2 − 2dx + x2)+ (R2 − x2)dx = 2π
∫ R
0

√
d2 − 2dx + R2dx

= 2πd
∫ R
0

√

1− 2x
d

+ R2

d2
dx =

∫ R
0

[(

−2

d

)

x +
(

1+ R2

d2

)]
1

2

dx

Fig. 4 a, b Methodology of CCF calculation by template matching method
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Finally, an expression for the distance D shown in Eq. 
(6) was obtained.

The phase φ can be calculated from Eqs. (6) and (1). 
Also, the amplitude of the received waveforms, which 
are obtained from Eqs. (2) and (3), depends on the size 
of the object as seen from the sensor. Using the concept 
of solid angle ω to express this influence, Eqs. (2) and (3) 
were ultimately rewritten into the following equation. In 
this study, Eq. (7) was used to evaluate the in-phase signal 
received as Doppler output signal.

Mathematical model of heart movements
In cardiac physiology, the ventricular systole generally 
begins from around the top of the R wave to near the end 
of the T wave. As the aortic valve opens near the end of 
the S wave, the ventricular volume decreases between the 
S and T waves [67, 68]. The ventricular pressure peaks 
and then falls, causing the myocardium to contract at a 
slower rate near the start of the T wave. Ventricular dias-
tole occurs with the opening of the tricuspid and mitral 
valves, and rapid diastolic filling starts following the sys-
tole. In this study, the extended triangular wave model 
is based on such cardiac physiology as shown in Fig.  6, 
where the endpoint of the triangular wave, in contrast to 
the ECG waveform [54, 69], is supposed to correspond 
to the T wave. The start point and the apex are assumed 
to be equal to the end of the T wave and S wave, respec-
tively. In this model, a higher K value corresponds to an 
increased ratio of the triangular part, denoted as Tds in 
Fig. 6. Similarly, a higher R value indicates a larger radius 

(6)
D = 2πd 2

3

(

− 2

d

)

[

((

−2

d

)

x +
(

1+ R2

d2

))
3

2

]R

0

= −2πd2

3

[

(

−2dx+d2+R2

d2

)
3

2

]R

0

= −2πd2

3

(

1

d2

)
3

2

[

(

−2dx + d2 + R2
)

3

2

]R

0

= −2π
3d

[

(

−2dx + d2 + R2
)

3

2

]R

0

(7)
I∗(t) = ωcos(φ(t))
Q∗(t) = ωsin(φ(t))

R of the sphere, which serves as a model of the heart, as 
shown in Fig. 6. In this paper, the amplitude ⊿r, which is 
illustrated in Fig. 6, is set to 10 mm, independent of the 
R value. On the other hand, it has been reported that a 
heartbeat causes minute movements of only 0.2 mm on 
the chest [59]. When the K value is 1, it represents a per-
fect triangular wave with cycle T. A K value greater than 0 
and less than 1 represents the diastole-systole-stagnation 
characteristic. In this study, the analysis was conducted 
for K values ranging from 0.1 to 1 in 0.01 steps and R val-
ues ranging from 40 to 70 mm in 2 mm steps. Prior to the 
analysis described in this study, three mathematical mod-
els were evaluated for their predictive performance as 
heartbeat models. These models include a model assum-
ing the heart to be a sphere, a large curvature sphere 
model assuming minute dilation and contraction of the 
body surface, and a one-dimensional model, known as 
the classical Doppler effect [70]. These models were used 
to simulate templates and to analyze the same signal. The 
sphere model produced the highest maximum median 
value of the peaks of correlation coefficients among the 
three models when the extended triangular wave model 
(see Fig. 6) was used. Therefore, only the sphere model as 
a heartbeat model was used to analyze output signals in 
this study.

For comparison, the sinusoidal wave model, a stand-
ard for waveform analysis, was also used to simulate a 
template and to analyze the same signal. The results 
are shown in Fig.  7a, whereas Fig.  7b and c show the 
simulated templates by the extended triangular wave 
model and sinusoidal wave model, respectively. The 
maximum median value of the peaks of the correlation 
coefficient curve for the sinusoidal wave model was 
about 0.7, compared to 0.9 for the extended triangu-
lar wave model. This result indicates that the extended 
triangular wave model is appropriate as a heart move-
ment model, and thus, the model was used throughout 
this study.

Fig. 5 Schematic diagram of heart and illustration of location of heart and sensor
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Results
Experiment 1: relationship between RRI and PPI
Figure  8a displays a graph of in-phase signals over 1 
min when the distance between the chest surface and 
the sensor is 100 mm and 500 mm, with the subject 
seated shallowly in a chair in a rested state, allowing for 

breathing and body movements. Figure 8b presents an 
enlarged view of Fig.  8a, focusing on a 20-s segment. 
The vertical axis of the figures represents the normal-
ized voltage value of the 16-bit output signal. A wave-
form with a heartbeat cycle of about 1 s appears to be 
superimposed on a visually long cycle amplitude, which 

Fig. 6 Schematics of extended triangular wave model in contrast to the ECG waveform

Fig. 7 a Changes in correlation coefficients between simulations and output signal over time for extended triangular wave and sinusoidal models. 
b Simulated in-phase and quadrature waves by extended triangular wave model. c Simulated in-phase and quadrature waves by sinusoidal wave 
model
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seems to be due to respiratory harmonics or random 
body movements associated with breathing. The sig-
nal intensity decreases significantly as the distance 
between the chest surface and the Doppler sensor 
increases, indicating that it becomes more susceptible 
to the artifacts. The electrocardiograms and output 
signals of the Doppler radar for the five participants 
were measured simultaneously using electrocardiog-
raphy and the proposed method to pair each heart-
beat’s RRIs and PPIs when the participants held their 
breath and when they were breathing. Figure 9 displays 
a comparison between RRIs by ECG and PPIs over the 
number of heartbeats by the proposed method of par-
ticipant A when breathing was held (a) and allowed (b). 
When breathing was involved, periodic variations in 

RRI were observed, a behavior seen in all participants. 
When breath was held, this variation was significantly 
smaller. The variations are attributed to respiratory 
sinus arrhythmia, which causes the RRI to fluctuate 
in synchrony with respiration. When breath was held, 
this variation was significantly reduced. Figure 10a and 
b illustrate the relationship between the RRIs and the 
PPIs for five participants when breathing was held and 
allowed, respectively. A strong correlation coefficient 
between the two was found when breath was held (r = 
0.93, p < 0.001). The case where the participants were 
breathing showed a weaker correlation, but it was still 
moderate (r = 0.70, P < 0.001). Bland-Altman plots 
are presented in Fig. 11a and b. The vertical axis of the 
charts represents the difference between RRI and PPI 

Fig. 8 Examples of in-phase signals at rest when the distance between the body and the sensor is 10 cm and 50 cm, seated in a chair in a rested 
state with normal breathing, over a duration of 60 s (a). b Provides an enlarged view of a, focusing on a 20-s segment

Fig. 9 Example of comparison of R-R intervals and peak-to-peak intervals of participant A over the heartbeats when breathing was held (a) 
and allowed (b)
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for each heartbeat, whereas the horizontal axis displays 
the average of the RRI and PPI. The 95% limits of agree-
ment, calculated from the graph results, were UCL = 
15.13 ms and LCL = −8.22 ms (mean = 3.45 ms) when 
breath was held, and UCL = 23.65 ms and LCL = −4.52 
ms (mean = 9.57 ms) when breathing was allowed. The 
results of the 95% limits of the agreement confirmed 
the same trend as the correlation coefficient in terms of 
a loss of accuracy when breathing.

Experiment II: monitoring of heart
Figure 12 displays heat maps of the median value of the 
peaks of the correlation coefficient (CCF_ median) calcu-
lated for each pair of K and R values in the Doppler out-
put signal simulation of all participants. The maximum 

value of the CCF median was found through a grid search 
over the CCF median and is also depicted in the figure. 
To determine the maximum value of the CCF_median, 
the model parameters K and R were varied in the simula-
tion. For each pair of K and R values, the CCF_median 
was calculated, which represents the median value of the 
peaks of the correlation coefficients between each tem-
plate generated in the simulation and the Doppler output 
signal during the measurement period. This process was 
repeated for all combinations of K and R, resulting in a 
set of CCF_medians, each corresponding to a specific 
K and R combination. The maximum value of the CCF_
median was identified as the highest CCF_median among 
all the K and R combinations, indicating the optimal K 
and R values that best match the Doppler output signal. It 

Fig. 10 Comparison of the two results measured by the contact method as a reference and the estimation results based on remote measurement 
when breathing was held (a) and allowed (b)

Fig. 11 Bland-Altman plot for all participants when breathing was held (a) and allowed (b)
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was inferred that the higher the CCF_median, the greater 
the similarity between the Doppler output signal and 
the simulated template. Overall, CCF_median tended to 
increase with an increasing K value. A periodic change 

in CCF_median was observed for the R value. This is due 
to the intensity of the output signal being influenced by 
both the distance to the sensor and the reflection area, 
as can be inferred from the equations mentioned in the 

Fig. 12 Heat map of CCF_median values (dots represent maximum CCF_median values)
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previous section. For example, as the R value increases, 
the change in the intensity of the output signal decreases 
due to a decrease in round trip time and phase shift of the 
received signal. Conversely, the intensity increases due to 
an increase in the reflection area. Our simulations are 
unique in their ability to reflect such contrasting effects. 
As shown in Fig. 12, different participants obtained dif-
ferent pairs of K and R values for which CCF_median is 
maximum. Table 2 shows the average and standard devi-
ation values of CCF_median, along with the correspond-
ing K and R values, when measured twice consecutively 
with an interval of at least 1 min for each participant. 
Doppler output signals were analyzed sequentially in 3-s 
intervals without overlapping throughout the measure-
ment period to account for the effect of respiratory sinus 
arrhythmia. The average of the calculated maximum 
CCF_medians for each participant exceeded 0.95, indi-
cating a strong correlation.

Discussion
Implications of experiment 1 results
Peak-to-peak interval (PPI) was estimated using the pro-
posed method by Doppler radar for the five participants 
and compared with the beat-to-beat R-R interval (RRI) by 
electrocardiography. The difference between the PPI and 
the RRI was larger when the participants were breath-
ing than when the participants held their breath, and a 
certain extent of the effect of respiration was observed 
[65, 66]. However, a moderate correlation was obtained 

which was comparable or better than the previous stud-
ies using Doppler radar, including studies conducted 
by detecting only the peaks of the signal (r = 0.884, p < 
0.247) [60] or using the conventional template method (r 
= 0.769, P < 0.001) [71], despite the measurements from a 
closer distance such as 10 to 30 mm. Therefore, it can be 
considered that the proposed method could successfully 
estimate the RRI (or heart rate) of participants in remote 
conditions even from a distance of 500 mm. From the 
Bland-Altman plot, for the difference between RRI and 
PPI series, the mean value was 3.45 ms with a range of 
95% limits of agreement of 23.35 ms when breathing was 
held, whereas those increased by 9.57 ms and 28.17 ms 
when breathing was allowed, respectively. This is consid-
ered to be due to the effect of respiration, as also shown 
in the correlation coefficient between PPI and RRI.

Implications of experimental 2 results
The parameters K and R of the mathematical model of 
heart movements were calculated for each of the eight 
participants. The K value represents the simple cardiac 
expansion-contraction-stagnation characteristics of 
heart movements that could potentially be correspond-
ing to electrocardiography and correlated with a wide 
range of studies on heart disease [69, 72, 73]. A very high 
similarity was obtained by the proposed method, with an 
average of 0.95 or higher for the median value of the peak 
values of the correlation coefficients. This suggests that 
the templates created by the simulation of the Doppler 

Table 2 Estimation results of CCF_median value, K value, heart radius R, and the average and standard deviation values for 
measurements 1 and 2, along with the physical characteristics of the participants

Sex: M Male, F Female, HRA Heart rate average, SD Standard deviation

Participant Maximum CCF_
median
Average ± SD

K
Average ± SD

R (cm)
Average ± SD

Age Sex Height (cm) Weight (kg) HRA (bpm)

1st 2nd 1st 2nd 1st 2nd

F 0.975
±0.032

0.984
±0.019

0.819
±0.130

0.873
±0.120

5.7
±0.62

5.5
±0.67

22 F 154 51 78

G 0.980
±0.025

0.977
±0.029

0.898
±0.116

0.816
±0.195

5.8
±0.59

5.7
±0.7

23 M 180 65 84

H 0.982
±0.005

0.992
±0.004

0.839
±0.071

0.990
±0.083

5.4
±0.61

5.7
±0.61

23 F 155 44 91

I 0.982
±0.015

0.982
±0.015

0.925
±0.091

0.846
±0.120

5.6
±0.67

5.7
±0.61

23 M 181 66 93

J 0.978
±0.024

0.983
±0.015

0.827
±0.144

0.978
±0.160

5.9
±0.56

5.6
±0.71

22 M 172 70 95

K 0.974
±0.022

0.958
±0.037

0.825
±0.108

0.692
±0.110

5.7
±0.69

5.5
±0.70

23 M 180 72 68

L 0.970
±0.020

0.975
±0.026

0.847
±0.119

0.937
±0.058

5.7
±0.65

5.4
±0.72

22 M 177 77 90

M 0.983
±0.012

0.969
±0.027

0.805
±0.118

0.862
±0.110

5.4
±0.60

5.7
±0.74

22 F 157 49 76
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output signal based on the mathematical model of heart 
movements described in this paper can detect heartbeat 
waveforms when body movements are as small as those 
allowed in this experiment in a natural state. However, 
further studies on the validity of the parameters K and 
R of the model require verification using MRI and other 
methods in the future.

Conclusion
This paper discusses a new method for remote heart 
monitoring that estimates the beat-to-beat R-R inter-
val (RRI) of an electrocardiogram using a Doppler radar 
sensor, based on the mathematical model of heart move-
ments. Our template matching method provides higher 
accuracy in remote heart monitoring while participants 
are in a natural state, such as sitting in a chair, offering 
more flexibility in the measurement environment than 
conventional methods. This is achieved by generat-
ing templates through the simulation of Doppler radar 
output signals based on the mathematical model of 
heart movements and leveraging the template match-
ing method. This contrasts with many previous studies 
that were conducted at close range and under conditions 
where participants were lying in bed and holding their 
breath.

For remote heart monitoring, radar is extremely effec-
tive because it is transparent to non-metallic materi-
als, can measure from a distance, and is less expensive. 
These features allow heart monitoring through clothing 
and bedding during sleep when body movements are 
minimal. Heart disease often manifests suddenly with-
out prior symptoms. Continuous long-term measure-
ment during sleep is expected to increase the likelihood 
of symptom detection.

While conventional studies of Doppler radar measure-
ments utilize phase changes in the Doppler effect due to 
minute movements of the body surface caused by heart-
beats, this study uses a mathematical model of heart 
movements. Because of this, our method has the poten-
tial for further extension to physiological considerations, 
allowing for the prediction of heart disease by taking into 
account various types of heart movements related to car-
diovascular symptoms.

In this study, since the proposed method is still in the 
early stages of research, a grid search method is used to 
calculate the optimal values of K and R for evaluating the 
method. Although initial values do not need to be pre-
pared, this approach results in longer calculation times. 
Reducing calculation time is a future challenge, and we 
believe that the use of time series analysis techniques, 
such as state space models, could improve the effec-
tiveness of our heart monitoring method in practical 
applications.
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