
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

Zhang et al. BMC Cancer         (2024) 24:1297 
https://doi.org/10.1186/s12885-024-12927-x

BMC Cancer

†Yao Zhang, Xiaolong Tang and Lin Liu contributed equally to this 
work and share first authorship.

*Correspondence:
Zhangang Xiao
zhangangxiao@swmu.edu.cn
Lei Yao
yaolei2009@gmail.com
Fukuan Du
adublg@126.com

Full list of author information is available at the end of the article

Abstract
Background Hepatocellular carcinoma (HCC) is a malignant tumor characterized by a high mortality rate. The 
occurrence and progression of HCC are linked to oxidative stress. Glyoxalase-1 (GLO1) plays an important role in 
regulating oxidative stress, yet the underlying mechanism remains unclear. GLO1 may serve as a prognostic biomarker 
and therapeutic target for HCC.

Methods Based on TCGA database hepatocellular carcinoma samples, we conducted a bioinformatics analysis to 
explore the correlation between GLO1 expression and HCC cell proliferation and viability. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis revealed that differentially expressed genes (DEGs) were 
mainly enriched in the cell cycle pathway. We analyzed the relationships between GLO1 and 24 genes enriched in the 
cell cycle pathway using a protein-protein interaction (PPI) network. Finally, experimental validation was performed to 
assess GLO1’s impact on the distribution of cells at different cell cycle stages and on the proliferation and migration of 
HCC cells.

Results Our study demonstrated that GLO1 was overexpressed in HCC tissues and was associated with a poor 
prognosis. Data analysis indicated that overexpression of GLO1 activated the cell cycle pathway and positively 
correlated with expression of the majority of key cell cycle genes. Experimental validation showed that GLO1 
expression affects the number of HCC cells in G2 and S phases and regulates HCC cell proliferation and migration.
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Introduction
GLO1 is a cytoplasmic glutathione-dependent enzyme 
that detoxifies the glycolysis by-product methylglyoxal. 
Methylglyoxal is a cancer metabolite involved in meta-
bolic reprogramming [1]. GLO1 plays a crucial role in 
tumorigenesis and the progression of various cancers. 
The mechanism of GLO1-mediated regulation of targeted 
cancer cells has garnered substantial attention [2–12]. 
While GLO1 is closely associated with cancer occurrence 
and development, its potential value as a therapeutic tar-
get for liver cancer treatment remains unexplored [13, 
14]. Currently, comprehensive research on the role of 
GLO1 in HCC development is lacking, and existing find-
ings require further validation.

According to global cancer statistics for 2020, liver can-
cer is the sixth-most common cancer in the world, with 
the third highest mortality rate and the fifth highest inci-
dence [15]. Numerous factors contribute to liver cancer 
development, including hepatitis infections (HBV, HCV), 
alcohol consumption, obesity, diabetes mellitus, aflatoxin 
ingestion, non-alcoholic fatty liver disease, and metabolic 
syndrome [16–19]. Oxidative stress is a significant factor 
in carcinogenesis, playing a pivotal role in the develop-
ment and progression of liver cancer of various etiologies 
[20–25]. Previous studies suggest that GLO1 is involved 
in the regulation of oxidative stress [26–29]. Given its 
role in oxidative stress regulation, GLO1 may be a poten-
tial target for cancer therapy [30].

This study aims to investigate the role of GLO1 in HCC 
and explore its potential as a prognostic biomarker and 
therapeutic target. We found that GLO1 expression lev-
els were elevated in HCC tissues compared to normal 
tissues, with significant differences in survival associated 
with GLO1 expression. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis and 
Gene Ontology (GO) enrichment analysis were utilized 
to elucidate the biological processes and pathways associ-
ated with GLO1. Our results indicate that GLO1 contrib-
utes to the development of HCC by influencing the cell 
cycle pathway. Experimental verification further revealed 
that GLO1 predominantly affects the G2 and S phase of 
the HCC cell cycle and regulates HCC cell proliferation 
and migration. This study proposes a new therapeutic 
target for the treatment of HCC and clarifies the molecu-
lar mechanism of HCC development.

Methods
Data sources
GLO1 expression levels and clinical HCC data were 
obtained from The Cancer Genome Atlas (TCGA) 
(http://cancergenome.nih.gov) [31]. Standardized 
TCGA and GTEX transcriptome data from normal tis-
sue (N = 160) and tumor tissue (N = 374) samples were 
sourced from the UCSC database (https://xenabrowser.
net/). The datasets GSE45436 (N = 39, T = 95), GSE57957 
(N = 39, T = 39), and GSE76427 (N = 52, T = 115), contain-
ing liver cancer sequencing data, were downloaded from 
the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/).

Analysis of GLO1 mutations in HCC
The cBioPortal online site is an open-source platform 
with multidimensional cancer genomic datasets and clin-
ical data sources for exploration, visualization, and analy-
sis [32]. We utilized the cBioPortal tool to analyze GLO1 
mutations in HCC.

Survival analysis and HCC clinicopathological features
The “survival” and “survminer” R software packages were 
employed for survival analysis, and the Kaplan-Meier 
plotter assessed the association between GLO1 expres-
sion and patient survival in HCC [33]. Additionally, the 
clinicopathological data corresponding to the HCC sam-
ples were downloaded from TCGA and analyzed using 
R. The Kruskal-Wallis rank sum test identified significant 
differences (p < 0.05).

Relationship between GLO1 expression and immune cell 
infiltration
The ESTIMATE method inferred the ratio of stromal 
cells to immune cells in tumor samples, and the “esti-
mate” R software package evaluated the stromal score, 
immune score, estimated score, and tumor purity [34]. 
The Tumor Immunity Estimation Resource (TIMER, 
https://cistrome.shinyapps.io/timer/) enables system-
atic integrated correlation analysis of tumor-infiltrating 
immune cell features and selected pivotal genes [35]. We 
evaluated GLO1 expression levels in HCC tissues and 
analyzed their relationship with tumor purity and six 
types of infiltrating immune cells. Additionally, to explore 
the potential relationship between GLO1 expression and 
immune cell infiltration in HCC, we estimated the con-
tent of 22 immune cells using the CIBERSORT tool. Val-
ues of p < 0.05 were considered statistically significant.

Conclusions GLO1 represents a promising therapeutic target for HCC, providing valuable insights into its role in the 
viability and proliferation of HCC cells.
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Differentially expressed genes and pathway analysis
The HCC transcriptome data were analyzed using the 
limma package. The filter conditions to identify differ-
entially expressed genes (DEGs) were as follows: fold 
change > |0.5|; adjusted p < 0.05. The Database for Anno-
tation, Visualization and Integrated Discovery (DAVID; 
http://david.abcc.ncifcrf.gov/) was used to perform GO 
and KEGG pathway enrichment analyses of DEGs.

Protein-protein interaction (PPI) network analysis
A protein-protein interaction (PPI) network graphi-
cally represents the physical and functional interactions 
between proteins in cells, constructed based on experi-
mental data and computational predictions. Networ-
kAnalyst (https://www.networkanalyst.ca) is a tissue 
type–specific or cell type–specific protein-protein inter-
action (PPI) network analysis platform. The network 
integration algorithm uses the following bioinformatics 
tools: PPI networks, gene co-expression networks, and 
gene regulation networks [36]. We utilized NetworkAna-
lyst to construct a PPI network based on the relation-
ships between GLO1 and proteins associated with the cell 
cycle.

Cell culture
Human Hep3B and Huh-7 cells were provided by the 
School of Biomedical Sciences at the Chinese Univer-
sity of Hong Kong. The cells were cultured in DMEM 
(Thermo Fisher Scientific, USA) supplemented with 10% 
fetal bovine serum (FBS; Thermo Fisher Scientific) and 
penicillin/streptomycin (1:100; Gibco, Thermo Fisher 
Scientific). All cells were grown at 37 °C in an incubator 
with 5% CO2 (SHEL LAB, USA).

Plasmid construction
GLO1-specific gRNA was designed using the Best 
CRISPR Design Tool for Knockouts (https://www.
synthego.com/products/bioinformatics/crispr-design-
tool) (TSINGKE, Chengdu, China). The process involved 
linearizing the plasmid backbone, annealing the gRNA, 
ligating the annealed oligonucleotides into the linearized 
vector, transforming the ligation product into Stbl3 cells, 
and verifying the gRNA sequence. The gRNA sequence 
is shown in Table  1. The overexpression plasmid was 
designed by Beijing Haichuangkeye Biological Technol-
ogy Co., Ltd. (Beijing, China).

Construction of GLO1 knockout and overexpression cell 
models
The lentivirus packaging system, along with the helper 
plasmids PspAX2 and PMD2.G, was used to transfect the 
target plasmid into HEK293T cells. The virus-containing 
cell supernatant was collected 48 h and 72 h after trans-
fection, mixed, and centrifuged to concentrate the virus 
particles using PEG8000. The knockout group and the 
negative control for the knockout group were denoted 
“sgGLO1” and “sgNC”, respectively; the overexpression 
group and its control were denoted “GLO1” and “con-
trol”, respectively. To obtain a stable cell line, HCC cells 
were screened using puromycin (2  µg/mL) 2 d after 
transfection.

Quantitative real-time polymerase chain reaction
Total RNA was extracted from HCC cells using TRIzol 
reagent (Thermo Fisher Scientific, Waltham, MA, USA). 
Reverse transcription was conducted using the FastK-
ing RT Kit (TIANGEN, Chengdu, China) to produce 
cDNA. Quantitative real-time polymerase chain reac-
tion (qRT-PCR; reaction volume: 10 µL) was performed 
using the 2× TSINGKE Master qPCR Mix (SYBR Green 
I) kit (TSINGKE, Beijing, China). 18s RNA was used as 
an internal reference. All primers were obtained from 
TSINGKE (Beijing, China; Table  2). mRNA expression 
levels were determined using the 2−∆∆Ct method.

Western blot analysis
Total protein was extracted from HCC cells using 1 mM 
PMSF RIPA lysis buffer (Solarbio, China) and quantified 
using the BCA Protein Assay Kit (Beyotime, China). The 
protein lysate (80 µg) was denatured at 90 °C for 5 min in 
sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis (SDS-PAGE) protein loading buffer (Beyotime, China). 
Samples were separated by 10% SDS-PAGE and trans-
ferred onto polyvinylidene fluoride membranes (Milli-
pore, USA; IBFP0813C). The membranes were blocked 
with 5% non-fat milk in PBST for 1  h at room tem-
perature and incubated overnight at 4  °C with primary 
anti-GLO1 antibody (1:1000 dilution, rabbit; Abcam, 
ab81461) and primary anti–β-actin antibody (1:2000 
dilution, mouse; Beyotime, AF0003). The membranes 
were then washed three times with PBST and incubated 
with anti-rabbit IgG (1:2000 dilution; Beyotime; A0208) 

Table 1 Primer sequences for GLOI-sgRNA
gene Primer sequences
GLO1-sgRNA-F 5’- C A C C G A C T C T A C T T C T T G G C T T A T C-3’
GLO1-sgRNA-R 5’- A A A C C A T A A G C C A A G A A G T A G A G T C-3’

Table 2 The primer sequences
Primer name Forward Sequence (5’-3’) Reverse Se-

quence (5’-3’)
GLO1  C A C T C T A C T T C T T T G G C T T A T G A G G  G G G T C T C A T C A 

T C T T C A G T G C C
18sRNA  A A G T C C C T G C C C T T T G T A C A C A  G A T C C G A G G G 

C C T C A C T A A A C

http://david.abcc.ncifcrf.gov/
https://www.networkanalyst.ca
https://www.synthego.com/products/bioinformatics/crispr-design-tool
https://www.synthego.com/products/bioinformatics/crispr-design-tool
https://www.synthego.com/products/bioinformatics/crispr-design-tool
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and anti-mouse IgG (1:2000 dilution; Beyotime; A0216) 
for 1 h at room temperature.

Cell proliferation assay
Cell suspensions from the four groups were inoculated 
into a 96-well culture plate at a density of 2000 cells per 
well and cultured at 37 °C in a 5% CO2 incubator. After 
24, 48, 72, and 96 h of incubation, 90 µL of medium and 
10 µL of cell counting kit-8 (CCK8) reagent (Dojindo, 
China) were added to each well. The cells were then incu-
bated for an additional 2 h in the dark. The optical density 
of each well was measured at 460 nm using a microplate 
reader (Bio-Rad, Hercules, CA, USA, TY2018000102). 
Three wells were analyzed per group.

Wound healing assay
Cells (20 × 104) were seeded onto a six-well plate and 
incubated for 24  h until they reached confluence. The 
monolayer was scratched with a 10 µL pipette tip and 
washed with PBS to remove isolated cells. The cells were 
cultured in serum-free medium, and 4–5 images of the 
migration distance were captured in the same position 
for each well under an inverted fluorescence microscope 
(Nikon, Japan, Ts2R-FL) after 0, 24, and 48 h. The migra-
tion distance was calculated using ImageJ software.

Transwell invasion assay
The invasion assay was performed using a Transwell 
chamber (JETBIOFIL, Guangzhou, China) coated with 
Matrigel (Corning, Guangzhou, China). Transfected 
Hep3B and Huh-7 cells were suspended in serum-free 
medium and inoculated at a density of 2 × 104 cells per 
well into the upper chamber. The lower chamber con-
tained medium supplemented with 10% FBS. After 48 h 
of incubation, the cells were fixed and stained with crys-
tal violet. Photographs were taken under an inverted light 
microscope, and the invaded cells were counted using 
ImageJ software.

Flow cytometry analysis
Flow cytometry was performed to analyze the distribu-
tion of cells at different stages in the cell cycle. Cells in 
the logarithmic growth phase were inoculated uniformly 
into a six-well plate at a density of 2 × 104 cells per well 
and incubated in serum-free medium for 12 h. Next, the 
cells were transferred to complete medium and incu-
bated for 48  h, after which they were washed with ice-
cold PBS. Trypsin-digested cells were collected in a 1.5 
mL conical tube and centrifuged at 1000 rpm for 3 min 
to obtain a precipitate. The cells were washed twice with 
ice-cold PBS and fixed with 75% ice-cold ethanol at -20℃ 
for 24 h. The cells were centrifuged, resuspended in PBS, 
treated with 50 µg/mL propidium iodide (PI) and 50 µg/
mL RNase, and incubated at 37  °C for 30  min. Flow 

cytometry results (BD FACSVerseTM, USA) were ana-
lyzed using ModFit software.

In vivo experiments
Early zebrafish embryos (AB strain) were reared in 
Danien’s buffer containing 10 mmol/L phenylthiourea 
at 28.5 ℃ on a 10 h/14 h light/dark cycle. All HCC cell 
lines and culture conditions were established as previ-
ously described. HCC cells were stained with DiI (Biyun-
tian Biotech Co., Ltd, C1036) red fluorescent dye for 1 h 
before injection and then resuspended in PBS at a con-
centration of 1 × 104 cells/µL. Embryos were anesthetized 
by administering 0.05  mg/mL tricaine (ethyl 3-amino-
benzoate methanesulfonate, Sigma). HCC cells (5–20 
nL per embryo) were injected into the yolk space using 
a pneumatic pico pump syringe with a glass microinjec-
tion needle. Tumor size was quantified by fluorescence 
microscopy, and the cells were incubated for 3 days.

Statistical analysis
All experiments were repeated three times for accuracy. 
GraphPad Prism 7.0.0 software was used for paired group 
data analysis. Student’s t-test was used for statistical anal-
ysis. The threshold for statistical significance was set at 
p < 0.05.

Results
GLO1 protein is highly expressed in HCC
We analyzed GLO1 expression levels in HCC and normal 
tissues using mRNA expression data from TCGA and the 
GTEX database. We validated GLO1 expression in three 
GEO datasets. GLO1 mRNA expression was significantly 
higher in HCC samples than in normal tissues (Fig. 1A, 
C). Using the Human Protein Atlas Database, we com-
pare GLO1 protein expression in HCC and normal tis-
sues (Fig.  1B), confirming high GLO1 protein levels in 
HCC tissues.

GLO1 alterations in HCC
Based on DNA sequencing data, we identified the type 
and frequency of GLO1 mutations among HCC patients 
using the cBioPortal tool. The frequency of GLO1 alter-
ations in HCC patients was 4%, including missense 
mutations (green), amplifications (red), and truncating 
mutations (light blue). Amplifications were the most fre-
quent mutation type (Supplementary Fig.  2A). Supple-
mentary Fig. 2B illustrates GLO1 mutation sites in HCC. 
Additionally, we investigated whether overall survival 
(OS) and disease-free survival (DFS) were associated 
with GLO1 mutations. HCC patients were divided into 
an altered group (n = 13) and an unaltered group (n = 353) 
based on cBioPortal data. Kaplan-Meier curves plotted 
OS and DFS (Supplementary Fig.  2C). GLO1 mutations 
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Fig. 1 GLO1 expression levels and survival analysis in HCC. (A) Comparison of GLO1 expression levels in HCC tissues and normal tissues was investigated 
by TCGA database. *p < 0.5, **p < 0.01, ***p < 0.001 between the two groups. (B) Protein levels from the Human Protein Atlas (HPA) assay GLO1 in normal 
and HCC tumor tissues. (C) GLO1 expression levels in HCC tissues compared to normal tissues verified by the GEO database. Between the two groups 
*p < 0.5, **p < 0.01, ***p < 0.001. (D) Kaplan-Meier survival analysis based on high and low GLO1 expression. overall survival (OS), disease-free survival (DFS), 
disease-specific survival (DSS), and progression-free survival (PFS)
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were not significantly associated with OS (p = 0.266) or 
DFS (p = 0.722).

High GLO1 expression predicts poor prognosis in HCC 
patients
We aimed to verify if GLO1 expression could serve as a 
prognostic biomarker in HCC patients. We conducted 
OS, DFS, disease-specific survival (DSS), and progres-
sion-free survival (PFS) analyses of GLO1 in HCC using 
TCGA database. Kaplan-Meier analysis indicated that 
high GLO1 expression was significantly associated with 
poor prognosis (Fig. 1D). The relationship between GLO1 
expression level and HCC stage, patient age, and patient 
sex was assessed using the Kruskal-Wallis rank sum test 
with Bonferroni adjustment. A significant association 
was found between GLO1 expression and stages 1 and 
3 (adjusted p < 0.05), but no significant associations with 
other clinical factors (Supplementary Fig.  1). In conclu-
sion, high GLO1 expression is a risk factor for poor prog-
nosis in HCC patients.

GLO1 is negatively and secondarily associated with 
immune infiltration in HCC
Oxidative stress can influence the immune response 
[37–40]. Given GLO1’s close association with oxida-
tive stress, we hypothesized that GLO1 regulates the 
immune response and participates in immune surveil-
lance. In addition, GLO1 participates in immune sur-
veillance and immune cell infiltration control in another 
human malignancy [12]. GLO1 expression varied with 
HCC immune and stromal scores (Fig.  2A); it was neg-
atively correlated with the immune score (r = -0.25, 
p = 1 × 10− 6) and stromal score (r = -0.4, p < 2.2 × 10− 6) 
(Fig. 2B). The correlation between GLO1 expression and 
stromal score was stronger than with the immune score. 
We then explored the relationship between GLO1 expres-
sion and immune cell infiltration levels. GLO1 expres-
sion showed a weak positive correlation with tumor 
purity (r = 0.267, p = 4.58 × 10− 7) and macrophage content 
(r = 0.239, p = 8.43 × 10− 6). GLO1 expression also exhib-
ited a very weak positive correlation with the content of 
B cells (r = 0.158, p = 3.36 × 10− 3), CD8 + T cells (r = 0.107, 
p = 4.87 × 10− 2), CD4 + T cells (r = 0.118, p = 2.84 × 10− 2), 
neutrophils (r = 0.191, p = 3.63 × 10− 4) and dendritic cells 
(r = 0.166, p = 2.12 × 10− 3) (Fig.  2C). These results indi-
cate that GLO1 plays a minor role in HCC immune cell 
infiltration.

GLO1 expression is associated with tumor cell viability and 
proliferation
Patients were categorized into high and low groups 
based on GLO1 expression scores. Expression profiles 
were compared, revealing 458 DEGs related to GLO1. 
To elucidate the functional role of GLO1 in HCC, we 

performed functional enrichment analysis of 458 DEGs 
using the DAVID platform (Fig.  3A, B; Supplementary 
Table 1). GO enrichment analysis showed that, among 
molecular function (MF) terms, the DEGs were enriched 
in “protein binding” and “protein homodimerization 
activity”; among cellular component (CC) terms, they 
were enriched in “nucleus” and “extracellular exosome”; 
and among biological process (BP) terms, they were 
enriched in “cell division” and “mitotic nuclear division” 
(Fig.  3C and Supplementary Table2). KEGG pathway 
analysis revealed that the DEGs were mainly enriched in 
“cell cycle”, “biosynthesis of antibiotics”, and “DNA repli-
cation” (Fig. 3D and Supplementary Table 2).

GLO1 regulates cell cycle pathway
To explore the transcription relationship between GLO1 
and 24 genes enriched in the cell cycle pathway, we used 
the “ggpubr” package to perform correlation analysis at 
the transcriptional level in liver cancer. The expression of 
23 genes was positively correlated with GLO1 expression: 
E2F1, CDC6, CDK1, SKP2, TTK, PCNA, CDC20, PTTG1, 
MCM2, CDC25C, MCM3, BUB1B, MCM4, SMC3, 
MCM5, MCM6, CCNB1, CDC45, MCM7, CCNB2, PLK1, 
BUBI, and CCNA2. GADD45B expression was negatively 
correlated with GLO1 expression (Fig.  4A). To further 
explore the potential interactions between these 24 genes 
and GLO1, a PPI network was constructed using the Net-
workAnalyst tool (Fig. 4B).

GLO1 knockout and overexpression affect the HCC cell 
cycle
Bioinformatics analysis indicated a potential association 
between GLO1 expression and the cell cycle. To study 
the effect of GLO1 expression on the HCC cell cycle, 
we knocked out and overexpressed GLO1 in Hep3B and 
Huh-7 cells via lentiviral transduction and verified the 
efficiency of knockout and overexpression by qRT-PCR 
and western blotting (Fig. 5A, B, and C). We analyzed the 
distribution of cells in different cell cycle stages via flow 
cytometry and PI staining. Knockout and overexpression 
of GLO1 affected the number of Hep3B and Huh-7 cells 
in G2 and S phases. In GLO1-knockout cells, the num-
ber of cells in the G2 phase increased, the number of cells 
in the S phase decreased, and there was no significant 
change in the number of cells in the G1 phase. In GLO1-
overexpressing cells, the number of cells in the G2 phase 
decreased, the number of cells in the S phase increased, 
and there was no significant change in the number of 
cells in the G1 phase (Fig.  6). These data indicated that 
GLO1 affected the number of HCC cells in G2 and S 
phases. Given that GLO1’s influence on these phases is 
critical for DNA replication and subsequent mitosis, we 
aim to further investigate whether GLO1 affects HCC cell 
proliferation and migration.
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GLO1 affects the proliferation, migration, and invasion of 
HCC cells by regulating the cell cycle
To determine how GLO1 affects cell proliferation and 
migration, we performed a CCK8 assay. GLO1 knock-
out significantly inhibited the proliferation of Hep3B 
and Huh-7 cells (Fig.  7A), whereas GLO1 overexpres-
sion enhanced proliferation (Fig.  7B). A wound healing 
assay was performed to analyze the effect of GLO1 on 
the migratory ability of HCC cells. We observed attenu-
ated cell migration upon GLO1 knockout and enhanced 
cell migration upon GLO1 overexpression (Fig.  7C-F). 
According to the transwell invasion assay results, GLO1-
overexpressing Hep3B and Huh-7 cells had significantly 
enhanced invasion ability, whereas GLO1-knockout cells 
exhibited significantly reduced invasion ability (Fig.  7G, 

H). Increased cell proliferation, migration and invasive 
capacity are key characteristic of cancer development 
and metastasis. Based on these in vitro findings, we pro-
ceeded to validate the role of GLO1 in HCC cells using an 
in vivo model.

In vivo validation of the role of GLO1 in HCC cells
Transparent early zebrafish embryos (AB strain) were 
used to observe the changes in the growth of fluores-
cently labeled HCC cells in vivo (Fig.  8A). DiI labeled 
HCC cells injected into the yolk region of the zebrafish 
embryos were visualized using fluorescence microscopy 
(Fig.  8B). The proliferative ability of Hep3B and Huh-7 
cells overexpressing GLO1 was significantly enhanced, 
whereas that of Hep3B and Huh-7 cells lacking GLO1 

Fig. 2 Analysis of GLO1 expression and immune cell infiltration in HCC. (A) Association of GLO1 expression levels with differences in immune and stromal 
scores in HCC. Between the two groups *p < 0.5, **p < 0.01, ***p < 0.001. (B) Correlation analysis of GLO1 mRNA expression levels with immune score and 
stromal score in HCC. (C) The relationship between GLO1 gene expression and the level of infiltration of six types of immune cells in HCC was investigated 
using the Tumor Immune Estimation Resource (TIMER) database

 



Page 8 of 16Zhang et al. BMC Cancer         (2024) 24:1297 

Fig. 3 Identification of DEGs in HCC and GO and KEGG enrichment analysis. (A) Volcano plots show the overall distribution of DEGs between the high 
and low GLO1 expression groups. (B) Heatmap of DEGs generated by comparison between the high and low GLO1 expression groups. (C) GO enrichment 
analysis of 458 DEGs was conducted via DAVID. GO terms are classified as biological process, cellular component, or molecular function terms. (D) KEGG 
pathway analysis revealed the signaling pathways in which the DEGs were enriched. Each point represents the enrichment level. The color corresponds 
to -log10 (adjusted p-value), and the size corresponds to the number of enriched genes
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Fig. 4 Correlation analysis and PPI network analysis. (A) Correlation analysis of GLO1 and 24 genes enriched in the cell cycle pathway. (B) The PPI network 
of GLO1 and 24 cell cycle–related genes was constructed using the NetworkAnalysis tool
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was significantly reduced (Fig. 8C). Based on these obser-
vations, GLO1 plays a critical role in promoting the pro-
liferation of HCC cells in vivo, suggesting it as a potential 
therapeutic target for HCC.

Discussion
In recent years, the incidence of HCC has risen signifi-
cantly, making it one of the most common cancers. High 
GLO1 expression plays a crucial role in tumor initiation 
and progression [3, 5, 6, 8, 9, 13, 41]. GLO1 is upregulated 
in HCC and plays an essential role in HCC cell prolif-
eration, thus presenting itself as a potential therapeutic 
target [13, 14]. However, comprehensive research on the 
association between GLO1 expression and the occur-
rence and development of HCC remains sparse. This 
study comprehensively investigated the role of GLO1 

in hepatocellular carcinoma (HCC) and its potential as 
a therapeutic target. This study investigates the role of 
GLO1 in HCC and its potential as a therapeutic target 
through bioinformatics analysis of public data.

Using TCGA data, we evaluated GLO1 expression in 
HCC tissues and confirmed that GLO1 transcription lev-
els were significantly elevated in tumor tissues compared 
to adjacent normal tissues (Fig.  1A, B, and C), aligning 
with previous findings [13, 14]. We further examined 
GLO1 mutations in HCC at the DNA level, revealing a 
mutation rate of 4%, though these mutations were not 
significantly associated with survival (Supplementary 
Fig. 2). To assess the impact of GLO1 expression on sur-
vival, we analyzed four types of survival data: OS, DFS, 
DSS, and PFS. GLO1 expression was significantly associ-
ated with the survival rate of HCC patients, suggesting 

Fig. 5 GLO1 knockout and overexpression in Hep3B and Huh-7 cells. (A) mRNA expression after GLO1 knockout and overexpression in Hep3B and Huh-7 
cell lines was detected by qRT-PCR. (B, C) Protein expression after GLO1 knockout and overexpression in Hep3B and Huh-7 cell lines was determined by 
Western blot analysis (Original version in Supplementary Fig. 3). Statistical significance was determined by t-test: * p < 0.05; ** p < 0.01; *** p < 0.001
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Fig. 6 Effect of GLO1 knockout and overexpression of HCC cells in each cell cycle stage. GLO1 knockout and overexpression mainly affected the number 
of Hep3B and Huh-7 cells in G2 and S phases. Statistical significance was determined by t-test: * p < 0.05; ** p < 0.01; *** p < 0.001
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Fig. 7 GLO1 affects HCC cell proliferation, migration, and invasion by regulating the cell cycle pathway. (A, B) Proliferative capacity of GLO1-knockout and 
GLO1-overexpressing HCC cells was determined by CCK-8 assay. (C-F) Migration ability of GLO1-knockout and GLO1-overexpressing HCC cells was deter-
mined by wound healing assay. (G, H) Invasive ability of GLO1-knockout and GLO1-overexpressing HCC cells was determined by invasion assay. Statistical 
significance was determined by t-test: * p < 0.05; ** p < 0.01; *** p < 0.001
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Fig. 8 GLO1 affects the growth of HCC cells in zebrafish. (A) Schematic depicting the procedure for constructing a zebrafish HCC xenograft model. (B) 
Fluorescence microscopy images of DiI stained HCC cells injected into the yolk region of zebrafish. Bright-field microscopy of whole zebrafish (AB line) 
24 h after injection of human HCC cells (upper panel). Fluorescence microscopy of DiI stained HCC cells under red fluorescent protein (RFP) channel 
(middle). Merged bright-field and RFP field microscopy images (bottom). (C) Growth of DiI stained HCC cell xenografts in zebrafish
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its potential as a prognostic indicator. GLO1’s role in 
promoting tumor proliferation and survival has been 
highlighted in multiple cancer types, including pros-
tate cancer, breast cancer, pancreatic cancer, malignant 
melanoma, and gastric cancer [3, 6, 9–12, 41, 42]. GLO1 
expression was not significantly associated with clini-
copathological parameters such as grade, age, and sex 
(Supplementary Fig. 1). GLO1 is linked to oxidative stress 
[26], which affects the immune response [30, 37–40]. We 
speculated that GLO1 also regulates tumor immunity and 
found that GLO1 plays a minor role in HCC immune cell 
infiltration (Fig. 2).

To investigate the molecular functions of GLO1 in 
HCC, we performed GO and KEGG pathway enrich-
ment analysis of DEGs. Enriched BP terms included “cell 
division” and “mitotic nuclear division” (Fig. 3C). KEGG 
pathway analysis revealed that the DEGs were mainly 
enriched in “cell cycle” and “DNA replication” (Fig. 3D). 
GLO1 promotes tumor proliferation [3, 10, 14], though 
the exact mechanism remains unclear. We conducted a 
correlation analysis between GLO1 expression and genes 
related to the cell cycle pathway. Specifically, the expres-
sion of E2F1, CDC6, CDK1, SKP2, TTK, PCNA, CDC20, 
PTTG1, MCM2, CDC25C, MCM3, BUB1B, MCM4, 
SMC3, MCM5, MCM6, CCNB1, CDC45, MCM7, 
CCNB2, PLK1, BUBI, and CCNA2 was positively corre-
lated with GLO1 expression, whereas GADD45B expres-
sion was negatively correlated (Fig.  4A). Given that 
alterations in cell cycle regulation are known to drive 
tumor proliferation and survival by enabling cancer cells 
to bypass normal growth constraints and evade apopto-
sis [43]. We hypothesize that GLO1 may contribute to 
tumor proliferation and viability by activating the cell 
cycle pathway. GLO1 expression was significantly corre-
lated with that of genes enriched in the cell cycle path-
way (Fig.  4A). However, this does not establish a causal 
relationship between GLO1 and cell cycle pathway acti-
vation. Therefore, we constructed a GLO1 knockout 
and overexpression system for further validation. GLO1 
expression predominantly influenced the number of cells 
in G2 and S phase of the cell cycle (Fig.  6), supporting 
previous reports that GLO1’s role in tumor proliferation 
and survival [5, 7, 8, 14]. The results demonstrated that 
GLO1 affects the proliferation and migration of HCC 
cells by regulating the cell cycle (Fig. 7).

In conclusion, this study provides comprehensive evi-
dence supporting GLO1’s pivotal role in HCC develop-
ment. Our findings indicate that GLO1 is overexpressed 
in HCC tissues and is associated with a poor prognosis, 
similar to other human malignancies [44]. Furthermore, 
our findings elucidate that overexpression of GLO1 acti-
vates the cell cycle pathway and correlates with genes 
enriched in this pathway. Experimental validation indi-
cated that GLO1 expression affects the number of HCC 

cells in G2 and S phases and regulates HCC cell prolif-
eration and migration. These results underscore GLO1 
as a promising therapeutic target for HCC, offering valu-
able insights into its role in tumor viability and prolif-
eration. Future directions include further elucidation of 
the underlying molecular mechanisms and validation of 
GLO1-targeted therapeutic strategies in clinical settings.
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