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Abstract

Spin–orbit (SO) coupling—the interaction between a quantum particle’s spin and its momentum

—is ubiquitous in physical systems. In condensed matter systems, SO coupling is crucial for 

the spin-Hall effect1,2 and topological insulators3–5; it contributes to the electronic properties of 

materials such as GaAs, and is important for spintronic devices6. Quantum many-body systems of 

ultracold atoms can be precisely controlled experimentally, and would therefore seem to provide 

an ideal platform on which to study SO coupling. Although an atom’s intrinsic SO coupling 

affects its electronic structure, it does not lead to coupling between the spin and the centre-of-mass 

motion of the atom. Here, we engineer SO coupling (with equal Rashba7 and Dresselhaus8 

strengths) in a neutral atomic Bose–Einstein condensate by dressing two atomic spin states with 

a pair of lasers9. Such coupling has not been realized previously for ultracold atomic gases, or 

indeed any bosonic system. Furthermore, in the presence of the laser coupling, the interactions 

between the two dressed atomic spin states are modified, driving a quantum phase transition from 

a spatially spin-mixed state (lasers off) to a phase-separated state (above a critical laser intensity). 

We develop a many-body theory that provides quantitative agreement with the observed location 

of the transition. The engineered SO coupling—equally applicable for bosons and fermions—sets 

the stage for the realization of topological insulators in fermionic neutral atom systems.

Quantum particles have an internal ‘spin’ angular momentum; this can be intrinsic for 

fundamental particles like electrons, or a combination of intrinsic (from nucleons and 

electrons) and orbital for composite particles like atoms. SO coupling links a particle’s 

spin to its motion, and generally occurs for particles moving in static electric fields, 

such as the nuclear field of an atom or the crystal field in a material. The coupling 

results from the Zeeman interaction −μ ⋅ B between a particle’s magnetic moment μ, 

parallel to the spin σ, and a magnetic field B present in the frame moving with the 

particle. For example, Maxwell’s equations dictate that a static electric field E = E0z in the 
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laboratory frame (at rest) gives a magnetic field BSO = E0 ħ/mc2 −ky, kx, 0  in the frame of an 

object moving with momentum ħk = ħ kx, ky, kz  where c is the speed of light in vacuum 

and m is the particle’s mass. The resulting momentum-dependent Zeeman interaction 

−μ ⋅ BSO(k) ∝ σxky − σykx is known as the Rashba7 SO coupling. In combination with the 

Dresselhaus8coupling ∝ − σxky − σykx, these describe two-dimensional SO coupling in solids 

to first order.

In materials, the SO coupling strengths are generally intrinsic properties, which are largely 

determined by the specific material and the details of its growth, and are thus only 

slightly adjustable in the laboratory. We demonstrate SO coupling in an 87Rb Bose–Einstein 

condensate (BEC) where a pair of Raman lasers create a momentum-sensitive coupling 

between two internal atomic states. This SO coupling is equivalent to that of an electronic 

system with equal contributions of Rashba and Dresselhaus9 couplings, and with a uniform 

magnetic field B in the y − z plane, which is described by the single-particle Hamiltonian:

H = ħ2k2
2m 1 − B+BSO(k) ⋅ μ = ħ2k2

2m 1 + Ω
2 σz + δ

2σy + 2αkxσy

(1)

α parametrizes the SO-coupling strength; Ω = − gμBBz and δ = − gμBBy result from the 

Zeeman fields along z and y, respectively; and σx, y, z are the 2 × 2 Pauli matrices. Without 

SO coupling, electrons have group velocity, vx = ħkx/m independent of their spin. With SO 

coupling, their velocity becomes spin-dependent, vx = ħ kx ± 2αm/ħ2 /m for spin |  and 

|  electrons (quantized along y). In two recent experiments, this form of SO coupling 

was engineered in GaAs heterostructures where confinement into two-dimensional planes 

linearized the native cubic SO coupling of GaAs to produce a Dresselhaus term, and 

asymmetries in the confining potential gave rise to Rashba coupling. In one experiment 

a persistent spin helix was found6, and in another the SO coupling was only revealed by 

adding a Zeeman field10.

SO coupling for neutral atoms enables a range of exciting experiments, and importantly, it 

is essential in the realization of neutral atom topological insulators. Topological insulators 

are novel fermionic band insulators including integer quantum Hall states and now spin 

quantum Hall states that insulate in the bulk, but conduct in topologically protected 

quantized edge channels. The first-known topological insulators—integer quantum Hall 

states11—require large magnetic fields that explicitly break time-reversal symmetry. In 

a seminal paper3, Kane and Mele showed that in some cases SO coupling leads to zero-

magnetic-field topological insulators that preserve time-reversal symmetry. In the absence 

of the bulk conductance that plagues current materials, cold atoms can potentially realize 

such an insulator in its most pristine form, perhaps revealing its quantized edge (in two 

dimensions) or surface (in three dimensions) states. To go beyond the form of SO coupling 

we created, almost any SO coupling, including that needed for topological insulators, is 

possible with additional lasers12–14.

Lin et al. Page 2

Nature. Author manuscript; available in PMC 2024 October 21.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



To create SO coupling, we select two internal ‘spin’ states from within the 87Rb 5S1/2, 

F = 1 ground electronic manifold, and label them pseudo-spin-up and pseudo-spin-down 

in analogy with an electron’s two spin states: = |F = 1, mF = 0  and | = ∣ F = 1, 

mF = − 1 . A pair of λ = 804.1 nm Raman lasers, intersecting at θ = 90∘ and detuned by δ
from Raman resonance (Fig. 1a), couple these states with strength Ω; here ħkL = 2πħ/λ and 

EL = ħ2kL
2 /2m are the natural units of momentum and energy. In this configuration, the atomic 

Hamiltonian is given by equation (1), with kx replaced by a quasimomentum q and an overall 

EL energy offset. Ω and δ give rise to effective Zeeman fields along z and y, respectively. 

The SO-coupling term 2ELqσy/kL results from the laser geometry, and α = EL/kL is set by 

λ and θ, independent of Ω (see Methods). In contrast with the electronic case, the atomic 

Hamiltonian couples bare atomic states , κx = q + kL  and , κx = q − kL  with different 

velocities, ħκx/m = ħ q ± kL /m.

The spectrum, a new energy-quasimomentum dispersion of the SO-coupled Hamiltonian, 

is displayed in Fig. 1b at δ = 0 and for a range of couplings Ω. The dispersion is divided 

into upper and lower branches E±(q), and we focus on E−(q). For Ω < 4EL and small δ (see 

Fig. 2a), E−(q) consists of a double well in quasi-momentum15, where the group velocity 

∂E−(q)/ ∂ħq is zero. States near the two minima are dressed spin states, labelled as ′
and ′ . As Ω increases, the two dressed spin states merge into a single minimum and 

the simple picture of two dressed spins is inapplicable. Instead, that strong coupling limit 

effectively describes spinless bosons with a tunable dispersion relation16 with which we 

engineered synthetic electric17 and magnetic fields18 for neutral atoms.

In the absence of Raman coupling, atoms with spins |  and |  spatially mixed perfectly 

in a BEC. By increasing Ω we observed an abrupt quantum phase transition to a new 

state where the two dressed spins spatially separated, resulting from a modified effective 

interaction between the dressed spins.

We studied SO coupling in oblate 87Rb BECs with about 1.8 × 105 atoms in a λ = 1, 064‐nm
crossed dipole trap with frequencies fx, fy, fz ≈ (50, 50, 140) Hz. The bias magnetic field 

B0y generated a ωZ/2π ≈ 4.81 MHz Zeeman shift between |  and | . The Raman beams 

propagated along y ± x and had a constant frequency difference ΔωL/2π ≈ 4.81 MHz. The 

small detuning from the Raman resonance δ = ħ ΔωL − ωZ  was set by B0, and the state 

mF = +1  was decoupled owing to the quadratic Zeeman effect (see Methods).

We prepared BECs with an equal population of |  and |  at Ω, δ = 0, then we 

adiabatically increased Ω to a final value up to 7EL in 70 ms, and finally we allowed the 

system to equilibrate for a holding time th = 70 ms. We abruptly toff < 1 μs  turned off the 

Raman lasers and the dipole trap—thus projecting the dressed states onto their constituent 

bare spin and momentum states—and absorption-imaged them after a 30.1-ms time of 

flight (TOF). For Ω > 4EL (Fig. 1d), the BEC was located at the single minimum q0 of 

E−(q) with a single momentum component in each spin state corresponding to the pair 

, q0 + kL , , q0 − kL . However, for Ω < 4EL we observed two momentum components 

in each spin state, corresponding to the two minima of E−(q) at q  and q . The agreement 
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between the data (symbols), and the expected minima locations (curves), demonstrates the 

existence of the SO coupling associated with the Raman dressing. We kept δ ≈ 0 when 

turning on Ω by maintaining equal populations in bare spins | , |  (see Fig. 1d).

We experimentally studied the low-temperature phases of these interacting SO-coupled 

bosons as a function of Ω and δ. The zero-temperature mean-field phase diagram (Fig. 2a, 

b) includes phases composed of a single dressed spin state, a spatial mixture of both dressed 

spin states, and coexisting but spatially phase-separated dressed spins.

This phase diagram can largely be understood as the result of non-interacting bosons 

condensing into the lowest-energy single particle state, and can be divided into three regimes 

(Fig. 2a). In the region of positive detuning marked ′ , there are double minima at q = q , q
in E−(q) with E− q < E− q  and the bosons condense at q . In the region marked ′  the 

reverse holds. The energy difference between the two minima is Δ(Ω, δ) = E− q − E− q ≈ δ
for small δ (see Methods). In the third ‘single minimum’ regime, the atoms condense at the 

single minimum q0. These dressed spins act as free particles with group velocity ħKx/m (with 

an effective mass m∗ ≈ m, for small Ω), where Kx = q − q , , 0 for the different minima.

We investigated the phase diagram using BECs with initially equal spin populations 

prepared as described previously, but with δ ≠ 0 and th up to 3 s. We probed the atoms after 

abruptly removing the dipole trap, and then ramping Ω 0 in 1.5 ms. This approximately 

mapped ′  and ′  back to their undressed counterparts |  and |  (see Methods). 

We absorption-imaged the atoms after a 30-ms TOF, during the last 20 ms of which a 

Stern-Gerlach magnetic field gradient along y separated the spin components.

Figure 3a shows the condensate fraction f ′ = N ′/ N ′ + N ′  in ′  at Ω = 0.6EL as a 

function of δ, at th = 0.1 s, 1 s and 3 s, where N ′ and N ′ denote the number of condensed 

atoms in ′  and ′ , respectively. The BEC is all ′  for δ ≲ 0 and all ′  for δ ≳ 0, 

but both dressed spin populations substantially coexisted for detunings within ±wδ (obtained 

by fitting f ′ to the error function where δ = ± wδ corresponds to f ′ = 0.50 ± 0.16). Figure 3b 

shows wδ versus Ω for hold times th. wδ decreases with th; even by our longest th of 3 s it has 

not reached equilibrium.

Conventional F = 1 spinor BECs have been studied in 23Na and 87Rb without Raman 

coupling19–21. For our |  and |  states, the interaction energy depends on the local 

density in each spin state, and is described by:

HI = 1
2∫ d3r c0 + c2

2 ρ + ρ 2 + c2
2 ρ2 − ρ2 + c2 + c′ ρ ρ

where ρ  and ρ ; are density operators for |  and | , and normal ordering is implied. In 

the 87Rb F = 1 manifold, the spin-independent interaction is c0 = 7.79 × 10−12 Hz cm3, the 

spin-dependent interaction22 is c2 = − 3.61 × 10−14 Hz cm3, and c′ = 0. Because c0 ≫ c2 , 

the interaction is almost spin-independent, but c2 < 0, so the two-component mixture of 

|  and |  has a spatially mixed ground state (is miscible). When HI is re-expressed in 
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terms of the dressed spin states, c′ ≈ c0Ω2/ 8EL
2  is non-zero and corresponds to an effective 

interaction between ′  and ′ . This modifies the ground state of our SO-coupled BEC 

(mixtures of ′  and ′ ) from phase-mixed to phase-separated above a critical Raman 

coupling strength Ωc. This transition lies outside the common single-mode approximation20.

The effective interaction between ′  and ′  is an exchange energy resulting from 

the non-orthogonal spin part of ′  and ′  (see Methods): a spatial mixture produces 

total density modulations15 with wavevector 2kL, in analogy with the spin-textures of the 

electronic case6. These increase the state-independent interaction energy in HI wherever the 

two dressed spins spatially overlap, contributing to the c′ ; term. (Such a term does not 

appear for radio-frequency-dressed states, which are always spin-orthogonal.) Because c′ ; 

and c2 have opposite sign here, the dressed BEC can go from miscible to immiscible at the 

miscibility threshold19 for a two-component BEC c0 + c2 + c′ /2 = c0 c0 + c2 , when Ω = Ωc

(this result is in agreement with an independent theory presented in ref. 23).

Figure 2b depicts the mean field phase diagram including interactions, computed by 

minimizing the interaction energy HI plus the single particle detuning Δ(Ω, δ) ≈ δ. This 

phase diagram adds two new phases, mixed (hashed) and phase-separated (bold line), to 

those present in the non-interacting case. The c2 ρ2 − ρ2 /2 term in HI implies that the energy 

difference between a |  BEC and a |  BEC is proportional to N2c2. The detuning 

required to compensate for this difference slightly displaces the symmetry point of the 

phase diagram downwards. As evidenced by the width of the metastable window 2wδ in 

Fig. 2b, for |δ | < wδ the spin-population does not have time to relax to equilibrium. The 

miscibility condition does not depend on atom number, so the phase line in Fig. 2c shows 

the system’s phases for |δ | < wδ: phase-mixed for Ω < Ωc and phase-separated for Ω > Ωc

where Ωc ≈ −8c2/c0EL ≈ 0.19EL.

We measured the miscibility of the dressed spin components from their spatial profiles 

after TOF, for Ω = 0 to 2EL and δ ≈ 0 such that NT ′ ≈ NT ′, where NT ′ , ′  is the total atom 

number including both the condensed and thermal components in ′ , ′ . For each TOF 

image, we numerically re-centred the Stern-Gerlach-separated spin distributions (Fig. 2c, 

and see Methods), giving condensate densities n ′(x, y) and n ′(x, y). Given that the self-similar 

expansion of BECs released from harmonic traps essentially magnifies the in situ spatial 

spin distribution, these reflect the in situ densities24.

A dimensionless metric s = 1 − n ′n ′ / n ′
2 n ′

2
1
2  quantifies the degree of phase separation 

(where …  is the spatial average over a single image). s = 0 for any perfect mixture 

n ′(x, y) ∝ n ′(x, y), and s = 1 for complete phase separation. Figure 4 displays s versus Raman 

coupling Ω with a hold time th = 3 s, showing that s ≈ 0 for small Ω (as expected given our 

miscible bare spins) and s abruptly increases above a critical Ωc. The inset to Fig. 4 plots s
as a function of time, showing that s reaches steady state in 0.14(3) s, which is much less 

than th. To obtain Ωc, we fitted the data in Fig. 4 to a slowly increasing function below Ωc

and the power-law 1 − Ω/Ωc
−a above Ωc. The resulting Ωc = 0.20(2)EL is in agreement with 
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the mean field prediction Ωc = 0.19EL. This demonstrates a quantum phase transition for a 

two-component SO-coupled BEC, from miscible when Ω < Ωc to immiscible when Ω > Ωc.

Even below Ωc, s slowly increased with increasing Ω. To understand this effect, we 

numerically solved the two-dimensional spinor Gross-Pitaevskii equation in the presence 

of a trapping potential. This demonstrated that the differential interaction term c2 ρ2 − ρ2 /2
in HI favours slightly different density profiles for each spin component, while the 

c2 + c′ ρ ρ  term favours matched profiles. Thus, as c2 + c′  approached zero from below 

this balancing effect decreased, causing s to increase.

An infinite system should fully phase separate (s = 1) for all Ω > Ωc. In our finite 

system, the boundary between the phase-separated spins, set by the spin-healing length 

ξs = ħ2/2m c2 + c′ n, where n is the local density), can be comparable to the system size. 

We interpret the increase of s above Ωc as resulting from the decrease of ξs with increasing Ω.

We realized SO coupling in an 87Rb BEC, and observed a quantum phase transition from 

spatially mixed to spatially separated. By operating at lower magnetic field (with a smaller 

quadratic Zeeman shift), our method extends to the full F = 1 or F = 2 manifold of 87Rb 

or 23Na, enabling a new kind of tuning for spinor BECs, without the losses associated 

with Feshbach tuning25. Such modifications may allow access to the expected non-abelian 

vortices in some F = 2 condensates26. Because our SO coupling is in the small Ω limit, 

this technique is practical for fermionic 40K, with its smaller fine-structure splitting and 

thus larger spontaneous emission rate27. When the Fermi energy lies in the gap between 

the lower and upper bands (for example, Fig. 1b) there will be a single Fermi surface; this 

situation can induce p-wave coupling between fermions28 and more recent work anticipates 

the appearance of Majorana fermions29.

METHODS SUMMARY

System preparation.

Our experiments began with nearly pure 87Rb BECs of approximately 1.8 × 105 atoms in 

the F = 1, mF = −1  state30 confined in a crossed optical dipole trap. The trap consisted of 

a pair of l,064-nm laser beams propagating along x − y 1/e2 radii of wx + y ≈ 120 μm and 

wz ≈ 50 μm) and −x − y (1/e2 radii of wx − y ≈ wz ≈ 65μm).

We prepared equal mixtures of F = 1, mF = −1  and |1, 0  using an initially off-resonant 

radio-frequency magnetic field Brf(t)x. We adiabatically ramped δ ≈ 0 to in l5ms, decreased 

the radio-frequency coupling strength Ωrf to about 150 Hz, which is much less than ħωq, 

in 6 ms, and suddenly turned off Ωrf, projecting the BEC into an equal superposition of 

mF = − 1  and mF = 0 . We subsequently ramped δ to its desired value in 6 ms and then 

linearly increased the intensity of the Raman lasers from zero to the final coupling Ω in 70 

ms.
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Magnetic fields.

Three pairs of Helmholtz coils, orthogonally aligned along x + y, x − y and z, provided 

bias fields (Bx + y, Bx − y, and Bz). By monitoring the ∣ F = 1, mF = − 1  and |1, 0  populations 

in a nominally resonant radio-frequency dressed state, prepared as above, we observed a 

short-time (less than about 10 min) root-mean-square field stability gμBBRMS/ℎ ≲ 80 Hz. The 

field drifted slowly on longer timescales (but changed abruptly when unwary colleagues 

entered through our laboratory’s ferromagnetic doors). We compensated for the drift by 

tracking the radio-frequency and Raman resonance conditions.

The small energy scales involved in the experiment meant that it was crucial to minimize 

magnetic field gradients. We detected stray gradients by monitoring the spatial distribution 

of mF = − 1 − mF = 0  spin mixtures after TOF. Small magnetic field gradients caused 

this otherwise miscible mixture to phase-separate along the direction of the gradient. We 

cancelled the gradients in the x − y plane with two pairs of anti-Helmholtz coils, aligned 

along x + y and x − y, to gμBB′/ℎ ≲ 0.7 Hz μm−1.

METHODS

System preparation.

Our experiments began with nearly pure 87Rb BECs of approximately 1.8 × 105 atoms in 

the F = 1, mF = −1  state30 confined in a crossed optical dipole trap. The trap consisted of 

a pair of 1,064-nm laser beams propagating along x − y (1/e2 radii of wx + y ≈ 120 μm and 

wz ≈ 50 μm) and −x − y (1/e2 radii of wx − y ≈ wz ≈ 65 μm).

We prepared equal mixtures of F = 1, mF = −1  and |1, 0  using an initially off-resonant 

radio-frequency magnetic field Brf(t)x. We adiabatically ramped δ to δ ≈ 0 in 15 ms, 

decreased the radio-frequency coupling strength Ωrf to about 150 Hz, which is much less 

than ħωq, in 6 ms, and suddenly turned off Ωrf projecting the BEC into an equal superposition 

of mF = − 1  and mF = 0 . We subsequently ramped δ to its desired value in 6 ms and then 

linearly increased the intensity of the Raman lasers from zero to the final coupling Ω in 70 

ms.

Magnetic fields.

Three pairs of Helmholtz coils, orthogonally aligned along x + y, x − y and z, provided 

bias fields (Bx + y, Bx − y, and Bz). By monitoring the ∣ F = 1, mF = − 1  and |1, 0  populations 

in a nominally resonant radio-frequency dressed state, prepared as above, we observed a 

short-time (less than about 10 min) root-mean-square field stability gμBBRMS/ℎ ≲ 80 Hz. The 

field drifted slowly on longer timescales (but changed abruptly when unwary colleagues 

entered through our laboratory’s ferromagnetic doors). We compensated for the drift by 

tracking the radio-frequency and Raman resonance conditions.

The small energy scales involved in the experiment meant that it was crucial to minimize 

magnetic field gradients. We detected stray gradients by monitoring the spatial distribution 

of mF = − 1 − mF = 0  spin mixtures after TOF. Small magnetic field gradients caused 
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this otherwise miscible mixture to phase-separate along the direction of the gradient. We 

cancelled the gradients in the x − y plane with two pairs of anti-Helmholtz coils, aligned 

along x + y and x − y, to gμBB′/ℎ ≲ 0.7 Hz′μm−1.

SO-coupled Hamiltonian.

Our system30 consisted of a F = 1 BEC with a bias magnetic field along y at the intersection 

of two Raman laser beams propagating along x + y and −x + y with angular frequencies ωL

and ωL + ΔωL, respectively. The rank-1 tensor light shift of these beams produced an effective 

Zeeman magnetic field along the z direction with Hamiltonian HR = ΩRσ3, zcos 2kLx + ΔωLt , 

where σ3, x, y, z are the 3 × 3 Pauli matrices and we define I3 as the 3 × 3 identity matrix. If 

we take y as the natural quantization axis (by expressing the Pauli matrices in a rotated 

basis σ3, y σ3, z, σ3, x σ3, y and σ3, z σ3, x) and make the rotating wave approximation, the 

Hamiltonian for spin states mF = + 1 , |0 , | − 1  in the frame rotating at ΔωL is:

H3 = ħ2k2
2m 13 +

3δ/2 + ħωq 0 0
0 δ/2 0
0 0 −δ/2

+

ΩR
2 σ3, xcos 2kLx − ΩR

2 σ3, ysin 2kLx

(2)

As we justify below, mF = + 1  can be neglected for large enough ħωq, which gives the 

effective two-level Hamiltonian:

H2 = ħ2k2
2m 1 + δ

2σz + Ω
2 σxcos 2kLx − Ω

2 σysin 2kLx

for the pseudo-spins | = mF = 0  and | = | − 1  where Ω = ΩR/ 2. After a local pseudo-

spin rotation by θ(x) = 2kLx about the pseudo-spin z axis followed by a global pseudo-spin 

rotation σz σy, σy σx and, σx σz the 2 × 2 Hamiltonian takes the SO-coupled form:

H2 = ħ2k2
2m 1 + Ω

2 σz + δ
2σy + 2ħ2kLkx

2m σy + EL 1

The SO term linear in kx results from the non-commutation of the spatially dependent 

rotation about the pseudo-spin z axis and the kinetic energy.

Effective two-level system.

For atoms in mF = − 1  and mF = 0  with velocities ħκx/m ≈ 0 and Raman-coupled near 

resonance, δ ≈ 0, the mF = + 1  state is detuned from resonance owing to the ħωq = 3.8EL

quadratic Zeeman shift. For δ/4EL ≪ 1 and Ω < 4EL, we have Δ(Ω, δ) ≈ δ 1 − Ω/4EL
2 1/2

.
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Effect of the neglected state.

In our experiment, we focused on the two-level system formed by the mF = − 1  and mF = 0
states. We verified the validity of this assumption by adiabatically eliminating the mF = + 1
state from the full three-level problem. To second-order in Ω, this procedure modifies the 

detuning δ and SO-coupling strength α in equation (1) by:

δ(2) = Ω
2

2 1
4EL + ħωq

≈ 1
32

Ω2
EL

α(2) = Ω
2

2 α
4EL + ħωq

2 ≈ α
256

Ω
EL

2

In these expressions, we have retained only the largest term in a 1/ωq expansion. In our 

experiment, where ħωq = 3.8EL, δ is substantially changed at our largest coupling Ω = 7EL. To 

maintain the desired detuning δ in the simple two-level model (that is, Δ ≈ δ + δ(2) = 0 in Fig. 

1c), we changed gμBB0 by as much as 3EL to compensate for δ(2). We did not correct for the 

change to α, which was always small.

Although both terms are small at the Ω = 0.2EL transition from miscible to immiscible, slow 

drifts in B0 prompted us to locate Δ = 0 empirically from the equal-population condition, 

NT ′ = NT ′. As a result, δ in equation (1) implicitly includes the perturbative correction δ(2).

Origin of the effective interaction term.

The additional c′  term in the interaction Hamiltonian for dressed spins directly results from 

transforming into the basis of dressed spins, which are:

′ , Kx ≈ , κx = Kx + q + kL − ε , κx = Kx + q −kL

and

′ , Kx ≈ , κx = Kx + q − kL − ε , κx = Kx + q + kL

(3)

where ħKx/m is the group velocity, Kx = q − q  for ′  and Kx = q − q  for ′ , and 

ε = Ω/8EL ≪ 1. Thus, in second quantized notation, the dressed field operators transform 

according to:

ψ (r) = ψ ′(r) + ε e2ikLxψ ′(r)

and
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ψ (r) = ψ ′(r) + ε e−2ikLxψ ′(r)

where q ≈ − 1 − 4ε2kL ≈ − kL and q ≈ 1 − 4ε2kL ≈ kL. Inserting the transformed operators 

into:

HI = 1
2∫ d3r c0 + c2

2 ρ + ρ 2 + c2
2 ρ2 − ρ2 + c2ρ ρ

gives the interaction Hamiltonian (with normal ordering implied) for dressed spins which 

can be understood order-by-order (both c2/c0 and ε are treated as small parameters). In this 

analysis, the terms proportional to c2 are unchanged to the order of c2/c0, and we only need 

to evaluate the transformation of the spin-independent term (proportional to c0). At O(ε) and 

O ε3  all the terms in the expansion include the high-spatial-frequency prefactors e±2ikLx or 

e±4ikLx. For density distributions that vary slowly on the λ/2 length scale these average to 

zero. The O ε2  term, however, has terms without these modulations, and is:

HI
ε2

= 1
2∫ d3r 8c0ε2ψ ′

† ψ ′
† ψ ′ψ ′

giving rise to c′ = c0Ω2/ 8EL
2 .

Mean field phase diagram.

We compute the mean-field phase diagram for a ground-state BEC composed of a mixture 

of dressed spins in an infinite homogeneous system. This applies to our atoms in a harmonic 

trap in the limit of R ≫ ξs, where R is the system size, ξs = ħ2/2m c2 + c′ n is the spin 

healing length and n is the density. We first minimize the interaction energy HI at fixed 

N ′ , , with an effective interaction c′  as a function of Ω. The two dressed spins are 

either phase-mixed, both fully occupying the system’s volume V , or phase-separated with 

a fixed total volume constraint V = V ′ + V ′. For the phase-separated case, minimizing the 

free energy gives the volumes V ′ and V ′, determined by N ′ , ′  and V . The interaction 

energy of a phase-mixed state is smaller than that of a phase-separated state for the 

miscibility condition c0 + c2 + c′ /2 < c0 c0 + c2 , corresponding to Ω < Ωc. This condition 

is independent of N ′ , ′ : for any N ′ , ′  the system is miscible at Ω < Ωc. Then, at a given 

Ω, we minimize the sum of the interaction energy and the single-particle energy from the 

Raman detuning, N ′ − N ′ δ/2, allowing N ′ , ′  to vary. For the miscible case Ω < Ωc , 

the BEC is a mixture with fraction N ′/ N ′ + N ′ ∈ (0, 1) only in the range of detuning 

δ ∈ δ0 − W δ, δ0 + W δ , where δ0 = c2n/2, W δ = δ0 1 − Ω/Ωc
1/2 and n = N ′ + N ′ /V . For the 

immiscible case Ω > Ωc , W δ = c2/8c0 c2n is negligibly small compared to c2n.

Figure 2b shows the mean field phase diagram as a function of (Ω, δ), where 

δ/EL is displayed with a quasi-logarithmic scaling, using the sign function 
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(δ/EL log10 δ/EL + δmin/EL − log10 δmin/EL , in order to display δ within the range of 

interest. This scaling function smoothly evolves from logarithmic, that is, approximately 

sgn δ/EL log10 δ/EL  for |δ | ≫ δmin, to linear, that is, approximately δ for |δ | ≪ δmin, where 

δmin/EL = 0.001EL = 1.5 Hz.

In our measurement of the dressed spin fraction f ′ (see Fig. 3a), δ = 0 is determined from 

the NT ′ = NT ′ condition. We identify this condition as δ = δ0 and apply it for all hold times th. 

Because δ0 ≈ 3 Hz is below our approximately 80-Hz root-mean-square field noise, we are 

unable to distinguish δ0 from 0.

Recombining TOF images of dressed spins.

To probe the dressed spin states (equation (3)), each of which is a spin and momentum 

superposition, we adiabatically mapped them into bare spins, , κx = q + kL  and 

, κx = q − kL , respectively. Then, in each image outside an ∼ 90 − μm radius disk 

containing the condensate for each spin distribution, we fitted nT ′ , T ′ (x, y) to a gaussian 

modelling the thermal background and subtracted that fit from nT ′ , T ′ (x, y) to obtain the 

condensate two-dimensional density n ′ , ′ (x, y). Thus, for each dressed spin we readily 

obtained the temperature, total number NT ′ , T ′ , and condensate densities n ′ , ′ (x, y).

To analyse the miscibility from the TOF images where a Stern-Gerlach gradient separated 

individual spin states, we re-centred the distributions to obtain n ′(x, y) and n ′(x, y). This took 

into account the displacement due to the Stern-Gerlach gradient and the non-zero velocities 

ħκx/m of each spin state (after the adiabatic mapping). The two origins were determined in 

the following way: we loaded the dressed states at a desired coupling Ω but with detuning 

δ chosen to put all atoms in either ′  or ′ . Because q , = ∓ 1 − Ω2/32EL
2 kL (see Fig. 

1c), these velocities ħκx/m = ħ q + kL /m, ħ q − kL /m depend slightly on Ω, and our technique 

to determine the origin of the distributions accounts for this effect.

Calibration of Raman coupling.

Both Raman lasers were derived from the same Ti:sapphire laser at λ ≈ 804.1 nm, and were 

offset from each other by a pair of acousto-optic modulators driven by two phase-locked 

frequency synthesizers near 80 MHz. We calibrated the Raman coupling strength Ω by 

fitting the three-level Rabi oscillations between the mF = − 1, 0 and +1 states driven by the 

Raman coupling to the expected behaviour.
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Figure 1 |. Scheme for creating SO coupling.
a, Level diagram. Two λ ≈ 804.1 nm lasers (thick lines) coupled states F = 1, mF = 0 = |
and F = 1, mF = − 1 = | , differing in energy by a ħωZ Zeeman shift. The lasers, with 

frequency difference ΔωL/2π = ωZ + δ/ħ /2π, were detuned δ from the Raman resonance. 

mF = 0  and mF = +1  had a ħ ωZ − ωq  energy difference; because ħωq = 3.8EL is large, 

mF = +1  can be neglected. b, Computed dispersion. Eigenenergies at δ = 0 for Ω = 0 (grey) 

to 5EL. When Ω < 4EL the two minima correspond to the dressed spin states ′  and ′ . 

c, Measured minima. Quasimomentum q ,  of ′ , ′  versus Ω at δ = 0, corresponding to 

the minima of E−(q). Each point is averaged over about ten experiments; the uncertainties are 

their standard deviation. d, Spin-momentum decomposition. Data for sudden laser turn-off: 

δ ≈ 0, Ω = 2EL (top image pair), and Ω = 6EL (bottom image pair). For Ω = 2EL, ′  consists 

of , κx ≈ 0  and , κx ≈ − 2kL , and ′  consists of | , κx ≈ 2kL  and , κx ≈ 0 .
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Figure 2 |. Phases of a SO-coupled BEC.
a, b, Mean field phase diagrams for infinite homogeneous SO-coupled 87Rb BECs (1.5-kHz 

chemical potential). The background colours indicate atom fraction in |  and | . Between 

the dashed lines there are two dressed spin states, ′  and ′ . a, Single-particle phase 

diagram in the Ω − δ plane. b, Phase diagram (enlargement of the grey rectangle in a), as 

modified by interactions. The dots represent a metastable region where the fraction of atoms 

f ′ , ′  remains largely unchanged for th = 3 s. c, Miscible-to-immiscible transition. Phase line 

for mixtures of dressed spins and images after TOF (with populations N ≈ N , mapped 
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from ′  and ′  showing the transition from phase-mixed to phase-separated within the 

‘metastable window’ of detuning.
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Figure 3 |. Population relaxation.
a, Condensate fraction f ′ in ′  at Ω = 0.6EI versus detuning δ at th = 0.1, 0.5 and 3 s 

showing wδ decrease with increasing th. The solid curves are fits to the error function from 

which we obtained the width wδ. b, Metastable detuning width. Width wδ versus Ω at th = 0.1, 

0.5 and 3 s; the data fits well to a b + Ω/EL
−2  (dashed curves).

Lin et al. Page 17

Nature. Author manuscript; available in PMC 2024 October 21.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 4 |. Miscible to immiscible phase transition.
Phase separation s versus Ω with th = 3 s; the solid curve is a fit to the function described 

in the text. The power-law component of the fit has an exponent a = 0.75 ± 0.07; this is not 

a critical exponent, but instead results from the decreasing size of the domain wall between 

the regions of ′  and ′  as Ω increases. Each point represents an average over 15 to 50 

realizations and the uncertainties are the standard deviation. Inset, phase separation s versus 

th with Ω = 0.6EL fitted to an exponential showing the rapid 0.14(3)-s timescale for phase 

separation.
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