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Abstract

Background

Pulmonary Tuberculosis (PTB) is a significant global health issue due to its high incidence,

drug resistance, contagious nature, and impact on people with compromised immune sys-

tems. As mentioned by the World Health Organization (WHO), TB is responsible for more

global fatalities than any other infectious illness. On the other side, WHO also claims that

noncommunicable diseases (NCDs) kill 41 million people yearly worldwide. In this regard,

several studies suggest that PTB and NCDs are linked in various ways and that people with

PTB are more likely to acquire NCDs. At the same time, NCDs can increase susceptibility to

active TB infection. Furthermore, because of potential drug interactions and therapeutic

challenges, treating individuals with both PTB and NCDs can be difficult. This study focuses

on seven NCDs (lung cancer (LC), diabetes mellitus (DM), Parkinson’s disease (PD), silico-

sis (SI), chronic kidney disease (CKD), cardiovascular disease (CVD), and rheumatoid

arthritis (RA)) and rigorously presents the genetic relationship with PTB regarding shared

genes and outlines possible treatment plans.

Objectives

BlueThis study aims to identify the drug components that can regulate abnormal gene

expression in NCDs. The study will reveal hub genes, potential biomarkers, and drug com-

ponents associated with hub genes through statistical measures. This will contribute to tar-

geted therapeutic interventions.

Methods

Numerous investigations, including protein-protein interaction (PPI), gene regulatory net-

work (GRN), enrichment analysis, physical interaction, and protein-chemical interaction,
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have been carried out to demonstrate the genetic correlation between PTB and NCDs. Dur-

ing the study, nine shared genes such as TNF, IL10, NLRP3, IL18, IFNG, HMGB1, CXCL8,

IL17A, and NFKB1 were discovered between TB and the above-mentioned NCDs, and five

hub genes (NFKB1, TNF, CXCL8, NLRP3, and IL10) were selected based on degree

values.

Results and conclusion

In this study, we found that all of the hub genes are linked with the 10 drug components, and

it was observed that aspirin CTD 00005447 was mostly associated with all the other hub

genes. This bio-informatics study may help researchers better understand the cause of PTB

and its relationship with NCDs, and eventually, this can lead to exploring effective treatment

plans.

Introduction

PTB is a contagious infection caused by the bacillus Mycobacterium Tuberculosis. More than

a million people die each year from TB, where smoking, alcohol use, and diabetes all enhance

the risk of TB by developing immunodeficiency [1]. Now, it has become the 13th major cause

of mortality worldwide and the second largest infectious killer [2]. According to the WHO, 10

million individuals got TB in 2017, and 1.6 million died from it, including 0.3 million HIV-

positive persons. Even today, TB is responsible for more deaths than any other infectious dis-

ease [3]. These global figures also impacted Bangladesh, where 3.6% of its population, which is

roughly 10.0 million people, were afflicted with TB in 2019 [4]. Furthermore, one-quarter of

all TB cases globally were also caused by malnutrition [5]. On the other side, TB may weaken

the immune system, leaving a person more vulnerable to non-communicable diseases (e.g.,

diabetes, cardiovascular diseases, cancer, chronic respiratory diseases, and so on), which have

the highest global death and morbidity rates. In addition, patients with TB are also prone to

have mental health issues [6, 7].

Noncommunicable diseases (NCDs), frequently characterized as chronic illnesses, persist

over extended periods due to various contributing factors, including genetic, physiological,

environmental, and behavioural influences. The primary categories of NCDs encompass car-

diovascular diseases (e.g., heart attacks and strokes), cancers, chronic respiratory conditions

(notably asthma and chronic obstructive pulmonary disease), and diabetes. A notable aspect of

the global impact of NCDs is their disproportionate prevalence in low- and middle-income

nations, where they account for over three-quarters of NCD-related deaths globally, translating

to approximately 31.4 million fatalities. This statistic underscores the need for focused health

strategies in these regions to address the growing NCD burden [8]. Furthermore, NCDs are

lifestyle illnesses that have become more prevalent as a result of globalization and economic

expansion. According to WHO, lifestyle diseases are the primary cause of death and disability,

as well as the most significant barrier to global development [9–13]. The government and

other groups are working together to provide low-cost solutions to minimize common modifi-

able risk factors where lifestyle adjustments may help to avoid these diseases [14].

Among the NCDs, Cancer is one of the top reasons for mortality across the world, account-

ing for 15 million new cancer diagnoses and 8.2 million deaths per year. Lung cancer (LC)

ranks as the most prevalent malignancy in both men and women, and at least 1.8 million
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individuals die from lung cancer every year [15, 16]. However, the Fragile Histidine Triad

(FHIT) gene mutation is also linked to lung cancer in patients with PTB [17]. Silicosis (SL) is

another risk factor for TB. It is a kind of pneumonitis that affects the lungs due to large

amounts of silica dust being breathed in. Researchers suggest that PTB is more likely to affect

SL patients than individuals who do not have the condition. However, silica has been linked to

Rheumatoid Arthritis (RA) and Chronic Kidney Disease (CKD) [18, 19]. Chronic kidney dis-

ease develops when a disease or condition compromises kidney function, causing kidney dam-

age to worsen over time. CKD was the 11th leading cause of mortality globally in 2016,

estimated at 11–13%, and became a significant health problem. Patients with CKD lose their

renal function, and then the symptoms appear [20]. According to the xNational Institute for

Excellence in Health and Care, people with CKD at any stage have a 10 to 25% chance of hav-

ing active TB. CKD affects up to 16% of the global population, and at least 2% of them require

dialysis, which also increases the risk of TB compared to patients who do not require it [21,

22]. Alongside CKD, Rheumatoid arthritis (RA) is a chronic autoimmune condition where the

immune system mistakenly attacks healthy cells, leading to painful inflammation in affected

areas. Primarily affects the joints, generally attacking many joints at once, and joints are often

destroyed, and ligaments and tendons get weaker [23]. RA becomes more common with age,

and women have a more considerable risk than males. RA causes joint discomfort, swelling,

stiffness, cartilage, and bone degeneration that can impair joint function. Beyond the joints,

other organs such as blood vessels, kidneys, heart, lungs, and liver may be affected [24]. RA

patients have an elevated chance of contracting life-threatening infections, cancer, and cardio-

vascular disease [25, 26]. Apart from these, Parkinson’s disease (PD) is a neurodegenerative

condition characterized by spontaneous or uncontrolled movements, including tremors, rigid-

ity, and issues with balance and coordination. These symptoms generally develop slowly and

worsen as the disease progresses. As PD advances, individuals often face increasing challenges

in walking and communication, indicative of the disease’s progressing impact on both motor

and non-motor abilities [27]. The symptoms of PD develop over time but may not be notice-

able until the disease has progressed significantly [28]. However, patients with TB had a

1.38-fold increased risk of PD. In the TB cohort, the likelihood of Parkinson’s disease declined

over time. When treating patients with TB, physicians should be mindful of the possibility of

Parkinson’s disease [29]. Cardiovascular diseases (CVDs) represent a significant global health

challenge, being responsible for an estimated 17.9 million deaths annually. This category

encompasses a range of disorders affecting the heart and blood vessels, including coronary

heart disease, cerebrovascular disease, and rheumatic heart disease, among others [30].TB may

indicate immune dysregulation, predisposing individuals to CVD. The potential link between

TB and CVD lies in TB’s sustained immune activation characteristic. Tuberculosis-related

immune activation and cross-reactivity of antibodies targeting mycobacterial HSP65 with self-

antigens in blood vessels may contribute to CVD [31]. Comorbidities like obesity, abnormal

lipid profiles, and insulin resistance are often linked to CVD, and hyperlipidemia, diabetes,

hypertension, and smoking are linked to CKD [32, 33]. Besides, Diabetes mellitus (DM), a

global epidemic that reveals itself when glucose levels in the blood rise too high and kidney

function declines, is caused by a failure to create or properly utilize insulin. It was calculated

that the disease directly caused 1.5 million deaths in 2019. This disease’s incidence is rising

rapidly in low and middle-income economies [34]. TB and NCDs can not only coexist but also

amplify the risk of one another. TB can compromise immune surveillance, heightening vulner-

ability to NCDs, which collectively account for two-thirds of global mortality [35]. Because

Some NCDs are not curable, and early detection can save lives. LC can be cured if treatment

starts at the early stages. However, PD, CKD, RA, DM, and SL are not curable diseases. CVD

can be cured, but long-term treatment is needed [23, 36–41].
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We aimed to examine the genetic relationship between PTB and seven NCDs (lung cancer,

diabetes mellitus, Parkinson’s disease, silicosis, chronic kidney disease, cardiovascular disease,

and rheumatoid arthritis). Here, a total of nine common genes were discovered. The main key

findings of this study are:

• To examine the genetic relationship among seven non-communicable diseases such as LC,

DM, PD, SL, CKD, CVD, and RA with PTB.

• To search for drugs that could modify the abnormal gene expression in PTB with non-com-

municable diseases.

• To analyze the detailed genetic data and reveal hub genes that interact with other genes and

chemicals that alter gene networks.

• To discover drug components concerning 5 hub genes based on P-value and adjusted P-

value.

• Validate hub genes through RNA-sqn data, where p-value, adjusted p-value < 0.05 and

log2FoldChange� 0.5

Related work & motivation

In past years, observational evidence of a link between cancer and PTB has developed [42]. A

study identifies miRNA expression patterns in serum in Egyptian people with LC, TB, and

pneumonia. miR-197 and miR-182 levels were high in LC and TB patients, and miR-21, miR-

197, and miR-155 levels were high in LC, TB, and pneumonia patients [43]. In patients with

CKD, the risk of TB increases in CKD stage 3, and CKD stage 5 is higher than in the number

of dialysis patients [44]. In older patients, renal impairment is a common side effect of anti-TB

medication [45]. A higher cancer risk at ten different sites has been linked to TB. Low-resource

countries disproportionately bear the cancer burden linked to TB [46]. Another study

extracted 13 common genes (IL6, TLR4, TNF, CRP, CCL2, IL10, IL1B, TGFB1, ADIPOQ,

ACE, VEGFA, IL1RN, HIF1A) among TB, cirrhosis, chronic obstructive pulmonary disease,

diabetes mellitus, obesity, ischemic heart disease, ischemic stroke from gene regulatory net-

work, genetic PPI, enrichment analysis, co-expression, and physical interaction. Four signifi-

cant genes (TNF, IL6, IL10, and IL1B) were used to explore drug design and treatment from

protein disease interaction and protein chemical interaction network [47]. From a systematic

review, people with hematologic, head and neck, or lung cancer in the US had a 9-fold higher

chance of getting active TB. However, most investigations failed to quantify how long they fol-

lowed up with participants and could not estimate annual TB case risk after a cancer diagnosis

or risk [48]. A study showed that 2.79% of people with LC had previously had TB. These indi-

viduals had a higher risk of dying within three years of being diagnosed with LC than those

without a TB history. However, this study used a claimed database and lacked genetic data for

pulmonary function, laboratory, and lung cancer, but this research didn’t provide information

about how long they followed patients after their cancer diagnosis [49]. In a study, 11 common

genes- TNF, IL6, ICAM1, TGFB1, BDNF, AGT, ADIPOQ, CRP, PON1, SOD1, and IL8 were

found in 4 diseases (diabetes, kidney disease, stroke, and anxiety). Protein-protein interaction

and regulatory interaction networks of the 11 common genes were analyzed. Among the 11

genes, seven significant genes (TGFB1, TNF, PON1, CRP, ICAM1, CXCL8, and AGT) were

used for the gene co-expression network and physical interaction pathway [50]. In another ret-

rospective study, patients with RA are more likely to get TB, which could result from anti-TNF
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treatments, but very few TB patients constituted a serious constraint that contributed signifi-

cantly to the possibility of bias [51]. A study finds growing evidence that individuals with—

NCDs represent a high-risk group for developing active TB [52]. The current quantitative

analysis showed that infection might increase the chance of getting PD, and the significance of

the relationship differed based on the particular pathogens. Still, the number of qualified stud-

ies was small, and there are different kinds of infections [53]. The association between type 2

diabetes and PD has become clear, but the underlying molecular pathways are still unknown

[54]. CVD is the alarming rise of DM and its significant consequences [55]. CVD and PD

share biological processes, including inflammation, insulin resistance, oxidative stress, and

lipid metabolism [56].

Lifestyle, environmental factors, behaviors, and dietary intake can cause non-communica-

ble diseases. In this regard, a study designed a cross-sectional methodology to determine the

NCDs risk factor during the treatment of PTB, but the study may have a desirability bias [57].

It might be challenging to determine whether or not the diseases are connected because it is

difficult to make a straight cause-and-effect inference. After all, the scenario could have had

different results at different times. Some longitudinal studies analyzed limited health centers

and included little information about patients. Many studies have explored the prevalence of

NCDs with high PTB incidents, but the association remains unclear. Besides, the impact of

PTB on NCDs is not mentioned [58, 59]. Epidemiological data is insufficient to identify the

relationship between NCDs and PTB. Some studies included a smaller and narrow dataset

wherein the essential risk factors associated with PTB, such as smoking, diabetes, and socio-

economic status, were not taken into consideration [60]. However, the characteristics of PTB

may vary in different regions. In this study, we uncovered most of the NCDs as the existing

studies have failed to adequately report all of them.

Methodology

This study has four phases: i) Gene collection, ii) Identification of Hub genes, iii) Analysis of

the genes, and iv) Identification of drug candidates. The utilized tools and databases are also

described in Table 1.

Phase—I: Gene collection

The NCBI is an integral component of the National Library of Medicine under the National

Institutes of Health purview. Its primary mission is the development of comprehensive molec-

ular biology information systems. This database holds 32928347 records of genome informa-

tion [69]. This study collects the human genes of PTB and the NCDs (LC, DM, PD, SL, CKD,

CVD, and RA) to explore the genetic relationship and discover potential drug candidates.

Also, RNA-seq datasets were used to validate the hub genes.

Phase—II: Identification of hub gene

Hub genes play an important role in drug discovery because they are prominent within biolog-

ical networks. Understanding and targeting hub genes can provide important insights into the

molecular mechanisms behind illnesses, allowing for the creation of targeted therapeutics and

medications. Hub genes are also essential in network pharmacology because they allow for a

complete knowledge of drug effects in the context of complicated biological relationships.

Our study first established a generic PPI network to identify the hub genes among PTB and

NCDs. Here, generic and tissue-specific PPI (whole blood tissue) has been used to analyze pro-

tein-protein interaction networks. These two analyses were carried out with the help of Net-

workAnalyst, where the STRING Interactome database performed genetic PPI with a
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900-confidence score cutoff. Here, STRING confidence scores indicate the likelihood of find-

ing related proteins in the same pathway. The DifferentialNet database, which offers distinct

interactomes for over 29 human tissues, was used to examine the tissue-specific PPI. It reveals

tissue-specific protein functions, processes, and phenotypes. In tissue-specific PPI, whole

blood cells have been counted with filter 15.0. In this regard, the acquired genetic PPIs are ana-

lyzed using Cytoscape to provide a straightforward graphical illustration of the network and

explore biological interaction.

At this stage, the cytoHobba plugin is used to identify the hub genes based on topological

analysis and centralities. In this context, the degree method is utilized to determine the poten-

tial hub genes among PTB and NCDs. The degree method helps determine the closest neigh-

bors (proteins) of a gene. The equation of the degree method (Deg(v)) is as follows:

DegðvÞ ¼ jNðvÞj ð1Þ

Here, v indicates a node, and N(v) stands for its neighbor set [62].

Table 1. Widely used tools and databases in this study.

Item Description

NetworkAnalyst (https://www.

networkanalyst.ca/)

NetworkAnalyst is an analytic platform to analyze and find relevant

characteristics, patterns, functions, and relationships in complex gene

expression data. It provides visual analytics experience for data analysis

[61].

Cytoscape (https://cytoscape.org/) It is a widely used open-source program for visualizing gene and protein

interaction networks, among other types of biological networks [62].

CytoHobba (http://apps.cytoscape.org/

apps/cytohubba)

The cytoHobba tool performs network component ranking based on

their network-related characteristics. It encompasses an array of 11

topological analyses and 6 centrality measures, which collectively enable

the prioritization of nodes within a network [63].

Enrichr (https://maayanlab.cloud/

Enrichr/)

It offers multiple methodologies for calculating gene set enrichment, and

the results can be viewed in interactive ways. It uses different machine

learning methods. It is a search engine for thousands of annotated gene

sets [64].

GeneMANIA (https://apps.cytoscape.

org/apps/GeneMania)

GeneMANIA is used for a wide range of inquiries about genomic,

proteomic, and gene function information. It measures gene function

hypotheses, list analysis, and gene prioritization for functional

experiments [65].

String (https://string-db.org/) The STRING database tracks physical and functional protein-protein

interactions. Which may cooperate in a metabolic or signaling route,

control each other through intermediates, or contribute to a cellular

structure. Data sources include automated text mining, computational

interaction predictions, genetic context, interaction experiment

databases, and curated complexes/pathways [66].

Stitch (http://stitch.embl.de) It’s a repository for protein-chemical interactions that compiles data

from various sources, including experiments, human curation,

computational predictions, and text mining. It contains 390,000

chemicals and 3.6 million proteins from 1133 species [67].

ENCODE (https://www.encodeproject.

org/)

The ENCODE (Encyclopedia of DNA Elements) database is a

comprehensive resource that provides valuable information on the

functional elements of the human genome, including regulatory regions,

protein-coding genes, and non-coding RNAs. This database remains

indispensable for researchers seeking to unravel the complexities of

genome function and its implications in various biological processes and

diseases [68].

https://doi.org/10.1371/journal.pone.0312072.t001
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Phase—III: Gene analysis

In this research, several investigations are carried out to find the key relationship between PTB

and NCDs. The analysis includes building protein-protein interaction networks, gene regula-

tory networks (GRN), enrichment analysis, physical interaction, and protein-chemical interac-

tion has been carried out to demonstrate the genetic correlation between PTB and NCDs.

During the study, nine shared genes such as TNF, IL10, NLRP3, IL18, IFNG, HMGB1,

CXCL8, IL17A, and NFKB1 were discovered between PTB and the NCDs mentioned above,

and five hub genes (NFKB1, TNF, CXCL8, NLRP3, and IL10) were selected based on degree

values. Results and conclusion: Enrichment techniques reveal a strong correlation between the

shared genes and their pivotal roles in the onset and spread of PTB, unveiling their inherent

functions.

Building PPI networks. PPIs are central in various cellular and organismal processes,

building the cellular framework for immunological defense and cellular communication [70].

This study uses generic PPI and tissue-specific PPI (whole blood tissue) to analyze protein-

protein interaction networks.

These two analyses were carried out with the help of NetworkAnalyst, where the STRING

Interactome database performed genetic PPI with a 900-confidence score cutoff. Here,

STRING confidence scores indicate the likelihood of finding related proteins in the same path-

way. The DifferentialNet database, which offers distinct interactomes for over 29 human tis-

sues, was used to examine the tissue-specific PPI. It reveals tissue-specific protein functions,

processes, and phenotypes. In tissue-specific PPI, whole blood cells have been counted with fil-

ter 15.0. In this regard, the acquired genetic PPIs are analyzed using Cytoscape to provide a

clear graphical illustration of the network and explore biological interaction.

Generating Gene regulatory networks (GRN). GRN offers a mathematical framework

for describing the intricate interaction between gene transcription, genes, and gene products

[71]. In this study, we analyzed gene-miRNA and TF-gene interactions to generate the GRN.

miRNAs are noncoding RNAs with 18 to 26 nucleotides, and they pair with specific

mRNAs to control gene translation and significantly change many healthy and unhealthy pro-

cesses. In this regard, the miRTarBase database has been used to find the gene-miRNA interac-

tion. The miRTarBase database has over 13,389 papers with experimental data supporting

miRNA–target interactions involving 27,172 target genes from 37 species [72]. On the other

hand, the ENCODE database has been used to explore TF-gene interaction. These two analyses

are also carried out using the NetworkAnalyst tool.

Analysis of Gene Ontology and Pathway Enrichment. Gene set enrichment analysis is a

statistical and computational method to determine if a group of genes exhibits statistical

importance across a range of biological contexts [73]. Gene Ontology (GO) offers organized,

controlled vocabularies and categories covering multiple areas of a gene’s molecular and cellu-

lar biology. It offers three distinct areas of molecular biology—biological process, molecular

function, and cellular component to identify the gene features [74].

For pathway analysis, BioCarta, KEGG, WikiPathways, and Reactome databases were

employed [75, 76]. Pathway Enrichment is a vital bioinformatics technique utilized to identify

the enrichment of specific biological pathways within a set of genes. These pathways provide

insights into the molecular functions and roles of diverse genes. It plays a pivotal role in eluci-

dating the functional significance of gene lists, contributing to a deeper understanding of

underlying biological processes and mechanisms [77]. The results from the Pathway analysis

and GO terms are explored using Enrichr.

Generating co-expression, physical and chemical interaction networks. The co-expres-

sion and Physical Interaction Network prediction was accomplished by using GeneMANIA
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plugin. Coexpression results were acquired using the STRING database based on the protein

co-regulation and RNA expressions. The chemical association network is also generated using

the Stitch database.

Phase—IV: Identification of drug candidates

The most important part of the ongoing research is finding the drug molecules among the

eight diseases. The Drug Signatures database (DSigDB) holds 22527 gene sets with 17389 dis-

tinct compounds encompassing 19531 genes. It includes gene sets that relate the drugs and

small molecules with the gene expression data obtained upon drug administration [78]. The

Enrichr platform is used to get into the DSigDB database.

Phase—V: Gene validation

To validate the selected genes, RNA-seq datasets from NCBI were utilized. For each disease,

multiple datasets were chosen to identify up-regulated genes and verify our selected genes.

Specifically, for Pulmonary Tuberculosis (PTB), the datasets GSE54992 [79] and GSE19442

[80], which include healthy and case samples, were analyzed. For Parkinson’s Disease (PD),

GSE20295 [81] and GSE22491 [82] datasets were selected. In the case of Rheumatoid Arthritis

(RA), the GSE23561 [83] and GSE157047 [84] datasets were used. For Chronic Kidney Disease

(CKD), the datasets GSE66494 [85], GSE15072 [86], and GSE141295 [87] were examined.

Cerebrovascular Vascular Disease (CVD) analysis involved datasets GSE51878 [88] and

GSE141910 [89]. For Lung Cancer (LC), datasets GSE42826 [90] and GSE30219 [91] were ana-

lyzed. Diabetes Mellitus (DM) validation utilized datasets GSE92724 [92] and GSE236746 [93].

The characteristics of these datasets, including the presence of healthy and case samples, are

detailed in Table 2.

Results and analysis

In our research, we discovered 8825 genes for PTB and NCDs (LC, DM, PD, SL, CKD, CVD,

and RA). After filtering the genes, we found nine common genes such as: TNF (Entrez ID:

7124), IL10 (Entrez ID: 3586), NLRP3 (Entrez ID: 114548), IL18 (Entrez ID: 3606), IFNG

Table 2. Dataset attributes used in this study.

Disease Name Accession No Source Platform Sample(Healthy:Case)

PTB GSE54992 PBMC GPL570 6:19

GSE19442 Whole Blood GPL6947 19:32

PD GSE20295 Postmortem brain GPL96 53:40

GSE22491 peripheral blood GPL6480 8:10

RA GSE157047 Blood, Sinovial Fluid GPL16791 12:21

GSE23561 peripheral blood, Cell line GPL10775 9:6

CKD GSE66494 Kidney GPL6480 8:53

GSE15072 PBMC GPL96 8:12

GSE141295 Microdissected kidney glomerulus GPL16791 10:14

CVD GSE51878 human coronary artery smooth muscle cells GPL11154 6:3

GSE141910 Left Ventricle GPL16791 161:161

LC GSE42826 Whole Blood GPL10558 52:8

GSE30219 Lung Tumor, Non Tumoral Lung GPL570 14:293

DM GSE92724 dermal blood endothelial cell GPL20301 6:4

GSE236746 Torn rotator cuff tendon GPL24676 3:3

https://doi.org/10.1371/journal.pone.0312072.t002
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(Entrez ID: 3458), HMGB1 (Entrez ID: 3146), CXCL8 (Entrez ID: 3576), IL17A (Entrez ID:

3605), and NFKB1 (Entrez ID: 4790) while analyzing PPIs network, hub genes, GO and path-

way analysis, and GRN. Detailed information on these nine genes is presented in Table 3,

while for humans, there are 4052 genes for LC, 201 genes for PTB, 1475 genes for RA, 552

genes for CVD, 605 genes for CKD, 58 genes for SI, 789 genes for PD, and 1093 genes for DM

[62] as shown in Fig 1. Fig 2 presents a Venn diagram of genes associated with PTB and NCDs

to showcase the overlapping gene.

At this moment, we move to identify the hub genes from the Generic PPI with the STRING

Interactome database using protein-protein interactions. Here, we discover two subnetworks

where Subnetwork1 (the first subnetwork) consists of 214 proteins (marked in blue) and seven

genes (NFKB1, TNF, HMGB1, NLRP3, CXCL8, IFNG, IL10), which are marked in orange as

shown in Fig 3(a). On the other hand, the subnetwork2 (second subnetwork) has one gene

(IL18), marked in orange, and five proteins marked in blue, as also depicted in Fig 3(b). How-

ever, we find RELA to be a highly connected protein with CXCL8, HMGB1, NFKBI, and TNF

genes.

Table 3. Description of the discovered common genes as per NCBI.

Serial Gene

Symbol

Title of the Gene Gene Description

1 HMGB1 high mobility group box 1 This gene produces a High Mobility Group-box protein. This protein affects inflammation, cell differentiation,

and tumor cell migration. Several gene pseudogenes have been found. Multiple transcript variants encode the

same protein due to alternative splicing.

2 IL10 interleukin 10 This gene encodes a monocyte- and lymphocyte-produced cytokine to influence inflammation and

immunoregulation. It boosts B cell survival, proliferation, and antibody production. This cytokine regulates

JAK-STAT signaling and blocks NF-κB. Mutations in this gene enhance HIV-1 and RA risk.

3 IL17A interleukin 17A It encodes a proinflammatory cytokine generated by activated T cells and is one of five members of the IL-17

receptor family. The cytokine regulates NF-κB and mitogen-activated protein kinases, increasing IL6 and PTGS2/

COX-2 expression. Cancer, viral illnesses, and inflammatory and autoimmune disorders depend on IL-17A.

Rheumatoid arthritis, psoriasis, and multiple sclerosis are linked to high cytokine levels and increased

inflammation.

4 IL18 interleukin 18 This gene produces a proinflammatory IL-1 family cytokine constitutively present as a precursor in macrophages

and keratinocytes. Caspase-1 converted the dormant IL-18 precursor into an active version that stimulates

interferon gamma production and regulates Th1 and Th2 responses. A cytokine storm can be lethal, as this

cytokine can damage organs.

5 NLRP3 NLR family pyrin domain

containing 3

This protein connects with the NLRP3 inflammasome complex member PYCARD/ASC, which recruits caspases.

This complex regulates inflammation, immunological response, and apoptosis by activating NF-κB signaling

upstream. Through macrophage ion channel creation, the transmembrane pore-forming viroporin SARS-CoV 3a

activates the NLRP3 inflammasome.

6 TNF tumor necrosis factor This gene produces a multifunctional proinflammatory TNF superfamily cytokine. This cytokine regulates cell

proliferation, differentiation, death, lipid metabolism, and coagulation. It is linked to autoimmune illnesses,

insulin resistance, psoriasis, RA, ankylosing spondylitis, TB, autosomal dominant polycystic kidney disease, and

cancer. This gene mutation affects cerebral malaria, septic shock, and Alzheimer’s disease risk.

7 IFNG interferon gamma This gene produces a type II interferon-like soluble cytokine. The encoded protein is released by innate and

adaptive immune cells. The homodimer active protein interacts with the interferon-gamma receptor to activate

cells against viral and microbial infections. This gene mutation increases vulnerability to viral, bacterial, parasitic,

and autoimmune disorders.

8 CXCL8 C-X-C motif chemokine

ligand 8

The CXC chemokine family protein produced by this gene mediates the inflammatory response. This chemotactic

factor guides neutrophils to the infection site. IL-8 is part of the proinflammatory signaling cascade with other

cytokines and contributes to SIRS. This gene may contribute to the genetics of bronchiolitis, a common

respiratory syncytial virus-caused respiratory illness. One gene cluster on chromosome 4q contains this gene and

additional CXC chemokine genes

9 NFKB1 nuclear factor kappa B

subunit 1

Cytokines, oxidant-free radicals, UV irradiation, and bacterial or viral products activate in NFκB, a transcription

regulator. NFκB translocates into the nucleus and activates several biological activity genes. Inflammatory

disorders are linked to NFκB activation, whereas prolonged inhibition causes immune cell failure or delayed cell

growth. Besides, the response to rapid viral infection is regulated by NFκB.

https://doi.org/10.1371/journal.pone.0312072.t003
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Fig 1. The pie chart shows the genes of eight diseases in different segments. The numerical value beside the name of the disease

represents the number of genes and their corresponding percentage.

https://doi.org/10.1371/journal.pone.0312072.g001

Fig 2. Common genes among the diseases. Venn diagram shows the shared genes across PTB and NCDs.

https://doi.org/10.1371/journal.pone.0312072.g002
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At the moment, we also identified five significant hub genes (TNF, NFKB1, HMGB1,

CXCL8, NLRP3) from the generic PPI according to the degree value of the genes where the

degree value was greater than 10. Table 4 shows that NFKB1 has the highest degree value of

115, a 47-degree value for TNF, HMGB1 had a degree value of 44, and CXCL8 and NLRP3

had 16 and 13-degree values, respectively. Fig 4 demonstrates the hub protein with other inter-

acted proteins from the generic PPIs network. Here, we can identify the highly connected

genes from degree value, and this method focuses on gene connectivity in the overall network.

Furthermore, Fig 5 represents the tissue-specific PPI network with four subnetworks. It was

analyzed by whole blood tissue. Inside Fig 5, subnetwork1 with five genes (CXCL8, NFKB1,

TNF, IFNG, and IL10) and 165 proteins are shown in Fig 5(a). Fig 5(b) shows the subnetwork2

with one gene (HMGB1) and 28 proteins while Fig 5(c) shows subnetwork3 with one gene

(NLRP3) and 6 proteins. Finally, the subnetwork3 is also drawn in Fig 5(d), and it also has a

single gene (IL18) and three proteins. Here, in all of the sub-figures inside Fig 5, the pink node

represents a gene, and the green node represents proteins.

Then, we investigated gene regulatory networks through the analysis of gene-miRNA inter-

actions and TF-gene interactions. The Gene-miRNA interaction network, constructed using

the miRTarBase database, revealed one subnetwork depicted in Fig 6. This subnetwork fea-

tured nine genes (HMGB1, NFKB1, IFNG, IL10, TNF, CXCL8, IL18, IL17A, and NLRP3)

interacting with 229 miRNAs. Notably, hsa-mir-34a-5P emerged as a key miRNA

Fig 3. Generic PPIs network for the eight diseases. Orange seeds represent common genes, and edges indicate the

connections between the proteins of (a) subnetwork1 and (b) subnetwork2.

https://doi.org/10.1371/journal.pone.0312072.g003

Table 4. Analyzing topological findings for the best-performing hub genes using Eq (1).

Gene Degree

NFKB1 115

TNF 47

HMGB1 44

CXCL8 16

NLRP3 13

https://doi.org/10.1371/journal.pone.0312072.t004
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Fig 4. Hub genes based on degree value. The highlighted six genes (TNF, NFKB1, HMGB1, CXCL8, NLRP3) are the

hub genes among the nine genes from the generic PPI network, connected with protein (blue). The hub genes were

identified based on their degree value, where the degree value is greater than 10.

https://doi.org/10.1371/journal.pone.0312072.g004

Fig 5. Tissue-specific PPI network. The highlighted pink seed denotes the common genes, and the green color

indicates the protein that is physically connected with the common genes in (a) subnetowrk1, (b) subnetwork2, (c)

subnetwork3, (d) subnetwork4.

https://doi.org/10.1371/journal.pone.0312072.g005
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interconnecting TNF, IL10, NFKB1, and HMGB1 genes. Additionally, the TF-gene interaction

network analysis unveiled two subnetworks in Fig 7, with subnetwork 1 comprising 54 tran-

scription factors (TFs) linked to six genes (NFKB1, IL10, NLRP3, IFNG, TNF, HMGB1), and

subnetwork 2 involving 4 TFs connected to the IL17A gene. These findings provide insights

into the intricate regulatory mechanisms governing gene expression.

Fig 6. Gene-miRNA interaction with nine common genes. The highlighted nine red nodes denote common genes,

while the remaining 229 purple nodes are miRNA connected with the genes.

https://doi.org/10.1371/journal.pone.0312072.g006

Fig 7. TF-gene interaction with common genes. The highlighted yellow node denotes common genes, while the remaining green

nodes are TF, which is connected with the genes.

https://doi.org/10.1371/journal.pone.0312072.g007
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In the course of our investigation into common genes, an enrichment analysis of the identi-

fied shared genes was initiated employing Enrichr. Table 5 delineates data from BioCarta,

KEGG, WikiPathways, and Reactome pathways, organized according to their respective P-val-

ues. Examination of the data from Table 5 indicates that Yersinia infection, Influenza A, IL-17

signaling pathway, Cytokine-cytokine receptor interaction, and Inflammatory bowel disease

exhibit the highest number of gene interactions, as per the KEGG pathway database. Further-

more, the IL-18 signaling pathway (WP4754) manifests the greatest number of associated

genes according to WikiPathwas database. As per the Reactome pathway analysis, the path-

ways connected with the highest number of genes are as follows:

1. Signalling By Interleukins R-HAS-449147

2. Cytokine Signaling In Immune System (R-HSA-1280215)

3. Immune system R-HAS-168256

Concurrently, Table 6 enumerates the top 10 Gene Ontology (GO) keywords for biological

processes, molecular functions, and cellular components associated with the common nine

genes, arranged based on their respective P-values. Analysis of Table 6 reveals a significant

association between the common genes and the biological process of Positive regulation of

cytokine production, which is linked with PTB and other diseases, as delineated in Table 2.

Besides the biological process, cytokine activity is also connected with the most common gene.

Moreover, Figs 8 and 9 illustrate GO keywords and pathways, respectively, organized by

their respective P-value scores. These visual representations provide a comprehensive overview

of the significance and relationships of the identified common genes.

At this stage, in order to identify Co-expression and Physical Interaction Networks among

genes, we utilized the Cytoscape plugin, GeneMANIA. Here, co-expression and physical inter-

action networks were constructed using GeneMANIA as a part of the methodology used in

this research. The graphical representation in Fig 10 elucidates the co-expression and physical

interaction dynamics among related genes, revealing percentages of 56.57% and 17.84%,

respectively. Furthermore, the analysis uncovered additional intricate relationships among the

identified genes, including co-localization (6.18%), shared protein domains (1.00%), predicted

interactions (4.71%), and pathway associations (13.72%). These findings, obtained through the

GeneMANIA platform, contribute essential insights into the complex interplay of genes,

emphasizing co-expression patterns and physical interactions within the studied biological

system.

From Fig 11, the investigation of RNA expression patterns and protein co-regulation pro-

vides critical insights into molecular interactions within Homo sapiens. Notable associations

have been identified by utilizing coexpression scores. For instance, the CXCL8 and NFKB1

genes exhibit a coexpression score of 0.118, highlighting their closely coordinated regulation.

Similarly, CXCL8 demonstrates coexpression scores of 0.088 and 0.095 with IL18 and NLRP3,

respectively, indicating potential functional relationships. The IL10 gene reveals coexpression

scores of 0.097 and 0.090 with TNF and NLRP3. Additionally, IL17A and IFNG exhibit a coex-

pression score of 0.099, suggesting a potential synergistic role in immune responses. Notewor-

thy associations are also observed between NFKB1 and TNF (coexpression score: 0.108), TNF

and IFNG (coexpression score: 0.152), and TNF and NLRP3 (coexpression score: 0.146), indi-

cating intricate regulatory networks. Furthermore, IL18 and NLRP3 display a coexpression

score of 0.085, while NLRP3 and IFNG exhibit a coexpression score of 0.058. The interaction

between HMGB1 and NFKB1 in protein co-regulation stands out with a protein coregulation

score of 0.042.
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Table 5. Key pathways identified: Analysis of top pathways in KEGG, Wikipathways, BioCarta, and Reactome databases, including corresponding P-values and

genes.

Database Pathways P-values Genes

KEGG Inflammatory bowel disease 7.75E-14 IL10, IFNG, IL18, TNF, NFKB1, IL17A

Yersinia infection 7.64E-12 IL10, CXCL8, IL18, NLRP3, TNF, NFKB1

Malaria 9.94E-12 IL10, CXCL8, IFNG, IL18, TNF

Influenza A 3.05E-11 CXCL8, IFNG, IL18, NLRP3, TNF, NFKB1

Pertussis 8.63E-11 IL10, CXCL8, NLRP3, TNF, NFKB1

Rheumatoid arthritis 2.42E-10 CXCL8, IFNG, IL18, TNF, IL17A

IL-17 signaling pathway 2.56E-10 CXCL8, IFNG, TNF, NFKB1, IL17A

Amoebiasis 3.87E-10 IL10, CXCL8, IFNG, TNF, NFKB1

Chagas disease 3.87E-10 IL10, CXCL8, IFNG, TNF, NFKB1

Cytokine-cytokine receptor interaction 7.92E-10 IL10, CXCL8, IFNG, IL18, TNF, IL17A

BioCarta IL-10 Anti-inflammatory Signaling Pathway Homo sapiens h il10Pathway 1.40E-05 IL10, TNF

NF-kB Signaling Pathway Homo sapiens h nfk b-Pathway 3.76E-05 TNF, NFKB1

NFkB activation by Nontypeable Hemophilus influenzae Homo sapiens h nthi

Pathway

7.26E-05 CXCL8, TNF

IFN gamma signaling pathway Homo sapiens h ifng Pathway 0.002697 IFNG

Visceral Fat Deposits and the Metabolic Syndrome Homo sapiens h vobesityPathway 0.003595 TNF

SODD/TNFR1 Signaling Pathway Homo sapiens h soddPathway 0.004043 TNF

NO2-dependent IL 12 Pathway in NK cells Homo sapiens h no2il12 Pathway 0.004043 IFNG

Apoptotic DNA fragmentation and tissue homeostasis Homo sapiens h

DNAfragment Pathway

0.00494 HMGB1

The 4–1BB-dependent immune response Homo sapiens h 41bb Pathway 0.005836 IFNG

Stress Induction of HSP Regulation Homo sapiens h hsp27Pathway 0.006284 TNF

WikiPathwas SARS-CoV-2 innate immunity evasion and cell-specific immune response WP5039 1.35E-08 IL10, CXCL8, TNF, NFKB1

IL1 and megakaryocytes in obesity WP2865 2.00E-10 IFNG, IL18, NLRP3, NFKB1

IL-18 signaling pathway WP4754 4.86E-10 IL10, CXCL8, IFNG, IL18, TNF, NFKB1

Development and heterogeneity of the ILC family WP3893 6.76E-10 IFNG, IL18, TNF, IL17A

miRNAs involvement in the immune response in sepsis WP4329 1.24E-09 IL10, CXCL8, TNF, NFKB1

Novel intracellular components of RIG-I-like receptor (RLR) pathway WP3865 9.11E-09 CXCL8, IFNG, TNF, NFKB1

Allograft Rejection WP2328 1.93E-10 IL10, CXCL8, IFNG, TNF, IL17A

T-Cell antigen Receptor (TCR) pathway during Staphylococcus aureus infection

WP3863

1.04E-08 IL10, IFNG, TNF, NFKB1

Non-genomic actions of 1,25 dihydroxyvitamin D3 WP4341 1.81E-08 CXCL8, IFNG, TNF, NFKB1

COVID-19 adverse outcome pathway WP4891 2.86E-08 IL10, CXCL8, TNF

Reactome Interleukin-10 Signaling R-HSA-678378 2.79E-09 IL10, CXCL8, IL18, TNF

Signaling By Interleukins R-HSA-449147 1.01E-10 IL10, CXCL8, IFNG, IL18, HMGB1, TNF, NFKB1

Cytokine Signaling In Immune System R-HSA-1280215 2.16E-09 IL10, CXCL8, IFNG, IL18, HMGB1, TNF, NFKB1

Immune System R-HSA-168256 6.44E-08 IL10, CXCL8, IFNG, IL18, NLRP3, HMGB1, TNF,

NFKB1

Interleukin-4 And Interleukin-13 Signaling R-HSA-6785807 9.56E-08 IL10, CXCL8, IL18, TNF

Cell Recruitment (Pro-Inflammatory Response) R-HSA-9664424 1.44E-07 IL18, NLRP3, NFKB1

Leishmania Infection R-HSA-9658195 2.72E-06 IL10, IL18, NLRP3, NFKB1

Interleukin-1 Processing R-HSA-448706 6.47E-06 IL18, NFKB1

NLRP3 Inflammasome R-HSA-844456 2.15E-05 NLRP3, NFKB1

Interleukin-1 Family Signaling R-HSA-446652 3.50E-05 IL18, HMGB1, NFKB1

https://doi.org/10.1371/journal.pone.0312072.t005
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Fig 12 illustrates the chemical interaction network. IFNG shows a robust affinity for

MgATP with a significant interaction score of 0.914. Simultaneously, the interaction between

Phosphoric acid and IFNG was underscored by an impressive score of 0.986. IFNGR1 estab-

lishes connections with MgATP and Phosphoric acid with interaction scores of 0.900 in both

cases. IL18 joins the narrative with a notable interaction score of 0.871 when paired with

MgATP. In contrast, the interaction between IL10 and Phosphate, while moderate with a score

of 0.544, contributes to the intricate chemical landscape. NLRP3 emerges as a focal point,

forming a robust association with Silica (0.986) and MgATP (0.988). These interactions under-

score the pivotal role of NLRP3 in the network. IL10 takes center stage, strongly associating

with Rapamycin (score: 0.985). The interaction between NLRP3 and MgATP is robust, with a

score of 0.988. NFKB1 exhibits a significant interaction score of 0.911 with MgATP. Notably,

RELA, CHUK, and IKBKB each interaction scores with MgATP 0.918, 0.907, and 0.911,

respectively.

In this research, the potential therapeutic compounds are identified from the DSigDB data-

base using Enricher. According to the nine common genes (TNF, HMGB1, NFKB1, CXCL8,

Table 6. GO pathways with their respective P-values and genes for common genes.

Category GO ID GO Pathways P-values Genes

GO biological process GO:0071222 Cellular response to lipopolysaccharide 8.35E-15 IL10, CXCL8, IL18, NLRP3, HMGB1, TNF, NFKB1

GO:0001819 Positive regulation of cytokine production 5.06E-15 IL10, IFNG, IL18, NLRP3, HMGB1, TNF, NFKB1, IL17A

GO:0006954 Inflammatory response 8.57E-13 CXCL8, IFNG, IL18, NLRP3, HMGB1, TNF, NFKB1

GO:0032722 Positive regulation of chemokine production 1.35E-11 IFNG, IL18, HMGB1, TNF, IL17A

GO:0032732 Positive regulation of interleukin-1 production 3.03E-11 IFNG, NLRP3, HMGB1, TNF, IL17A

GO:0032675 Regulation of interleukin-6 production 5.68E-10 IL10, IFNG, HMGB1, TNF, IL17A

GO:0071219 Cellular response to molecule of bacterial origin 7.12E-10 IL10, CXCL8, NLRP3, HMGB1, NFKB1

GO:0019221 Cytokine-mediated signaling pathway 9.18E-10 IL10, CXCL8, IFNG, IL18, TNF, NFKB1, IL17A

GOMolecular Function GO:0005125 cytokine activity 3.16E-11 IL10, CXCL8, IFNG, IL18, HMGB1, TNF

GO:0060556 Regulation of vitamin D biosynthetic process 1.26E-09 IFNG, TNF, NFKB1

GO:0060558 Regulation of calcidiol 1-monooxygenase activity 2.20E-09 IFNG, TNF, NFKB1

GO:0048018 receptor ligand activity 9.88E-08 IL10, IFNG, IL18, HMGB1, TNF

GO:0001067 transcription regulatory region nucleic acid binding 9.41E-05 HMGB1, TNF, NFKB1

GO:0005126 cytokine receptor binding 9.59E-04 IL10, IL18

GO:0000976 transcription cis-regulatory region binding 0.00152706 HMGB1, TNF, NFKB1

GO:0019958 C-X-C chemokine binding 0.002248161 HMGB1

GO:0097100 supercoiled DNA binding 0.002697256 HMGB1

GO:1990837 sequence-specific double-stranded DNA binding 0.003213257 HMGB1, TNF, NFKB1

GO:0000405 bubble DNA binding 0.003594909 HMGB1

GO:0140297 DNA-binding transcription factor binding 0.003693126 NLRP3, HMGB1

GO Cellular Component GO:0060205 cytoplasmic vesicle lumen 0.001149208 HMGB1, NFKB1

GO:0034774 secretory granule lumen 0.008325128 HMGB1, NFKB1

GO:0000793 condensed chromosome 0.024043797 HMGB1

GO:0035580 specific granule lumen 0.027561797 NFKB1

GO:1904813 ficolin-1-rich granule lumen 0.054018044 HMGB1

GO:0055037 recycling endosome 0.063401467 TNF

GO:0005694 chromosome 0.069751729 HMGB1

GO:0042581 specific granule 0.069751729 NFKB1

GO:0045121 membrane raft 0.071017179 TNF

GO:0101002 ficolin-1-rich granule 0.079832569 HMGB1

https://doi.org/10.1371/journal.pone.0312072.t006
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NLRP3, IL10, IFNG, IL18, and IL17A), the drug compounds were suggested based on the P-

value and adjusted P-value. Here, we discovered the connection between ten drug compounds

and the five hub genes. In this regard, we found bay 11–7082 CTD 00003959, PD 98059 CTD

00003206, and aspirin CTD 00005447 to be the most essential drug compounds as they are

Fig 8. Pathway analysis of eight diseases. (a), (b), (c), and (d) depict the pathway analysis from BioCarta, KEGG, Reactome, and WikiPathway

according to P-value.

https://doi.org/10.1371/journal.pone.0312072.g008

Fig 9. Gene ontology analysis of eight diseases. (a), (b), (c), and (d) illustrate the biological process, molecular process, and cellular

components, respectively, according to the combined score based on the P-value.

https://doi.org/10.1371/journal.pone.0312072.g009
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linked to most of the studied genes. Furthermore, a rigorous analysis of drug targets reveals

that the aspirin CTD 00005447 target is mostly related to all the hub genes. However, Table 7

shows all of the predictive drug compounds.

Lastly, RNA sequence data from NCBI was used to validate the hub genes in Tables 8–14.

We initially analyze the datasets using the DESeq2 R package. During the analysis, log-fold

Fig 10. Co-expression and Physical Interaction Network. The red line denotes physical interaction. The purple line

indicates co-expression, the green line defines genetic interaction, the blue line denotes co-localization, and the orange

line denotes predicted.

https://doi.org/10.1371/journal.pone.0312072.g010

Fig 11. RNA co-expression scores between proteins. The heatmap shows the RNA coexpression scores among the nine genes in

Homo sapiens and other organisms.

https://doi.org/10.1371/journal.pone.0312072.g011
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change (logFC)� 0.5 and P-value and adj P-value < 0.05 and a Benjamini–Hochberg method

for adjusted p-value.

Discussion

The major objective of this research was to identify any genetic links that might exist between

a variety of disorders. The study analyzes PPIs, GO, pathways, gene regulatory networks, can-

didate drug detection, physical interaction, and co-expression networks. This analysis shows

the correlation between the gene pair. The functional connection among genes in molecular

networks has led to a new framework in which it is thought that common and rare diseases are

caused by genomic and environmental factors that change whole molecular networks [94].

This study utilized nine common genes to construct generic PPI and tissue-specific PPI net-

works. PPI networks demonstrate proteomic information about PTB and NCDs. According to

Fig 12. Chemical interaction network between the nine genes. The green color edges interconnect between

chemicals and proteins. And red color edges interconnect between chemicals.

https://doi.org/10.1371/journal.pone.0312072.g012

Table 7. Representing gene count with common symbols in the context of overlapping diseases associated with PTB.

Title of the Drug P-value Adjusted P-value Associated Genes

bay11 − 7082 CTD 00003959 5.85E-16 9.42E-13 IL10, CXCL8, IFNG, IL18, HMGB1, TNF, NFKB1

histamine CTD 00006100 1.03E-13 8.26E-11 IL10, CXCL8, IFNG, IL18, TNF, NFKB1

terbutaline CTD 00006840 3.80E-13 2.04E-10 IL10, CXCL8, IFNG, TNF, NFKB1

PD98059 CTD 00003206 2.15E-12 8.66E-10 IL10, CXCL8, IFNG, IL18, TNF, NFKB1, IL17A

aspirin CTD 00005447 3.20E-12 1.03E-09 IL10, CXCL8, IFNG, IL18, NLRP3, TNF, NFKB1, IL17A

4 −Methylhistamine CTD 00001201 9.34E-12 2.48E-09 IL10, IFNG, IL18, TNF

TITANIUM DIOXIDE CTD 00000489 1.08E-11 2.48E-09 IL10, CXCL8, IFNG, TNF, NFKB1, IL17A

Pyrrolidine dithiocarbamate CTD 00001021 1.89E-11 3.74E-09 CXCL8, IFNG, HMGB1, TNF, NFKB1, IL17A

Caffeic acid phenethyl ester CTD 00002352 2.34E-11 3.74E-09 CXCL8, IFNG, IL18, TNF, NFKB1

sulfasalazine CTD 00006719 2.34E-11 3.74E-09 IL10, CXCL8, IFNG, TNF, NFKB1

https://doi.org/10.1371/journal.pone.0312072.t007
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Table 8. Representing validated hub genes from RNA-seq datasets for PTB, datasets—GSE54992, GSE19442.

Gene Symbol adj.P.Val P.Value logFC

CXCL8 4.530000e-03 4.520000e-04 1.808

NLRP3 1.090000e-03 7.600000e-05 1.600

TNF 5.620000e-04 3.330000e-05 2.019

IL10 1.070000e-04 4.190000e-06 2.904

NFKB1 2.430000e-09 2.890000e-12 2.451

https://doi.org/10.1371/journal.pone.0312072.t008

Table 9. Representing validated hub genes from RNA-seq datasets for PD, datasets—GSE20295, GSE22491.

Gene Symbol adj.P.Val P.Value logFC

IFNG 0.0193 0.010738 0.705038

IL18 0.000812 6.050000e-05 1.067785

IL10 0.0193 0.011699 0.604016

CXCL8 0.0193 0.009354 0.772296

NFKB1 0.0193 0.011919 0.823916

HMGB1 0.000003 1.810000e-08 0.916204

https://doi.org/10.1371/journal.pone.0312072.t009

Table 10. Representing validated hub genes from RNA-seq datasets for RA, datasets—GSE23561, GSE157047.

Gene Symbol adj.P.Val P.Value logFC

IL10 0.00914 0.00182 0.829

TNF 1.150000e-10 7.180000e-11 1.625

NFKB1 0.01220 0.00249 0.791

IL18 3.230000e-17 1.370000e-17 1.780

NLRP3 3.810000e-06 7.170000e-07 2.229

CXCL8 1.480000e-03 4.980000e-04 2.148

HMGB1 3.130000e-13 2.020000e-14 1.137

https://doi.org/10.1371/journal.pone.0312072.t010

Table 11. Representing validated hub genes from RNA-seq datasets for CKD, datasets—GSE66494, GSE15072,

GSE141295.

Gene Symbol adj.P.Val P.Value logFC

IL10 1.830000e-09 1.080000e-11 2.057

NFKB1 3.110000e-07 5.280000e-09 0.745282

TNF 3.080000e-03 4.010000e-04 1.925763

HMGB1 1.520000e-10 5.250000e-13 2.649

CXCL8 1.060000e-06 2.600000e-08 4.136

NLRP3 3.310000e-06 1.050000e-07 2.881

https://doi.org/10.1371/journal.pone.0312072.t011

Table 12. Representing validated hub genes from RNA-seq datasets for CVD, datasets—GSE51878, GSE141910.

Gene Symbol adj.P.Val P.Value logFC

NFKB1 3.450000e-21 6.610000e-22 0.567

IL10 0.000425 0.000094 1.296

TNF 7.020000e-18 1.730000e-13 1.201

IFNG 1.180000e-12 0.000094 2.438

https://doi.org/10.1371/journal.pone.0312072.t012
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the degree value, five hub genes (CXCL8, NFKB1, TNF, IFNG, IL10) are selected from generic

PPI. Regarding the PPI networks, the genes are linked among PTB and NCDs. On behalf of

this study, tumor necrosis factor (TNF) and cytokine genes have been linked to PTB and

NCDs [95]. The hub genes also revealed the presence of highly interconnected modules.

Among the hub genes, IL-10 hub genes may help to discover targeted therapies for neurode-

generative disease because IL10 reduces TNF-α production in PD and increases Brain-derived

neurotrophic factor (BDNF) levels [96].

On the other hand, in tissue-specific PPI, the NFKB1 gene interacts with the most proteins

(subnetwork1), which regulates the infection response (from Table 2) in TB. In active TB

patients, NFKB1 regulation is consistently up-regulated and regulates the transcription of

genes related to both antiapoptotic responses and pro-inflammatory [97]. However, the preva-

lence of (auto)inflammatory issues among carriers indicates that modifying NFKB1 could

intensify existing complications or induce fresh ones, thereby deteriorating symptoms and

overall well-being. Besides, NFKB1 plays a crucial role in regulating immune responses. Tar-

geting it could disrupt immune homeostasis, leading to further immune dysregulation and

increased susceptibility to infections or autoimmune diseases [98].

Furthermore, the regulation of nine common genes is also confirmed by analyzing the gene

regulatory network based on the performance of TF genes and miRNAs. After analyzing gene-

miRNA interaction, the HMGB1 gene interconnects with the highest number of miRNA with

a 171-degree value. And hsa-mir-34a-5P miRNA is interconnected with 4 genes (TNF, IL10,

NFKB1, and HMGB1), which is identified as the most integrated miRNA with human diseases

investigated by a study [99]. However, TCF7, NFIC, and TRIM22 are the most interacted TF

in the TF-gene interaction network. TF genes serve as regulators for the gene expression that

may cause the generation of cancer cells [100]. Besides the PPI network, TNF and NFKB1

genes interacted with the highest amount of TF with 20 and 17-degree values, respectively, in

the TF-gene interaction network. A meta-analysis reveals that the -94ins/del polymorphism

within the NFKB1 promoter is linked to cancer susceptibility, with potential ethnic-specific

associations. This highlights the role of NF-κB signaling in oncogenesis and proposes it as a

promising therapeutic target [101]. TCF7 TF contributes to pulmonary infection and assists in

Table 13. Representing validated hub genes from RNA-seq datasets for LC, datasets—GSE42826, GSE30219.

Gene Symbol adj.P.Val P.Value logFC

NLRP3 1.66e-04 4.83e-06 0.832

HMGB1 1.28e-06 1.74e-07 0.729

IL17A 4.80e-06 4.37e-07 2.256

IL18 2.89e-02 9.52e-03 0.716

CXCL8 6.97e-06 6.64e-07 2.256

TNF 1.13e-03 3.20e-04 0.583

https://doi.org/10.1371/journal.pone.0312072.t013

Table 14. Representing validated hub genes from RNA-seq datasets for DM, datasets—GSE92724, GSE236746.

Gene Symbol adj.P.Val P.Value logFC

IL18 1.100000e-09 2.300000e-12 4.155922

TNF 2.800000e-05 3.110000e-07 6.565250

CXCL8 9.990000e-01 5.010000e-01 0.702678

NLRP3 0.00751 0.000028 2.98

https://doi.org/10.1371/journal.pone.0312072.t014
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tissue regeneration and repair after severe lung damage [102]. On the other hand, NFIC TF is

related to cancer if its development is disrupted [103].

GO terms and pathways were identified based on P-values, considering significance when

the P-value was<0.05. Results were deemed statistically significant if the P-value was below

0.05 [104]. From the result of GO pathways, Cellular response to lipopolysaccharide, inflamma-

tory response, positive regulation of cytokine production, cytokine-mediated signaling pathway,

etc., are the top GO terms in biological processes (Table 6). Cytokine activity, cytokine receptor

binding, receptor-ligand activity, etc., are found in molecular function (Table 6). Lastly, cellular

components include the cytoplasmic vesicle lumen, secretory granule lumen, etc. GO (Table 6).

On the other hand, Inflammatory bowel disease, yersinia infection, malaria, influenza A, pertus-

sis, rheumatoid arthritis, IL-17 signaling pathway, amoebiasis, chagas disease, cytokine-cytokine

receptor interaction were the top 10 pathways extracted from the KEGG database to analysis

pathways (Table 7). IL-10 Anti-inflammatory Signaling Pathway Homo sapiens h il10Pathway,

NF-κB Signaling Pathway Homo sapiens h nfkbPathway, NFκB activation by Nontypeable

Hemophilus influenzae Homo sapiens h nthiPathway are highly connected with genes in Bio-

Carta (Table 7). From the wikiPathwas pathway, IL-18 signaling pathway WP4754 is the high-

est-connected gene pathway (Table 7). Lastly, from the Reactome pathway, signaling By

Interleukins R-HSA-449147, cytokine Signaling In Immune System R-HSA-1280215, and

immune System R-HSA-168256 were found with highly connected genes (Table 7). The devel-

opment of PTB is intricately linked to inflammatory responses, providing a potential avenue for

therapeutic intervention in critically ill PTB patients in the intensive care unit (ICU). Elevated

levels of interleukins (IL-1, IL-4, IL-6, IL-10, IL-12) in ICU PTB patients underscore the signifi-

cant role of these cytokines in active TB disease. Genetic associations with cytokines (IFNG,

TNF, IL17A, IL10) impact cellular immunity, disease progression, and treatment outcomes.

Additionally, IL-1, IL-10, IL-17, and IL-18, as key cytokine family members, play crucial roles in

regulating immunological and inflammatory responses. Understanding these complex interac-

tions suggests a potential for targeted interventions to modulate inflammation, thereby improv-

ing outcomes in ICU PTB patients. This comprehensive insight into the interplay between

cytokines and TB pathogenesis emphasizes the importance of considering inflammatory modu-

lation as a therapeutic strategy in managing critically ill PTB cases [105–108].

The DSigDB database was utilized to identify the drug component. The top 10 drug compo-

nents- bay 11–7082 CTD 00003959, histamine CTD 00006100, terbutaline CTD 00006840, PD

98059 CTD 00003206, aspirin CTD 00005447, 4-Methylhistamine CTD 00001201, TITA-

NIUM DIOXIDE CTD 00000489, Pyrrolidine dithiocarbamate CTD 00001021, Caffeic acid

phenethyl ester CTD 00002352, and sulfasalazine CTD 00006719 were identified based on P-

values and adjusted P-values. Aspirin (CTD 00005447), a well-known ERK inhibitor, inhibits

inflammation, protects humans from neurodegenerative diseases, and is a suggested drug for

RA [109, 110]. Among the drug components, Aspirin can produce lipoxins that have beneficial

pro-resolving effects, effectively controlling disease progression in TB by mitigating hyper-

inflammatory responses [111]. Besides, Histamine is crucial in the body’s immune response

against infections [112]. BAY 11–7082 hinders the movement of NFKB into the nucleus cell by

inhibiting I-κB kinase-β and suppressing the activation of the NLRP3 inflammasome [113].

Sulfasalazine is commonly used to treat rheumatoid arthritis and reduces TNF and prostaglan-

din synthesis, providing therapeutic benefits [114]. Titanium dioxide-based drugs can reduce

the risk of tumorigenesis and enhance cancer treatment [115]. The effect of a drug on the body

and how well it works depend on how well it binds to the specific proteins and how much it

alters the network of protein-protein and protein-chemical interactions. The concentration,

strength, and distribution of target proteins in tissues affect the effectiveness of the medicine

[116]. Chemokines and cytokines are crucial for organizing and guiding the immune cells into
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the lungs during M. TB infection. Proper recruitment and positioning of these cells are essen-

tial for controlling bacterial growth without causing harmful inflammation. Examination of

cytokine/chemokine interaction and its conditional significance in infection and disease pro-

gression to understand TB pathogenesis [117].

In summary, the research provided a comprehensive analysis of the genetic underpinnings

of various diseases, emphasizing the interconnected nature of genetic, proteomic, and environ-

mental factors in disease pathology. This holistic approach opens new avenues for understand-

ing disease mechanisms and developing targeted therapies. But, this study exclusively focused

on bioinformatics analyses. Besides, we collect data from one source to identify drug compo-

nents that may be influencing performance.

Conclusion

This bio-informatics study focused on the links, pathways, and medication components

between PTB and NCDs, such as lung cancer, diabetes mellitus, Parkinson’s disease, silicosis,

chronic kidney disease, cardiovascular disease, and rheumatoid arthritis. It is discovered that

nine genes (NFKB1, IFNG, TNF, HMGB1, CXCL8, NLRP3, IL18, IL17A, and IL10) are con-

nected to the development and spread of the NCDs mentioned above when a person is already

diagnosed with PTB. Gene ontology and pathway analysis were utilized to discover the biologi-

cal processes and pathways that these genes were engaged in. The fact that these genes were

discovered in several pathways related to inflammatory response, immunological response,

and cytokine signaling implies that they play a role in how various disorders begin.

Additionally, five hub genes (NFKB1, TNF, CXCL8, NLRP3, and IL10) were identified as

potential therapeutic targets after analysis of a network of protein-protein interactions. These

genes were selected as they have many connections and are essential in the network. The find-

ings of this study provide critical information regarding potential therapeutic targets that

might be employed to treat common ailments. This research has significance for bio-informat-

ics research, clinicians, drug discovery, and other complicated fields of study. These potential

therapeutic targets may undergo several investigations, such as in vitro and in vivo. The devel-

opment of novel drugs that can target the mentioned genes in this study to treat the discussed

common disorders may benefit long-term chronic patients.
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