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The high incidence of multiple infections of cells by HIV sets the
stage for rapid HIV evolution by means of recombination. Yet how
HIV dynamics proceeds with multiple infections remains poorly
understood. Here, we present a mathematical model that describes
the dynamics of viral, target cell, and multiply infected cell sub-
populations during HIV infection. Model calculations reproduce
several experimental observations and provide key insights into
the influence of multiple infections on HIV dynamics. We find that
the experimentally observed scaling law, that the number of cells
coinfected with two distinctly labeled viruses is proportional to the
square of the total number of infected cells, can be generalized so
that the number of triply infected cells is proportional to the cube
of the number of infected cells, etc. Despite the expectation from
Poisson statistics, we find that this scaling relationship only holds
under certain conditions, which we predict. We also find that
multiple infections do not influence viral dynamics when the rate
of viral production from infected cells is independent of the
number of times the cells are infected, a regime expected when
viral production is limited by cellular rather than viral factors. This
result may explain why extant models, which ignore multiple
infections, successfully describe viral dynamics in HIV patients.
Inhibiting CD4 down-modulation increases the average number of
infections per cell. Consequently, altering CD4 down-modulation
may allow for an experimental determination of whether viral or
cellular factors limit viral production.

multiple infection � recombination � scaling � CD4 down-modulation �
mathematical model

In a significant shift from the prevalent paradigm of HIV
infection that individual target cells are generally infected with

single HIV virions, recent studies have demonstrated that mul-
tiple infections of cells occur far more frequently than single
infections both in vivo (1, 2) and in vitro (2–4). For instance,
CD4� cells from the spleens of two HIV-infected individuals
were found to harbor up to eight proviruses with three or four
proviruses per cell on average (1). Multiple infections of cells
with virions containing diverse genomes is a prerequisite for the
evolution of recombinant forms of HIV, which may be resistant
to multidrug therapy or that may escape specific host immune
responses (5–7). Of great interest, therefore, is to establish the
mechanisms that underlie the high incidence of multiple infec-
tions of cells by HIV and to understand their implications for
HIV evolution and therapy.

Following the observations by Jung et al. (1), recent studies
have examined quantitatively how multiple infections might be
orchestrated during HIV infection. Dang et al. (3) found that
cells are doubly infected in vitro at rates significantly higher than
expected from random infection events. At the same time, HIV
infection follows single-hit kinetics. Dang et al. (3) argue that cell
subpopulations with variable susceptibilities to infection present
a scenario where nonrandom frequencies of double infection
may arise despite infection following single-hit kinetics. Chen
et al. (4) suggest that the HIV-1 entry pathway contributes to the
frequency of multiple infections but is not solely responsible for
nonrandom infections. Levy et al. (2) investigated the kinetics of
multiple infections and found that the fraction of cells that are
coinfected with two distinctly labeled viruses scales with the
square of the total fraction of cells infected. Remarkably, this

scaling is independent of the relative viral and cell densities, the
time after the onset of infection, and whether the experiment is
conducted in vitro or in SCID-hu mice.

Standard models of HIV dynamics implicitly assume that
target cells are infected by single HIV virions (8, 9). These
models successfully describe viral load evolution in HIV infected
individuals and provide insights into HIV replication kinetics in
vivo and the effects of therapy (10–14). With growing evidence
of the predominance of multiple infections, however, the success
of standard models in describing HIV dynamics is intriguing.
Currently, no models describe HIV dynamics with multiple
infections.

In a recent study aimed at understanding the kinetics of HIV
recombination, Bretscher et al. (15) considered a framework
where cells are either singly or doubly infected by HIV. This
framework provides useful insights into HIV recombination,
challenging the widespread notion that recombination facilitates
the emergence of drug resistance. A more recent study presents
evidence for positive epistasis in HIV-1, further challenging the
fitness advantage conferred by recombination (16). The under-
lying description of multiple infections, however, remains to be
tested. More recently, we have developed a probabilistic descrip-
tion of multiple infections and CD4 down-modulation (17) that
accounted for the distribution of proviral copy number in
infected splenocytes measured by Jung et al. (1). We found that
in the chronically infected steady state, two scenarios are able to
quantitatively predict the observed distribution, one where
multiple viral genomes are acquired by target cells in a series of
sequential infectious contacts with cell-free virions and infected
cells, each contact resulting in the transmission of one genome,
and the other where multiple genomes are acquired in single
infectious contacts of target cells with infected cells. Whether
these scenarios also predict the kinetics of multiple infections
remains unknown.

In this work, we present a model of HIV dynamics with a
detailed description of multiple infections. The model captures
several experimental observations and provides key insights into
the mechanisms that underlie multiple infections of cells by HIV.

HIV Dynamics with Multiple Infections
We consider experiments where HIV virions are added to CD4�

target cells in vitro and the time evolution of the number of
multiply infected cells is followed. Let T be the number of CD4�

target cells, V the number of virions, and T*i the number of cells
(multiply) infected i times at time t after the onset of infection.
Typically, in in vitro experiments, virion numbers are several
orders of magnitude larger than target cell numbers. Under these
circumstances, infections by cell-free virions should dominate;
cell–cell transmission may be neglected (18). Building on stan-
dard viral dynamics models (8, 9), we write the time evolution of
virus and cell numbers in vitro as follows:
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dT
dt

� �� � ��T � k0VT, [1]

T*i �t� � �
0

t

k0V�t � s�T�t � s�exp���s�P� i , t �1, t � s�ds ,

[2]

dV
dt

� � �
i�1

�

NiT*i � cV. [3]

The initial conditions for these equations are T(0) � T0, T*i(0) �
0, and V(0) � V0, where T0 and V0 are the cell and virion
numbers, respectively, at the onset of infection.

In Eq. 1, � and � are the first-order birth and death rates of
target cells in vitro, and k0 is the second-order rate constant for
the infection of uninfected cells, i.e., with normal CD4 expres-
sion levels, yielding the rate k0VT of the formation of infected
cells. Eq. 1 has been shown to capture target cell dynamics in vitro
(19). The difference of this description from in vivo dynamics lies
in the birth process, which in in vivo settings includes a thymic
source (8, 9, 20) and possible density-dependent proliferation
(21) as opposed to the first-order birth term in Eq. 1.

Eq. 2 describes the evolution of multiply infected cell subpopu-
lations. In an infinitesimal interval of time ds near time t � s � 0,
where t � 0 marks the onset of the experiment, the number of
uninfected cells that become singly infected is k0V(t � s)T(t � s)ds.
We define the quantity P(i, t�1, t � s) as the probability that a cell
infected singly at a time t � s is multiply infected with i genomes
at time t, provided it survives the intervening interval of duration
s. The survival probability is exp(��s), where � is the death rate
of infected cells. In Fig. 1, we present a schematic of how a cell
infected singly at time t � 0 is multiply infected at later times. In
general, � will depend on the multiplicity of infection, i. Accu-
mulation of unintegrated DNA, seen by the host cell as DNA
damage, and the expression of toxic viral gene products induce
apoptotic and�or cytotoxic effects, which are expected to in-
crease � with i (22–24). In contrast, greater down-modulation of
CD4 and MHC class I molecules may promote immune evasion
and decrease � at higher i (25–27). How these competing effects
determine the dependence of � on i remains unknown. Here, as
an approximation, we assume that � is independent of i. The
integrand in Eq. 2 thus quantifies the fraction of cells first
infected at t � s that survive and possess i genomes at time t.
Integration from time 0 to t gives the total subpopulation of cells,
T*i(t), that are infected with i genomes at time t.

Note that in Eq. 2, we ignore the proliferation of infected cells
because the death rate of infected cells is nearly twice their
proliferation rate (19). Infected cell proliferation is easily incor-
porated, however, by replacing � in Eq. 2 with the net death rate,
i.e., the difference of the infected cell death and proliferation
rates.

Evolution of the free virion population is described by Eq. 3.
Cells infected with i genomes release Ni progeny virions during
the average infected cell lifetime, 1��. Free virions are cleared
with a first-order rate constant, c, which is assumed to include
natural decay and loss through infection. Letting Ni depend on
i constitutes a generalized description of viral production. Here,
because of the lack of precise information, we examine the
consequences of assuming that Ni is independent of i.

To evaluate the quantity P(i, t�1, t � s), consider a cell that is
first infected at time t � s. The probability that the cell is infected
again during an infinitesimal interval of time �� near �, where t �
s � � � t, is 1 � exp(�kV(�)��) � kV(�)��, where

k � k0exp���� � t 	 s�� td� . [4]

Eq. 4 quantifies the reduced susceptibility of the cell to infection
at time � due to CD4 down-modulation (22, 28, 29), which
appears to proceed exponentially with a characteristic timescale,
td, after the first infection of the cell (17,29) (see Supporting Text
and Fig. 6, which are published as supporting information on the
PNAS web site). Accordingly, k � k0 at � � t � s, and k3 0 as
� 3 �. The probability that the cell has i genomes at time � �
�� is then given by P(i, � � ���1, t � s) � P(i � 1, ��1, t �
s)kV(�)�� � P(i, ��1, t � s)(1 � kV(�)��), provided the cell
survives the interval ��. The first term on the right-hand side of
this equation is the probability that the cell has i � 1 genomes
at time � and is infected in the interval ��. The second term is
the probability that the cell has i genomes at time � and is not
infected in the interval ��. The interval �� is chosen to be
arbitrarily small so that at most one infection can occur during
the interval. Rearranging this equation, dividing by ��, and
letting �� 3 0, we get

d
d�

P�i, ��1, t � s� � 	P�i � 1, ��1, t � s� � P�i, ��1, t � s�
kV���,

[5]

where we define P(0, ��1, t � s) � 0. That a cell first infected
at t � s has exactly one genome at t � s gives the initial conditions
P(1, t � s�1, t � s) � 1 and P(i � 1, t � s�1, t � s) � 0.

Eqs. 1–5 present a model of HIV dynamics with multiple
infections. The equations are strongly coupled, and below we
develop a technique that simplifies their solution.

Consider the total population of infected cells,

T* � �
i�1

�

T*i .

Summing Eq. 2 over i, and recognizing that

�
i�1

�

P�i, t�1, t � s� � 1,

we get

T*�t� � �
0

t

k0V�t � s�T�t � s�exp���s�ds . [6]

Eq. 6 can be shown to be identical to

Fig. 1. Schematic of a target cell undergoing multiple infections by HIV. An
uninfected cell, T, is infected by a virion at time t � 0 and forms a singly
infected cell, T*1, which in turn is infected at times t1, t2, etc. to form doubly
infected cells, T*2, triply infected cells, T*3, etc. The infection rate of uninfected
cells is k0V(0), where k0 is the second-order infection rate constant in the
absence of CD4 down-modulation and V(t) is the viral load at time t. The rates
for subsequent infections are k(ti)V(ti), where k(ti) � k0exp(�ti�td), with td the
characteristic time for CD4 down-modulation. Infected cells die at rate �,
whereas uninfected cells die at rate �. (Not shown is the formation of new
target cells at rate � and the production and clearance of free virions according
to Eq. 3.)
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dT*
dt

� k0VT � �T*; T*�0� � 0. [7]

Simultaneously, Eq. 3 can be simplified by writing

�
i�1

�

NiT*i � N �
i�1

�

T*i � NT*,

where N is the average viral burst size for the total infected cell
population. Note that N is a constant in the limit where the burst
size is independent of the multiplicity of infection, i.e., Ni � N.
When the burst size depends on i, N is expected to vary with time.
Here, as an approximation, we assume that N remains constant.
Eq. 3 then becomes

dV
dt

� �NT* � cV. [8]

With this approximation, Eqs. 1, 7, and 8 can be solved
independently for V, T, and T*. Knowledge of V then allows the
straightforward solution of Eqs. 2 and 5 for T*i.

Model Calculations
We use the following representative parameter values for our
calculations, following in vitro estimates (19, 30): The birth and
death rate of target cells in vitro, � � 0.624 day�1 and � � 0.018
day�1; the death rate of infected cells, � � 1.44 day�1; the viral
burst size, N � 1000; and the clearance rate of free virions, c �
0.35 day�1. The infection rate constant k0 and the timescale of
CD4 down-modulation, td, are not well known, and we vary these
parameters to examine their influence on the dynamics of
multiple infections. Typical target cell numbers used in in vitro
experiments are T0 � 106, which we fix in our calculations. We
vary initial virion numbers over the experimental range, V0 � 108

to 1010 (2). (Thus, in a 1- to 10-ml sample volume, these values
yield cell and virion number densities of 105 to 106 ml�1 and 107

to 109 ml�1, respectively.)
In Fig. 2a, we present the time evolution of T, V, and T* by

solving Eqs. 1, 7, and 8 for k0 � 2 � 10�9 day�1 and V0 � 108.
Note that the solution is independent of td, the characteristic
time for CD4 down-modulation. Changes in td alter the distri-
bution of infected cells into subpopulations of multiply infected
cells but leave the size of the infected cell pool unaltered. We find
in Fig. 2 that T, V, and T* all evolve in two dominant phases, an
initial rise and a subsequent fall. To understand these phases, we
note that in the absence of infection (V � 0), Eq. 1 predicts that
T will monotonically increase at an exponential rate determined
by the difference in the birth and death rates, � � �. The initial
rise in T corresponds to the net proliferation of target cells. The
presence of infectious virus (V � 0) causes a loss in T and a
corresponding increase in T* at rate k0VT. The proliferation of
T initially outweighs this loss by infection. Eventually, virus
production from T* increases V sufficiently that the loss of target
cells by infection outweighs target cell proliferation. A drop in
T therefore results, which in Fig. 2a begins at t � 2 days. By t �
10 days, the population of target cells nearly vanishes. This drop
in T decreases the rate of formation of T*. Accordingly, a peak
in T* results at t � 3 days, after which T* decays asymptotically
exponentially at the death rate � (Fig. 2a). The drop in T*
diminishes virus production causing V to decay eventually at the
clearance rate, c.

To examine how this dynamics varies with V0, we let V0 � 1010.
Increasing V0 by two orders of magnitude drastically increases
the loss rate of target cells by infection (Fig. 2b). In t � 0.5 day,
the target cell pool is fully depleted and T* attains its asymptotic
decline at the exponential rate �. In Fig. 2 c and d, the same

calculations as in Fig. 2 a and b are shown but for a lower value
of k0 � 2 � 10�10 day�1. The dynamics is now considerably
slower than in Fig. 2 a and b, and we find that T* attains a
maximum at t � 6 days and 1 day, respectively (Fig. 2 c and d).

In all cases, T* exhibits two-phase dynamics with an initial rise
(note that T* � 0 at t � 0) and subsequent fall, with possible
minor variations. [The target cell pool in Fig. 2d does not vanish
but eventually rises again following predator–prey dynamics (9),
so T* also has a late rise.] This overall two-phase dynamics is
similar to the infected cell dynamics observed in in vitro exper-
iments (2). With the overall dynamics thus qualitatively mim-
icking experiments, we employ this description to investigate the
dynamics of multiple infections.

We present in Fig. 3 the evolution of T*i by solving Eqs. 2 and
5–8 for characteristic CD4 down-modulation times, td � 0.028,
0.28, and 2.8 days, respectively, with k0 � 2 � 10�9 day�1 and
V0 � 108 (as in Fig. 2a). We choose this range for td as
Nef-induced down-modulation appears to occur rapidly with a
timescale td � 0.028 day, but overall down-modulation may be
several orders of magnitude slower (see Supporting Text). In all
cases, T*i also display two-phase dynamics with an initial increase
and a subsequent fall. Changes in td, however, alter the distri-
bution of T*i significantly. For td � 0.028 day, we find that T*1 is
nearly two orders of magnitude larger than T*2, which in turn is
much larger than T*3, and so on, at all times. For td � 0.28 day,
the same trend, i.e., T*i � T*i�1, is maintained, but the difference
between T*i and T*i�1 is much smaller than for td � 0.028 day.
Indeed, after the maximum at t � 3 days, T*1 is only marginally
larger than T*2. For td � 2.8 days, not only is the difference
between T*i and T*i�1 still smaller before the maximum at t � 3
days, but the trend is reversed following the maximum and T*i 
T*i�1 up to t � 9 days.

These calculations describe how subpopulations of multiply
infected cells evolve during HIV infection. In particular, they
demonstrate that the fraction of multiply infected cells consis-
tently increases with the characteristic time for CD4 down-
modulation, td. When CD4 down-modulation is rapid, cells are

Fig. 2. Time evolution of virion (V), target cell (T), and total infected cell (T*)
numbers obtained by solving Eqs. 1, 7, and 8 for k0 � 2 � 10�9 day�1 and V0 �
108 (a); k0 � 2 � 10�9 day�1 and V0 � 1010 (b); k0 � 2 � 10�10 day�1 and V0 �
108 (c); and k0 � 2 � 10�10 day�1 and V0 � 1010 (d). The values of the other
parameters used are as follows: � � 0.624 day�1, � � 0.018 day�1, � � 1.44
day�1, N � 1,000, c � 0.35 day�1, and T0 � 106.
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largely singly infected. As td increases, cells down-modulate CD4
receptors at slower rates. Infected cells remain susceptible to
further infections for longer periods and therefore undergo more
infections on average.

We next examine whether the above dynamics captures the
scaling law observed in experiments. In Fig. 4, we present the
data in Fig. 3 as parametric plots of T*i(t) vs. T*1(t). Recall that
Levy et al. (2) found that coinfected cells, presumably mostly T*2,
are proportional to (T*1)2. (Note that T*2  T*1 in their exper-
iments except near peak infection so that T*1 � T*.) Here, we
reproduce this scaling but not under all conditions. Fig. 4a (td �
0.028 day) shows that T*i scales as (T*1)i for all i (i � 2, . . . ,5
shown) (as indicated by the black straight line power law
markers) during the first phase of T*i evolution when �2 � 105

 T*1  106. The growth rate of T*i is smaller than this power law
when T*1  2 � 105. When td � 0.28 day, the power law scaling,
T*i � (T*1 )i, also is observed for small values of T*1, i.e., T*1 
3–4 � 104, and again when �2 � 105  T*1  106 (Fig. 4b).
However, for intermediate values of T*1, i.e., 3–4 � 104  T*1 
105, growth rates smaller than the power law scaling are ob-
served. For td � 2.8 days, the power law scaling is observed for
all values of T*1 in the first phase (Fig. 4c). In the second phase
of T*i evolution, i.e., following its maximum, T*i scales linearly
with T*1. (An exception occurs in Fig. 4c, where a slight curvature
is introduced because of the higher susceptibility of infected cells
as td � 2.8 days.) This linear scaling arises because the uninfected

cell pool is nearly completely depleted and all infected cells die
at the rate �.

These calculations thus reproduce the scaling law observed by
Levy et al. (2) but also suggest that the scaling is not universal.
As shown in Supporting Text, power law scaling emerges from our
model under the following three circumstances: (i) at small times
after the onset of infection, t  min(ts, td, 1��), where ts is the
timescale over which V and T vary, td is the timescale for CD4
down-modulation, and 1�� is the average lifetime of infected
cells; (ii) at large times, t � teq, when T* is sufficiently large that
V is in pseudo-steady state with T*, i.e., V � N�T*�c, and when
CD4 down-modulation is rapid, t �� td; and (iii) at large times,
t � teq, and when CD4 down-modulation is slow, t  td. These
cases explain the various regimes observed in Fig. 4 (see
Supporting Text). To test the robustness of our finding, we
consider the case when k0 � 2 � 10�10 day�1, td � 0.28 day, and
V0 � 108 or 1010 (Fig. 5). As illustrated by the black power law
marker lines, we again find power law scaling regimes that are
well described by the three cases above (see Supporting Text).

Discussion
Standard HIV dynamics models implicitly assume that target
cells are infected with single HIV virions. However, growing
evidence both in vivo and in vitro points to the predominance of
multiple infections of cells in HIV infection. No models exist that
describe HIV dynamics with multiple infections. Here, we have
presented a model of HIV dynamics that incorporates a detailed

Fig. 3. Time evolution of multiply infected cell subpopulations (T*i ) obtained
by solving Eqs. 2 and 5 for parameter values used in Fig. 2a and td � 0.028 day
(a), 0.28 day (b), and 2.8 days (c).

Fig. 4. Parametric plots of T*i vs. T*1 with the data in Fig. 3 (symbols).
Traversing counter-clockwise on any curve, as T*i rises and falls, marks increas-
ing time. The solid black lines are power law markers, y � xi, to guide the eye.
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description of multiple infections and keeps track of events since
the time of first infection of cells. Such a description is essential
because after their first infection, cells down-modulate their
surface CD4 molecules, rendering further infections difficult. In
other words, cells retain ‘‘memory’’ of their first infection.
Because cells are infected asynchronously, describing multiple
infections requires keeping track of when each cell is first
infected. This goal is accomplished by using an integral equation
formalism (Eq. 2). Evolution of uninfected cell and viral pop-
ulations is described as in standard virus dynamics models. The
resultant integro-differential equation model predicts the dy-
namics of virus, uninfected cell, and all multiply infected cell
populations during HIV infection.

We have calculated the evolution of subpopulations of mul-
tiply infected cells under conditions that are representative of
recent in vitro experiments. In particular, we have considered the
experiments by Levy et al. (2), who observed that the fraction of
coinfected cells scales as the total number of infected cells
squared. Our model predicts this scaling under the assumption
that most coinfected cells are doubly infected and shows that
cells with higher multiplicities of infection also exhibit a power
law scaling with an exponent equal to the multiplicity of infec-
tion. [The experiments of Levy et al. (2) are unable to distinguish
cells with higher multiplicities of infection.] More importantly,
our calculations show that power law scaling is not universal but
depends on several parameters, namely the infectivity of the
virus population, relative virion and cell numbers, the CD4
down-modulation timescale, and for a given set of parameter
values on the time after the onset of infection. Indeed, parameter
values exist that yield the power law scaling over entire periods
of observation. The values of these parameters corresponding to
the experiments of Levy et al. (2) remain unknown and thus
preclude a direct comparison with their data.

Several other limitations arise when making a quantitative
comparison of our calculations with the experiments of Levy et

al. (2). First, not all cells in their cultures are susceptible to
infection by HIV. Thus, for the highest virion numbers used, the
maximum fraction of cells infected was �20% (2). In contrast,
we assume in our model that all cells are susceptible and close
to 100% of the cells are infected for high virion numbers.
Further, resting cells are activated in their experiments by
regular addition of the cytokine IL-2. More sophisticated de-
scriptions are necessary to account for resting and activated cells
and their effects on virus dynamics. Second, Levy et al. (2)
detected infected cells by fluorescence measurements. Cells are
infected with equal populations of yellow and cyan fluorescent
viruses, which presumably have identical infection and replica-
tion characteristics. Cells that are positive for both yellow and
cyan are counted as coinfected. Such a count places cells infected
with two cyan or two yellow viruses in the singly infected
subpopulation. Thus, the technique underestimates the fre-
quency of coinfection. Probabilistically, the number of cells
infected with two yellow viruses will be half the number of cells
infected with a yellow and a cyan virus. Thus, the measured
number of coinfected cells is only half the actual number of
coinfected cells, assuming that the number of cells infected with
more than two viruses is small. However, because this correction
is a numerical factor, the power law scaling still holds. Quanti-
tative comparisons of our calculations with the experiments of
Dang et al. (3) and Chen et al. (4), who determine odds ratios
characterizing multiple infections, are also not possible, because
they, too, detected coinfected cells by infecting cells with two
kinds of viruses and counting cells positive for both, which
excludes cells that are doubly infected with the same kind of virus
and errs by a factor of 2.

Despite these limitations, the qualitative agreement obtained
between our calculations and the measurements of Levy et al. (2)
is remarkable. The evolution of multiply infected cell popula-
tions in vitro follows two-phase dynamics, with an initial rise and
a subsequent fall. The duration of the first phase decreases upon
increasing the number of virions used to infect cells. The fraction
of infected cells that are coinfected increases from 1% at the
onset of infection to up to 40% (to within a factor of 2; see above)
at peak infection. All these observations are reproduced by our
model calculations in addition to the power law scaling, indicat-
ing that our model captures much of the underlying physics
governing the dynamics of multiple infections of cells by HIV.

In the in vivo measurements of Jung et al. (1), the average
multiplicity of infection was found to be �3–4. In the present
calculations and in the observations of Levy et al. (2), the number
of multiply infected cells is generally smaller than the number of
singly infected cells. Two possibilities could explain this discrep-
ancy. First, the virion numbers considered in the latter studies
may be lower than those found in vivo in lymphoid tissue.
Second, infection may proceed in vivo not only by means of
virus–cell interactions but also by means of cell–cell transmis-
sion, where cell–cell contact may result in the simultaneous
transmission of multiple viral genomes (4). In the experiments of
Levy et al. (2) the number of virions used was up to four orders
of magnitude higher than the number of cells, which suggests
that virion–cell infection may be the major mode of infection.
Also, our earlier analysis of the Jung et al. (1) experiments
showed that a model that includes cell–cell transmission captures
the observations of Jung et al. better than a model that only
considers infection by free virions (17).

Interestingly, Levy et al. (2) also conducted in vivo experiments
with SCID-hu mice, where they found that the power law scaling
remains valid. Thus, cell–cell transmission appears to affect
multiple infections quantitatively but not qualitatively. Indeed,
we show in our analysis (see Supporting Text) that the Poisson
process of infection, which captures the observations of Jung et
al. (1), also yields the power law scaling according to our model
when virion numbers are proportional to infected cell numbers

Fig. 5. Predicted change in multiply infected cell populations with time after
infection and corresponding time-parameterized curves showing how the
level of multiply infected cells, T*i, varies with the level of singly infected cells,
T*1. (a and b) Time evolution of multiply infected cell subpopulations (T*i ) (a)
and the corresponding parametric plots of T*i vs. T*1 for the parameter values
used in Fig. 2c and td � 0.28 day (b). (c and d) Similar plots for the parameter
values used in Fig. 2d and td � 0.28 day.
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(pseudo-steady state) and CD4 down-modulation is rapid com-
pared with changes in virion numbers. The proportionality
between virion and infected cell numbers suggests that the
scaling law predicted by our model might extend to the case
where infection also occurs by cell–cell transmission. Extension
of our model to incorporate cell–cell transmission is beyond the
scope of the present work.

Our model also suggests why standard viral dynamics models,
which ignore multiple infections, are able to describe viral load
evolution in HIV-infected individuals. Remarkably, when the
viral burst size, which is the number of progeny virions released
by an infected cell during its lifetime, is independent of the
multiplicity of infection, virus and cell dynamics in our model are
decoupled from the dynamics of multiple infections. The evo-
lution of virus, uninfected cell, and total infected cell numbers
(Eqs. 1, 7, and 8) is then identical to that predicted by standard
viral dynamics models (8, 9, 19). This similarity arises because by
producing the same number of progeny virions, multiply infected
cells contribute no more to the virion pool than singly infected
cells. Thus, replacing all multiply infected cells with singly
infected cells will not alter viral dynamics, which is in essence
what standard viral dynamics models do and therefore success-
fully capture viral load evolution.

Whether the burst size is independent of the multiplicity of
infection is unknown. However, if it is, it implies that virus
production is limited by cellular rather than viral trait(s). All
cellular and viral traits that control virus production have not
been identified. Our model suggests a way of determining

whether cellular or viral traits limit virus production. The CD4
down-modulation timescale, td, which determines the distribu-
tion of the infected cell population into subpopulations of
multiply infected cells, is governed by three viral genes, nef, env,
and vpu (28). If by altering the expression of one or more of these
genes td is altered, the average multiplicity of infection will
change. If the burst size is independent of the multiplicity of
infection, virus dynamics will be unaffected by this alteration. If,
however, the burst size depends on the multiplicity of infection,
virus dynamics will be altered significantly by changing td.
Experiments along these lines are yet to be conducted.

An important consequence of multiple infections of cells by
HIV is the emergence of recombinant forms of HIV, which
may be resistant to multidrug therapy or possess the ability to
evade specific host immune responses. The predominance of
multiple infections suggests that rampant recombination has
been a constant underlying force driving HIV evolution (1,
31). A mechanistic understanding of recombination is there-
fore crucial not only to understand HIV evolution but also for
the development of effective antiretroviral therapy. A limita-
tion has been the poor understanding of how multiple infec-
tions are orchestrated during HIV infection. Our model
provides a description of HIV dynamics with multiple infec-
tions and establishes a framework for a quantitative under-
standing of HIV recombination.
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