
www.jzus.zju.edu.cn; www.springer.com/journal/11585
E-mail: jzus_b@zju.edu.cn

Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)   2024 25(10):824-840

Odor representation and coding by the mitral/tufted cells in the 
olfactory bulb

Panke WANG1, Shan LI2, An’an LI2*

1School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China 
2Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical 
University, Xuzhou 221002, China

Abstract: The olfactory bulb (OB) is the first relay station in the olfactory system and functions as a crucial hub. It can 
represent odor information precisely and accurately in an ever-changing environment. As the only output neurons in the OB, 
mitral/tufted cells encode information such as odor identity and concentration. Recently, the neural strategies and mechanisms 
underlying odor representation and encoding in the OB have been investigated extensively. Here we review the main progress 
on this topic. We first review the neurons and circuits involved in odor representation, including the different cell types in the 
OB and the neural circuits within and beyond the OB. We will then discuss how two different coding strategies—spatial coding 
and temporal coding—work in the rodent OB. Finally, we discuss potential future directions for this research topic. Overall, this 
review provides a comprehensive description of our current understanding of how odor information is represented and encoded 
by mitral/tufted cells in the OB.
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1 Introduction 

As one of the earliest sensory modes to emerge 
during evolution, the olfactory system plays a crucial 
role in individual survival and social functioning in 
animals. In humans, olfaction dramatically affects phy‑
siological, psychological, and emotional states. Strik‐
ingly, olfactory dysfunction is highly correlated with 
many diseases. For example, olfactory dysfunction is 
one of the earliest symptoms in both Alzheimer’s dis‐
ease and Parkinson’s disease (Chen et al., 2021), two 
of the most common neurodegenerative diseases; ab‐
normal olfaction has also been indicated in autism and 
epilepsy (Kuruppath et al., 2023; Wu J et al., 2023); 
and more recently, olfactory dysfunction is considered 
one of the most important manifestations of corona‐
virus disease 2019 (COVID-19) infection (Kay, 2022), 

evidenced not only by patients’ subjective reports but 
also by rigorous and objective psychophysical experi‐
mental tests that offer precise quantifications (Bhat‐
tacharjee et al., 2020; Menni et al., 2020; Moein et al., 
2020). Given the prolonged impact of long COVID-
19 on individuals’ health, developing new methods to 
measure olfactory function for predicting COVID-19 
infection holds significant importance (Snitz et al., 
2021; Bhowmik et al., 2023). As a result, olfaction 
has received intense scrutiny from neuroscientists, 
physiologists, and pathologists over the last several 
decades.

The major task of any sensory system is to pre‐
cisely represent external and/or internal stimuli in the 
brain. For the olfactory system, this involves detect‐
ing chemical molecules called odorants using the re‐
ceptors in the nose and transmitting the processed neu‐
ral signals to the central olfactory regions of the brain 
(Ackels et al., 2021; Li et al., 2023; Verhagen et al., 
2023). Thus, to study how the olfactory system works, 
we need to address two major issues: (1) how the re‐
ceptors transduce different chemical stimuli to electri‐
cal neural signals; and (2) how the olfactory centers 
accurately encode these neural signals for olfactory 
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perception. Pioneering work by Buck and Axel (1991), 
together with their subsequent work and that of oth‐
ers, identified the rules by which olfactory receptors 
in the olfactory sensory neurons (OSNs) interact with 
odorants and how the OSNs represent odor informa‐
tion (Fleischmann et al., 2008; Hanchate et al., 2015; 
Kim et al., 2022; Shayya et al., 2022; Billesbølle et al., 
2023; Guo et al., 2023). Many studies have shed light 
on how odor information is represented in a number 
of olfaction-related areas, such as the olfactory bulb 
(OB), piriform cortex, anterior olfactory nucleus, lat‐
eral entorhinal cortex, and olfactory tubercle (Gadziola 
et al., 2015; Xiong and Wesson, 2016; Tsuji et al., 
2019; Aqrabawi and Kim, 2020; Li et al., 2020; Wang 
et al., 2020; Wesson, 2020; Martiros et al., 2022; 
Brunert et al., 2023; Wu TT et al., 2023). The OB is 
the most intensively studied of these areas. Here, we 
review the strategies underpinning how the OB en‐
codes odor information under different behavioral and 
brain states.

2 Neuronal and circuit bases of odor rep-
resentation in the OB 

The OB is the first relay station in the central ol‐
factory system and receives direct input from the OSNs. 
Anatomically, the OB has a laminar structure and con‐
tains multiple neuronal types, including at least gluta‐
matergic, γ-aminobutyric acid (GABA)ergic, and do‐
paminergic neurons. Mitral and tufted cells (M/Ts), lo‐
cated in the mitral cell layer and the external plexi‐
form layer, respectively, are the main output neurons 
of the OB (Mori et al., 1981, 1983; Shipley and En‐
nis, 1996; Li et al., 2020; Lyons-Warren et al., 2023). 
Their dendrites form synapses with OSN axon termi‐
nals in structures called glomeruli, which form the 
major anatomical feature of the glomerular layer. The 
axons of the M/Ts project to many higher olfactory 
centers, including the anterior olfactory nucleus, piri‐
form cortex, olfactory tubercle, and lateral entorhinal 
cortex, which are all considered part of the olfactory 
cortex. The major role of M/Ts is to transmit olfactory 
information from the OSNs to the olfactory cortex.

However, the M/Ts do more than passively con‐
vey this information: evidence suggests that they are 
also involved in the flexible processing of odor repre‐
sentations (Restrepo et al., 2009; Doucette et al., 2011; 

Kato et al., 2012; Chu et al., 2016; Jordan et al., 2018; 
Bhattacharjee et al., 2019; Wang et al., 2019; Ackels 
et al., 2021). The neural information transmitted by 
the M/Ts is dramatically modulated by neural circuits 
within the OB. At least two neural circuits mediate 
the neural representation of odor by M/Ts, one in the 
glomerular layer and the other in the external plexi‐
form layer (Fig. 1a). In the glomerular layer, three 
types of neurons have been identified as follows: 
(1) External tufted cells are glutamatergic neurons 
that provide both feedforward and feedback excitation 
to the M/Ts to augment the otherwise weak signal from 
the OSNs to the M/Ts (Pressler and Strowbridge, 
2022). (2) Periglomerular cells are GABAergic neu‐
rons. Some of them receive direct input from the 
OSNs and form presynaptic inhibitory synapses on 
the OSN terminals. Others receive indirect input from 
the external tufted cells and M/Ts and inhibit all of 
these. In general, periglomerular cells provide recur‐
rent inhibition of odor-evoked activity in M/Ts (Najac 
et al., 2015; Burton, 2017; Li et al., 2020; Mori and 
Sakano, 2021). (3) Superficial short-axon cells can be 
GABAergic and dopaminergic, or co-release both GABA 
and dopamine (Lyons-Warren et al., 2023). Although 
the number of superficial short-axon cells is small, 
they have a strong mediating effect on odor-evoked 
neural activity in the M/Ts. Most of the superficial 
short-axon cells (approximately 70%) receive input 
from the OSNs indirectly via external tufted cells, 
with a minority (less than 30%) receiving direct OSN 
input (Kiyokage et al., 2010; Burton, 2017). The cir‐
cuit role of superficial short-axon cells is to drive gain 
control and contrast enhancement of M/T activity via 
lateral inhibition (Li et al., 2020; Mori and Sakano, 
2021).

In the external plexiform layer, the dendrites of 
the granule cells—whose cell bodies are located in the 
granule cell layer—form synapse with the dendrites of 
the M/Ts, yielding a unique type of dendrodendritic 
synapse. Through these connections, granule cells pro‐
vide recurrent and lateral inhibition of M/Ts, and this 
circuit is critically involved in the encoding of odor 
identity and refinement information for complex odor 
discrimination by M/Ts (Abraham et al., 2010; Alonso 
et al., 2012; Markopoulos et al., 2012; Gschwend et al., 
2015; Mori and Sakano, 2021). Interestingly, besides 
granule cells, there are other types of interneurons in 
the granule cell layer (López-Mascaraque et al., 1986). 
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Although the anatomy and electrophysiological prop‐
erties of these cells have been identified, their func‐
tions are still largely unknown (Schoppa, 2006). For 
example, Blanes cells, a class of short-axon interneu‐
rons in the granule cell layer, are distinguished by 
their dendritic arborizations. While the neural circuits 
involved in mediating the neural activity of mitral 
cells have been extensively investigated (Pressler and 
Strowbridge, 2006; Schoppa, 2006), how they contrib‐
ute to the neural representation of odor information 
by mitral cells remains elusive. In addition, the external 
plexiform layer also contains a number of different 

interneurons. For example, parvalbumin (PV)-positive 
neurons inhibit the neural activity of M/Ts and are 
key regulators of gain control in the OB (Kato et al., 
2013; Miyamichi et al., 2013). Meanwhile, vasoactive 
intestinal peptide (VIP)-positive interneurons form 
monosynaptic GABAergic inhibitory connections with 
M/Ts, playing critical roles in odor processing and ol‐
factory behaviors (Wang et al., 2022). Additionally, so‐
matostatin (SST)-positive interneurons not only con‐
tribute to the neural activity of M/Ts and olfactory be‐
havioral performance, but are also critically involved 
in perceptual learning deficits in an early-life stress 

Fig. 1  Anatomical basis for spatial coding in the olfactory bulb (OB). (a) Structure of the OB. Left: photomicrograph of 
a coronal section through the mouse OB; Right: diagram of the OB network. Reprinted from Li et al. (2020) by permisson 
of John Wiley & Sons. (b) A schematic diagram illustrating the projections from the olfactory epithelium to the OB. 
Reprinted with the permission from Mori et al. (2006). Copyright 2006 The American Physiological Society. ONL: 
olfactory nerve layer; GL: glomerular layer; EPL: external plexiform layer; MCL: mitral cell layer; IPL: internal 
plexiform layer; GCL: granule cell layer; PG cell: periglomerular cell; ET cell: external tufted cell; SA cell: short-axon 
cell; dGC: deep granule cell; sGC: superficial granule cell; Glu: glutamate; GABA: γ-aminobutyric acid.
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mouse model (Nocera et al., 2019; Pardasani et al., 
2023). Thus, these neurons likely participate in odor 
representation by shaping the neural responses of 
M/Ts.

Besides direct input from the OSNs, the OB re‐
ceives intensive inputs from other brain centers. In 
general, these inputs can be categorized as feedback 
projections from the olfactory cortex and modulatory 
centrifugal innervations, such as cholinergic inputs 
from the horizontal limb of the diagonal band of Bro‐
ca (HDB), noradrenergic inputs from the locus coeru‐
leus, and serotonergic inputs from the dorsal raphe nu‐
cleus (Fig. 2) (Fletcher and Chen, 2010; Linster and 
Cleland, 2016; Li et al., 2020; Brunert and Rothermel, 
2021; Chae et al., 2022; Zhou et al., 2022). The most 
intensive feedback inputs to the OB are from piriform 
cortex and the anterior olfactory nucleus (Chae et al., 
2022). While the projections to the OB from the piri‐
form cortex are ipsilateral, the projections from the 
anterior olfactory nucleus are bilateral. Functionally, 
piriform-to-OB projections have a weak effect on the 
spontaneous activity of M/Ts but amplify the odor-
evoked inhibition of M/Ts via complex microcircuits 
within the OB involving granule cells and short-axon 

cells (Boyd et al., 2012; Mazo et al., 2022). The ante‐
rior olfactory nucleus-to-OB projections strongly inhibit 
both spontaneous and odor-evoked activity in M/Ts 
(Markopoulos et al., 2012). Overall, the general effect 
of these feedback inputs to the OB is to decrease the 
amplitude of odor-evoked responses (Boyd et al., 2012; 
Markopoulos et al., 2012; Chae et al., 2022; Mazo et al., 
2022). It has also been suggested that these inputs 
shape the encoding of odor information by M/Ts under 
different brain states, but more direct and detailed evi‐
dence for this is needed.

Projections from the HDB are the major source 
of centrifugal cholinergic inputs to the OB. Besides 
cholinergic neurons, a subset of GABAergic neurons 
in the HDB also project to the OB. These different 
projections have different modulatory effects on neu‐
ral activity and odor representation in the OB M/Ts 
(Böhm et al., 2020). Interestingly, a subset of choliner‐
gic neurons co-express markers for GABA, indicating 
co-transmission of acetylcholine and GABA from the 
same HDB neurons to the OB (Case et al., 2017; 
Zhou et al., 2022). The function of cholinergic inputs 
to the OB is complex and likely state-dependent. Spe‐
cific optical activation of the cholinergic cell bodies 

Fig. 2  Schema of olfactory bulb (OB) circuit modulation by cortical feedback and centrifugal neuromodulators. (a) The 
OB receives cortical feedback from the anterior olfactory nucleus (AON) and the piriform cortex (PC). The AON innervates 
both the ipsilateral and the contralateral OB. AON glutamatergic inputs can excite mitral cells (MCs) directly and 
inhibit MCs via granule cells (GCs) and periglomerular cells (PGCs). The PC projects widely to the OB through 
glutamatergic innervation of short-axon cells (SACs), GCs, MCs, and PGCs. (b) The OB is modulated by serotonergic 
projections from the dorsal raphe nuclei (DRN) and medial raphe nuclei (MRN), noradrenergic projections from the 
locus coeruleus (LC), and cholinergic projections from the nucleus of the horizontal limb of the diagonal band (HDB). 
(c) Schema of neuromodulator release and receptor distribution in different layers of the OB. OSN: olfactory sensory 
neuron; ONL: olfactory nerve layer; GL: glomerular layer; EPL: external plexiform layer; MCL: mitral cell layer; IPL: 
internal plexiform layer; GCL: granule cell layer; ACh: acetylcholine; GABA: γ-aminobutyric acid; 5HT: serotonin; NA: 
noradrenaline.
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in the HDB has a general inhibitory effect on the neu‐
ral activity of M/Ts, but specific optical activation of 
the cholinergic axons that project to the OB has an 
excitatory effect on the M/Ts (Ma and Luo, 2012; 
Rothermel et al., 2014).

The noradrenergic inputs to the OB originate 
from the locus coeruleus. Although few studies have 
used specific manipulation of the noradrenergic neu‐
rons to investigate how they modulate M/T activity in 
the OB (Harley and Yuan, 2021), studies using electri‐
cal stimulation or pharmacological manipulation can 
provide some information (Manella et al., 2017). The 
effect of noradrenergic modulation on M/Ts is com‐
plex since both direct and indirect pathways are in‐
volved. The most obvious effect is a decrease in the 
spontaneous activity of M/Ts, but this enhances the 
signal-to-noise ratio of odor-evoked responses be‐
cause of a reduction in the intrinsic noise of the M/Ts’ 
activity (Manella et al., 2017). Further direct evidence 
is required to support the role of noradrenergic inputs 
in odor representation and encoding by M/Ts under 
different brain states, especially in awake, behaving 
animals.

Serotonergic neurons from the raphe nuclei send 
direct projections to the OB. These serotonergic in‐
puts dramatically modulate the activity of M/Ts. In 
contrast to the effects of cholinergic and noradrenergic 
modulation, the primary effect of serotonergic modu‐
lation is to increase the neural activity of the M/Ts 
(Brunert et al., 2016; Kapoor et al., 2016). It is still 
not clear whether and how these serotonergic inputs 
affect the neural representation of odors by M/Ts; 
however, since the serotonergic system is closely as‐
sociated with reward, it is likely that the divergent re‐
sponses of M/Ts to rewarded and unrewarded odors 
(Wang et al., 2019; Liu et al., 2020; Wang et al., 2020) 
are shaped by these serotonergic innervations.

Although some of the feedback and centrifugal 
modulation occur via direct innervation of M/Ts, most 
occur indirectly via innervation of interneurons within 
the OB, complicating the overall effects. Such com‐
plex modulation may be important for the precise rep‐
resentation of odors under different brain states, such 
as increased or decreased attention, with prior expo‐
sure to the situation or during learning. The centrifu‐
gal modulatory projections are particularly intricate 
because some individual neurons innervate other ol‐
factory centers as well as the OB. These other centers 

include the piriform cortex and the anterior olfactory 
nucleus, which themselves send feedback to the OB, 
as discussed above. Many studies have focused on the 
separate roles of feedback and centrifugal inputs in 
the activity of M/Ts, but further studies are needed to 
investigate how these different modulatory systems 
cooperate. In particular, mathematical models that can 
predict the network effects of the various inputs should 
be established.

3 External factors that affect odor repre-
sentation in the OB: odor plume and animal 
sniffing

In natural and open environments, the release of 
odorants into the air results in a plume that extends 
and widens downstream of the source. Turbulent plumes 
lead to rapid concentration fluctuations that contain 
rich information about the olfactory scenery (Szyszka 
et al., 2012; Ackels et al., 2021; Dasgupta et al., 
2022). Therefore, to precisely perceive the odorants in 
everchanging natural environments, the olfactory sys‐
tem must have the ability to represent odor informa‐
tion using the temporal structure of the odor plumes. 
This ability has been confirmed in both insects and ro‐
dents (Szyszka et al., 2012; Ackels et al., 2021; Das‐
gupta et al., 2022). For example, honey bees can use a 
temporal difference of 6 ms in stimulus coherence for 
successful odor-object segregation (Szyszka et al., 
2012, 2023). Mice have the ability to discriminate dif‐
ferences of 10 ms in duration (Li et al., 2014), as well 
as 10 ms input shifts in the sniff cycle (Smear et al., 
2011). Interestingly, mice can also discriminate tem‐
poral correlations in rapidly fluctuating odors at fre‐
quencies of up to 40 Hz. Such correlation information 
can be readily extracted from the neural activity of 
M/Ts in the OB (Ackels et al., 2021).

Another important factor that affects the odor 
representation of M/Ts is respiration/sniffing (an active 
odor-sampling process with a respiration frequency 
higher than 4 Hz) (Wachowiak, 2011). In rodents, sniff‐
ing coordinates with other orofacial motor actions such 
as the movement of whiskers, chewing, licking, and 
lateral displacement of the nostrils (Moore et al., 
2014). Exploratory sniffing is reliably evoked by novel 
odorant stimuli and is dominant during rapid odor‐
source localization (Khan et al., 2012). An investigation 
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by one rat towards the facial region of a conspecific 
often elicits a decrease in sniffing frequency in the 
conspecific, indicating that they use sniffing to com‐
municate information (Wesson, 2013). Sniffing also 
plays a critical role in patients; for example, it has 
been reported that sniff responses signal conscious‐
ness in unresponsive patients with brain injuries, pro‐
viding an accessible tool to determine whether the pa‐
tient is unresponsive or perhaps minimally conscious 
(Arzi et al., 2020).

It is not surprising that respiration/sniffing plays 
a key role in the representation of odors in the olfactory 
system since the sampling of odorants—and the 
subsequent interaction between the odorants and OSN 
olfactory receptors—is not continuous but gated by 
the rhythm of the respiration/sniffing. Both the activ‐
ity of OSNs and the transmission of neural signals 
from OSNs to the M/Ts are modulated by respiration/
sniffing (Patterson et al., 2013; Jordan et al., 2018). 
Mice can discriminate between identical sensory stimuli 
based on their timing within the sniff cycle, distin‐
guishing differences as small as 10 ms, suggesting that 
the mammalian olfactory system can interpret tempo‐
ral patterns of neural activity, which may be critical 
for rapid and accurate odor recognition (Smear et al., 
2011). Strikingly, the theta oscillations in the local 
field potential (LFP) in the OB are tightly coupled to 
the frequency of respiration/sniffing (Kay et al., 2009). 
As we will discuss below, the phase of respiration/
sniffing provides a critical time frame for the firing 
of action potentials (spikes) in the M/Ts, and this, in 
turn, critically shapes the encoding of odor informa‐
tion by M/Ts.

4 Odor information encoded in olfactory maps 
in the OB 

How is odor information, such as odor identity, 
represented by the olfactory output neurons, the M/Ts? 
Since this question is related to the organization of the 
OSNs and the projections from the OSNs to the OB, 
we first briefly review some important related proper‐
ties of the OSNs. In the olfactory epithelium, olfac‐
tory receptors are expressed in the OSNs and interact 
with odorants that are sampled by respiration/sniffing. 
There are approximately 1000 different types of olfac‐
tory receptors in the mice and approximately 350 in 

humans; typically, only one type of receptor is ex‐
pressed in each OSN (Fig. 1b) (Mori et al., 2006; 
Mori and Sakano, 2011), but for some non-G-protein-
coupled receptors, more than one type of receptor can 
be expressed (Greer et al., 2016). OSNs that express 
the same olfactory receptor project their axons to two 
mirror-image glomeruli in the OB, one on the medial 
side and the other on the lateral side. This projection 
mode is unique among the sensory systems and is 
thought to play a role in odor representation. In each 
glomerulus, the axons from the OSNs express the same 
olfactory receptor synapse with the M/Ts and each M/T 
receives input from only one glomerulus. The glomer‐
uli are functional units in the OB for odor representa‐
tion (Xu et al., 2000). Studies using optogenetics to 
selectively activate individual glomerulus have shown 
that mice can perceive stimulation from a single glom‐
erulus, even against a background of other odors (Smear 
et al., 2013). Additionally, variations in the amplitude 
and timing of glomerular stimulation affect odor per‐
ception. This suggests that individual glomerulus can 
convey unique signals that influence behavior based 
on the identity, intensity, and timing of the input 
(Smear et al., 2013). These findings indicate that 
glomeruli utilize a combinatorial code based on mul‐
tiple signal modalities, enabling complex and nu‐
anced odor detection and discrimination. However, it 
remains unclear whether, at the output level, the 
M/Ts also employ such a combinatorial encoding strat‐
egy to represent odor identity, intensity, and timing 
simultaneously.

The information flow from the OSNs to the M/Ts 
is highly convergent since the ratio of OSNs to M/Ts 
is approximately 5000:1 (Mori et al., 2006). Within a 
glomerulus, there are several thousand converging 
OSN axons, but dendrites from only 10–20 mitral 
cells and 50–70 tufted cells. The olfactory epithel‑
ium in rodents is organized into four distinct zones 
(Ressler et al., 1993; Mori et al., 1999). A given odor‐
ant receptor is expressed by OSNs located within one 
zone. These OSNs, which share a common receptor 
type, are broadly distributed throughout their respec‐
tive zones in the epithelium. Their axons then con‐
verge onto several anatomically consistent glomeruli 
situated in the corresponding zone of the OB (Fig. 1b) 
(Mori et al., 2006). As a result, OSNs located in the 
ventral and lateral parts of the nasal turbinate pro‑
ject to the medial and lateral glomeruli of the OB, 
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respectively; OSNs located in the central channel of 
the nose and more peripheral or ventral parts project 
to the dorsal and ventral glomeruli of the OB, respec‐
tively (Astic and Saucier, 1986; Schoenfeld et al., 
1994; Johnson and Leon, 2007). Overall, it is clear 
from the projection properties that there is an odor 
map in the OB that reflects the activity of odorant-
activated OSNs in the olfactory epithelium, and the 
existence of this odor map is highly conserved across 
species.

It has been hypothesized that information about 
odors is encoded in the OB via this odor map (Sharp 
et al., 1975; Johnson et al., 1998; Rubin and Katz, 
1999; Xu et al., 2000; Mori et al., 2006; Johnson and 
Leon, 2007; Zhu et al., 2022). With a spatial coding 
strategy, information about odor identity and odor con‐
centration can both be represented in the spatial pat‐
tern of activated glomeruli in the OB (Xu et al., 2000; 
Johnson and Leon, 2007). Although Adrian (1950) 
concluded that different odorants could activate differ‐
ent parts of the OB as early as 1950 using multi-site 
electrophysiological recordings, the first direct evi‐
dence for an OB odor map occurred in 1975 with the 
mapping of odor-evoked foci in the whole OB by 
2-deoxyglucose (2-DG) uptake (Sharp et al., 1975). 
However, this mapping method lacks temporal infor‐
mation; that is, it does not include any information on 
how the odor map evolves during odor stimulation. 
Optical imaging methods, including both intrinsic opti‐
cal responses and voltage- or calcium-sensitive dyes, 
have excellent temporal resolution but can only image 
odor responses in the dorsal and lateral parts of the OB 
(Spors et al., 2006; Johnson and Leon, 2007; Wachow‐
iak et al., 2013; Leong and Storace, 2024). Function‐
al magnetic resonance imaging (fMRI) has proven 
helpful for imaging odor maps in the OB: this method 
has good spatial and temporal resolution, can be used 
to image the entire OB, and can monitor activation 
maps during and after odor stimulation (Xu et al., 
2003; Poplawsky et al., 2023).

Applying these and other mapping methods has 
revealed several characteristics of the odor map and 
related spatial coding (Xu et al., 2000; Mori et al., 
2006; Johnson and Leon, 2007). First, the glomerulus 
is the functional unit of the odor maps. This property 
has been confirmed by 2-DG uptake and fMRI map‐
ping (Johnson et al., 1998; Xu et al., 2003). Second, 
the activation map for a given odorant has constant 

topographic features across animals for the same ex‐
perimental conditions. However, odor-evoked patterns 
can change under different experimental conditions, 
suggesting that the odor maps are dynamic and re‐
sponsive to other functional properties such as experi‐
ence, adaptation, and odor history (Schafer et al., 
2005; Chu et al., 2016). Third, data indicate that dif‐
ferent but overlapping foci are induced by different 
odorants. This observation has given rise to different 
odorants (Uchida and Mainen, 2003; Abraham et al., 
2004; Bhattacharjee et al., 2019). Fourth, as well as 
odor identity, odor maps can contribute to the encod‐
ing of odor concentration. At weak concentrations, 
odorants often activate just one or a few glomeruli 
(Abraham et al., 2014; Wilson et al., 2017; Chong et al., 
2020). However, recent studies suggest that as the 
concentration of an odor increases, leading to the acti‐
vation of a greater number of olfactory glomeruli, the 
glomeruli activated at lower concentrations are acti‐
vated earlier in time (Wilson et al., 2017; Chong et al., 
2020). Consequently, these earliest activated glomeruli 
represent the type of odor and are capable of encoding 
the odor identity across varying concentrations (for de‐
tails, see “primacy code” below). These changes in 
the odor map with different odor concentrations are 
correlated with perceptual changes. Overall, the spa‐
tial coding strategy has a solid structural and anatomi‐
cal basis and is supported by a large body of experi‐
mental data, especially from mapping techniques.

5 Timing of neural activity provides abundant 
information for odor representation and 
encoding 

Next, we discuss a different strategy used by M/Ts 
to encode odor information: temporal coding. First, 
we briefly introduce some properties of spontaneous 
and odor-evoked neural activities in the OB. M/Ts show 
strong spontaneous firing without odor stimulation, 
even when the animals are anesthetized (Li et al., 
2011). As mentioned above, firing in these cells is 
highly coupled with the inhalation phase of respiration/
sniffing. When odors are presented to anesthetized 
animals, increases in the firing rate of M/Ts are com‐
monly observed; however, when odors are presented 
to awake, behaving animals, the responses are com‐
monly weak and even inhibitory (Rinberg et al., 
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2006). Compared with mitral cells, tufted cells often 
show odor-evoked firing earlier in the sniffing cycle 
(Fukunaga et al., 2012).

In addition to M/T spikes, electrodes placed in or 
near the mitral cell layer also pick up the LFP. Four 
bands of oscillations are usually filtered from the raw 
LFP (Fig. 3) (Li et al., 2011; Liu et al., 2020). Theta 
oscillations (approximately 2–12 Hz) tend to be highly 
correlated with respiration/sniffing and are considered 
to play an important role in sensorimotor performance 
(Sheriff et al., 2021). Beta oscillations (approximately 
15–35 Hz) can be elicited by odors in both anesthe‐
tized and awake states (Li et al., 2011; Liu et al., 
2020). In behaving rodents, beta oscillations are often 
induced by odorants in learning or odor-sensitization 
paradigms or in response to predator odorants such as 
2,3,5-trimethyl-3-thiazoline (TMT) (Kay et al., 2009). 
Beta oscillations are likely generated by the neural cir‐
cuits between the OB and the olfactory cortex since 
the beta oscillations disappear when these inputs to 
the OB are blocked (Osinski et al., 2018). Low gamma 
oscillations (35–65 Hz) can be elicited by odor‐
ants in anesthetized rodents but are rarely evoked in 
awake, behaving animals (Li et al., 2011; Liu et al., 
2020). This oscillation band may be closely related to 
brain states since it can be an excellent indicator of 
anesthetized versus awake conditions and different 
sleep stages (Bagur et al., 2018). High gamma oscilla‐
tions (65–90 Hz) are coupled to the theta oscillations 

and respiration/sniffing and often arise at the peak of 
the inhalation phase (Kay et al., 2009; Peace et al., 
2024). High gamma oscillations are thought to be gen‐
erated by neural circuits within the OB, specifically, 
the reciprocal connections between M/Ts and granule 
cells. Odor stimulation often evokes increased high 
gamma responses under anesthesia (Li et al., 2011) 
but decreased responses in the awake state (Liu et al., 
2020). High gamma oscillations are critically involved 
in olfactory-related learning (Kay et al., 2009). Over‐
all, the different oscillations in the OB all play import‑
ant roles in odor detection, discrimination, and olfactory-
related learning. The representation and encoding of 
odorants may also provide a critical time frame for 
spikes that is relevant for temporal coding (Li et al., 
2015).

One feature of neural activity that can be used for 
the temporal coding of odor information is the spik‐
ing latency (Uchida et al., 2014). As discussed above, 
odor-evoked spikes in M/Ts often appear at a certain 
phase in the respiration/sniffing cycle. The latency be‐
tween sniffing onset (or the onset of the associated 
LFP oscillations) and the appearance of spiking may 
provide information on odor concentration and identity 
(Junek et al., 2010). While there is some indirect evi‐
dence to support this coding strategy, one study in lo‐
custs indicates that the spiking latency with respect to 
beta oscillations does not support the coding of odor 
concentration (Stopfer et al., 2003). More evidence 

Fig. 3  Diagram showing the electrophysiological signals recorded in the olfactory bulb (OB) (spikes, raw local field 
potential (LFP), and four LFP frequency bands) and the respiration/sniffing signals recorded from the nasal cavity. Reprinted 
from Liu et al. (2020) with kind permission from Springer Nature. OE: olfactory epithelium.
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will be needed to confirm that the information used is 
spiking latency rather than firing rate.

A second feature that can be used for temporal 
coding is the firing pattern. In awake rats, although 
odorants rarely evoke marked changes in the firing rate 
in M/Ts, they might evoke changes in firing patterns 
across a particular time window (Cury and Uchida, 
2010). The respiration/sniffing cycle and the associated 
LFP oscillations are good candidates for such a time 
window. Indeed, the fine temporal structure within a 
respiration/sniffing cycle has been reported to carry 
information on odor identity (Cury and Uchida, 2010). 
Data from awake, behaving rats indicate that odor de‐
coding performance is significantly improved if the 
sub-sniff temporal structure is considered (Fig. 4) 
(Cury and Uchida, 2010). This decoding performance 
is largely better than that obtained from the firing rate 
or from the latency to the first spike with respect to 
inhalation onset. Besides the sniffing cycle, other cy‐
cles, such as those in the beta or gamma oscillations, 
could form the temporal framework for fine firing pat‐
terns that convey odor information. For example, in 
mice performing a go/no-go task, gamma oscillation-
coupled firing has been reported to carry information 
about both odor value and odor identity (Li et al., 2015).

Just as a single M/T responds to many odorants, 
a specific odorant can activate an ensemble of M/Ts 

(Uchida et al., 2014). Thus, the response dynamics 
from an ensemble of M/Ts can provide abundant in‐
formation on odor identity. With prolonged odor stimu‑
lation, the dynamics of M/T ensembles can change 
immediately after odor onset. The temporal dynamics 
vary among odorants and can be used to decode the 
identity of the odorants. This coding strategy has been 
confirmed in the principal neurons of locusts and in 
M/Ts of behaving rats and mice (Stopfer et al., 2003; 
Bathellier et al., 2008; Gschwend et al., 2015).

Finally, a new coding strategy has been proposed 
for concentration-invariant odor identification, termed 
“primacy coding” (Fig. 5) (Wilson et al., 2017). In 
this strategy, an initial weak concentration of a specific 
odorant will only activate a few glomeruli that receive 
inputs from the most sensitive olfactory receptors for 
this odorant. These first few activated glomeruli thus 
encode the odor identity. As the concentration in‐
creases, other less sensitive glomeruli are also activated 
but with longer response latencies. Therefore, while 
the earlier or primary set of glomeruli encodes the 
odor identity, the activity in the later-recruited glomeruli 
provides information only on other aspects of the 
odorant, such as concentration. This coding strategy 
has been confirmed by optogenetic masking of the 
signals in the few earliest activated glomeruli versus 
later-recruited glomeruli (Chong et al., 2020). It is 

Fig. 4  Firing of mitral/tufted cells with respect to the sniffing cycle for encoding odor information. Reprinted from Cury 
and Uchida (2010). Copyright 2010, with permission from Elsevier. Top: raster plots of spikes from a representative 
mitral/tufted cell exposed to four different odorants (colors). Trials are aligned by the onset of the first odor inhalation; 
the colored shading indicates the first respiration cycle after odor onset, with the darker shading corresponding to the 
inhalation period. Bottom: corresponding peri-event time histograms (PETHs). Odors: (a) 1-hexanal; (b) ethyl tiglate; 
(c) butyraldehyde; (d) R-(−)-2-octanol.
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found that neurons activated earlier in a sequence 
have a more significant impact on perception than 
those activated later. This suggests a “primacy effect” 
where the initial part of the sensory input carries more 
weight in the perceptual process. Interestingly, the per‐
ceptual relevance of neuron activation timings is more 
related to their sequence relative to each other rather 
than to external rhythms such as the sniffing cycle 
(Chong et al., 2020). Finally, a template-matching 
computational model that effectively predicts percep‐
tual outcomes based on the timing and sequence of 
neural activations demonstrates that the brain matches 
incoming sensory information against learned tem‐
plates, focusing on the relative timing within activa‐
tion sequences (Chong et al., 2020).

6 Concluding remarks and future directions 

As the first processing center in the olfactory 
system, the OB plays a crucial role in the encoding, 
processing, and transmission of odor information. It 
has the ability to precisely encode odor information in 
different internal states and external environments. 

Although the spatial coding strategy is supported by 
solid anatomical and imaging data, it is unclear how 
these maps are interpreted by downstream cortical re‐
gions since, to date, no evidence suggests that such an 
odor map exists in the piriform cortex or the anterior 
olfactory nucleus, which are the major output targets 
of the OB. The temporal coding strategy does not use 
the firing rate but focuses on temporal features of 
spiking, such as the latency, pattern, and trajectory of 
neuron ensembles with respect to a specific temporal 
framework, such as the respiration/sniffing cycle or 
LFP oscillations. Although this strategy can faithfully 
encode odor information, such as odor identity, under 
some circumstances, how the OB uses this strategy to 
accurately represent different odorants under ever-
changing states remains elusive. Therefore, more work 
is needed to investigate how these coding strategies 
are implemented in specific situations. Here, we pres‐
ent some points regarding possible future developments.

As discussed above, a distributive representation 
of neurons in the sensory epithelium is converted into 
a topographical map in the OB, which is the basis of 
the spatial coding in the OB. However, downstream 
of the OB, the piriform cortex discards this spatial 

Fig. 5  Schematic diagram illustrating the primacy coding of odor identity. Reprinted from Wilson et al. (2017). (a) Example 
of the activity in glomeruli for three different odor concentrations. The total number of active glomeruli increases as the 
odor concentration increases. (b) Temporal profiles of the odor concentration in the nose during inhalation for three 
different odor concentrations. (c) Temporal sequence of glomerulus activation for the three different odor concentrations. 
(d) Schematic diagram demonstrating the effect of an optogenetic mask on temporal sequences when presented late and 
early in the odor-evoked temporal pattern.
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order, as it has been extensively reported that axons 
from individual glomerulus project diffusely to the 
piriform without apparent spatial preference (Ghosh 
et al., 2011; Miyamichi et al., 2011; Sosulski et al., 
2011), and odor information is encoded by ensem‐
bles of coordinately active neurons distributed across 
the piriform cortex without topographic organization 
(Stettler and Axel, 2009; Roland et al., 2017). This 
raises the question of how the downstream piriform 
cortex, without topography, transforms information 
from the OB that has well-defined topography. It has 
been suggested that at the output level of the OB, 
after being processed by the circuits both within the 
OB and from other centers, such as the feedback and 
centrifugal innervations, the odor-evoked neural activ‐
ity of M/Ts that contain critical information about odor 
identity shows pattern decorrelation (Laurent, 2002; 
Wiechert et al., 2010; Friedrich and Wiechert, 2014; 
Gschwend et al., 2015). Such a pattern decorrelation 
can be easily detected by distributed clusters in the 
piriform cortex and benefits the classification and 
storage of information by associative networks in the 
piriform cortex (Friedrich and Wiechert, 2014). Re‐
cently, a tabula rasa model for cortical olfactory pro‐
cessing has been established, in which odor represen‐
tations in the piriform cortex only achieve behavioral 
significance through learning and neural plasticity 
(Choi et al., 2011; Meissner-Bernard et al., 2019; 
Schoonover et al., 2021). In addition, numerous com‐
putational models have suggested that the transforma‐
tion of encoding from the OB to the piriform cortex 
occurs when distributed neurons in the piriform cor‐
tex process information from the OB based on the piri‐
form cortex’s complex neural circuits (Lysetskiy et al., 
2002; Kepple et al., 2019). Interestingly, recent studies 
using high-throughput tracing have revealed that neural 
projections to and from the piriform cortex do exhibit 
spatially structured connectivity (Wang et al., 2021; 
Chen et al., 2022; Diaz et al., 2023). While the details 
of this connectivity need further evidence, its function 
should be further identified in future studies.

Since a given odorant often activates a large 
number of M/Ts, odorant-related information is likely 
encoded by many neurons rather than a few. However, 
in most studies, spikes are sampled from only a very 
small number of M/Ts (usually 10–50 cells in each ani‐
mal) by 16- or 32-channel electrodes. Therefore, it will 
become important to utilize advanced large arrays of 

electrodes to sample spikes from a greater number of 
M/Ts simultaneously (e.g., 100 or more) to provide 
better information on how the M/Ts encode a specific 
odorant. Furthermore, if a large number of M/Ts are 
sampled from a single animal, we can evaluate how 
they encode odorants within that animal rather than 
needing to pool cells across a group of animals. By 
evaluating the decoding performance in each animal, 
we can assess the reliability of the coding strategy in 
individuals.

To evaluate the decoding performance of the 
M/Ts, a specific decoding model, such as a support 
vector machine (SVM) or logistic regression (LR), is 
used (Cury and Uchida, 2010). However, whether 
these models reliably reflect the real situation needs 
further confirmation. It will be helpful to develop new 
and better mathematical models in the future. Further‐
more, while decoding performance is evaluated of‐
fline in most studies, it is important to also calculate 
performance online with only a small delay. Such on‐
line calculations are also critical for the development 
of a bioelectronic nose, which is the subject of pio‐
neering work in the field (Zhuang et al., 2015, 2021; 
Gao et al., 2018; Liu MX et al., 2023). Recent techni‐
cal advances have allowed online decoding to be per‐
formed within a few milliseconds of odor delivery 
(Wu YJ et al., 2023).

For a full understanding of the olfactory system, 
we must also elucidate how odor information is en‐
coded beyond the OB in the downstream olfactory 
cortex. Although some studies have shed light on the 
circuits and coding strategy in the piriform cortex 
(Bolding and Franks, 2018), more studies should be 
performed in other olfactory centers, such as the ante‐
rior olfactory nucleus and lateral entorhinal cortex 
(Liu PL et al., 2023). Finally, recent studies have ex‐
plored neural activity in human olfactory centers via 
intracranial electroencephalogram (EEG) recordings 
in patients and have demonstrated a relationship be‐
tween specific oscillations, such as theta oscillations, 
and olfactory perception (Jiang et al., 2017; Yang et al., 
2022). Further studies are required to investigate how 
spikes in these centers encode odor information in hu‐
mans and nonhuman primates.
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