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Abstract: Brain signals refer to electrical signals or metabolic changes that occur as a consequence of brain cell activity. Among 
the various non-invasive measurement methods, electroencephalogram (EEG) stands out as a widely employed technique, 
providing valuable insights into brain patterns. The deviations observed in EEG reading serve as indicators of abnormal 
brain activity, which is associated with neurological diseases. Brain‒computer interface (BCI) systems enable the direct 
extraction and transmission of information from the human brain, facilitating interaction with external devices. Notably, the 
emergence of artificial intelligence (AI) has had a profound impact on the enhancement of precision and accuracy in BCI 
technology, thereby broadening the scope of research in this field. AI techniques, encompassing machine learning (ML) and 
deep learning (DL) models, have demonstrated remarkable success in classifying and predicting various brain diseases. This 
comprehensive review investigates the application of AI in EEG-based brain disease diagnosis, highlighting advancements 
in AI algorithms.
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1 Introduction 

Brain–computer interface (BCI) technology rep‐
resents a significant advancement within the field of 
neuroscience and biomedical engineering, as it facili‐
tates a direct interface between the human brain and 
external devices. This technology has been used in 
various domains, including neurorehabilitation (Kwak 
et al., 2015), disabled motor assistance (Huang et al., 
2012), and virtual reality (Lotte et al., 2012). Notably, 
BCI holds immense potential in brain disease diagnosis, 
offering a promising alternative to conventional diag‐
nostic approaches that frequently necessitate invasive 
procedures for biomarker collection or costly imaging 

techniques. Moreover, these methods encounter the 
obstacles of real-time monitoring and early detection 
capabilities. Ever since Hans Berger successfully re‐
corded the first human electroencephalogram (EEG) in 
1924, EEG has evolved into an indispensable tool for 
identifying brain diseases. By continuously capturing 
the brain’s electrical activity, EEG surpasses other 
BCI modalities in terms of being non-invasive and 
cost-effective and possessing a high temporal resolu‐
tion. EEG technology can provide detailed informa‐
tion about brain function, and the variations in EEG 
readings serve as indicators of abnormal brain activity 
associated with neurological disorders.

Additionally, computer-aided diagnosis (CAD) has 
emerged as a potentially effective detection tool. CAD 
utilizes artificial intelligence (AI) to automatically 
process and analyze medical data. The integration of 
machine learning (ML) and deep learning (DL) meth‐
odologies enables the identification of intricate pat‐
terns within input data, enhancing the accuracy and re‐
liability of BCI systems and furnishing healthcare 
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practitioners with valuable diagnostic insights. AI tech‐
niques, such as support vector machine (SVM), con‐
volutional neural network (CNN), recurrent neural net‐
work (RNN), and long short-term memory network 

(LSTM), have been extensively applied to EEG data 
for detecting and predicting brain disorders.

Currently, AI-powered EEG diagnostic systems 
are being developed and refined to enhance their clin‐
ical applicability. These systems are capable of real-
time monitoring and early detection, which are cru‐
cial for timely intervention and treatment. The pros‐
pects for AI-based EEG diagnostics are promising. 
Deepening AI algorithms and increasing computa‐
tional power are expected to further improve the sen‐
sitivity and specificity of these diagnostic tools. More‐
over, the development of portable and wearable EEG 
devices integrated with AI technology is likely to fa‐
cilitate widespread application in clinical and home 
settings, enabling continuous monitoring and person‐
alized healthcare.

In this review, we present a comprehensive ex‐
amination of the diverse ML/DL techniques employed 
in the diagnosis of brain diseases using EEG data. 
Specifically, we investigate seven brain disorders, 
namely epilepsy, schizophrenia, depression, Parkinson’s 
disease (PD), Alzheimer’s disease (AD), brain stroke, 
and autism spectrum disorder (ASD).

2 Human EEG 

2.1 Invasive EEG and non-invasive EEG

EEG acquisition can be classified into invasive 
and non-invasive techniques, primarily determined by 
the placement of electrodes. Invasive EEG entails the 
insertion of electrodes beneath the skull, including intra‐
cortical EEG (iEEG) and electrocorticogram (ECoG). 
iEEG captures signals from a specific implanted loca‐
tion that represents a restricted subset of neurons. 
Conversely, ECoG, although less invasive than iEEG, 
provides a higher signal-to-noise ratio (SNR), wider 
bandwidth, and more information. Nevertheless, it 
still entails potential surgical risks. Non-invasive EEG 
collects signals externally on the scalp, commonly re‐
ferred to as scalp EEG. This technique provides a high 
temporal resolution but a relatively low spatial resolu‐
tion. In Fig. 1a, the gathered scalp EEG, iEEG, and 
ECoG are depicted, each originating from distinct re‐
gions of the cortex.

2.2 EEG recording system

The EEG recording system employs electrode 
placement on the scalp, with the international 10-20 
and 10-10 systems being the most commonly utilized 
configurations (Malmivuo and Plonsey, 1995). The 
former partitions the scalp into intervals of 10% and 
20%, resulting in a total of 21 locations for electrode 

Fig. 1  Electroencephalogram (EEG) signal types and EEG recording system. (a) Locations of different EEG signals 
relative to the brain. (b) The 10-10 and 10-20 electrode placement systems. ECoG: electrocorticogram.
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placement, while the latter employs 10% intervals and 
offers 75 sites for electrode placement. Electrodes 
are identified by a letter-number code denoting the 
lobe, hemisphere, and scalp position. Even numbers 
are indicative of the right hemisphere, while odd 
numbers denote the left hemisphere. The letters F, T, 
C, P, and O correspond to the frontal, temporal, cen‐
tral, parietal, and occipital lobes, respectively. A vis‑
ual representation of the electrode location is shown 
in Fig. 1b.

In BCI systems, various types of electrodes are 
employed, namely wet, dry, and semi-dry electrodes. 
Wet electrodes, typically composed of silver chloride, 
are utilized for the purpose of achieving stable EEG 
recordings. However, their usage necessitates the ap‑
plication of gel, which entails drawbacks such as pro‐
longed preparation time and discomfort (Ferree et al., 
2001). Conversely, dry electrodes, devoid of conduct‐
ing gel, offer quicker application and better comfort, 
albeit potentially compromising signal stability. Semi-
dry electrodes combine wet and dry technologies, using 
a minimal quantity of gel to enhance conductivity 
without incurring the disadvantages associated with 
wet electrodes (Mota et al., 2013).

2.3 State-dependent EEG signals

EEG signals can be classified into distinct bands 
known as delta (0.5–4.0 Hz), theta (4–8 Hz), alpha (8–
12 Hz), beta (12–30 Hz), and gamma (above 30 Hz). 
These bands correspond to various states of brain ac‐
tivity, encompassing wakefulness as well as diverse 
sleep patterns. Each frequency band exhibits unique 
characteristics and patterns that are closely associated 
with behavioral states (Roohi-Azizi et al., 2017). Not‑
ably, alterations in power intensity within different fre‐
quency bands have been observed in neurological dis‐
orders. Specifically, individuals with AD demon‐
strate slower EEG rhythms, accompanied by height‐
ened energy in the delta and theta bands and dimin‐
ished energy in the alpha band (Brenner et al., 1988). 
Moreover, abnormalities in the alpha band have been 
associated with the initial phase of autism, wherein 
children with ASD exhibit diminished alpha energy, 
indicative of heightened anxiety and reduced relax‐
ation (Hoole et al., 2012). PD patients lacking emo‐
tional impairment display diminished intra-hemispheric 
asymmetry in alpha power. Additionally, they mani‐
fest decreased overall power in the delta, theta, alpha, 

and beta bands across various emotional states (Yuvaraj 
et al., 2014).

2.4 Spontaneous EEG and evoked potential

EEG can be divided into spontaneous EEG and 
evoked potential (EP) based on the presence or ab‐
sence of external stimulation during the measurement 
process. The utilization of spontaneous EEG as a valu‐
able tool in scientific and clinical contexts, such as 
the diagnosis and evaluation of epilepsy and PD, is 
facilitated by its ability to reveal the inherent neural 
activity pattern. However, spontaneous EEG exhibits 
low SNR and significant inter-subject variability, 
necessitating additional efforts in data processing. 
The introduction of external stimuli, such as visual 
or auditory stimulation, can induce specific deviations 
in brain waves, leading to the acquisition of EP. Cer‐
tain characteristics observed in EP have the potential 
to elucidate disparities in brain function between indi‐
viduals with brain disorders and healthy controls. EP 
signals are more robust among subjects and can be 
further divided into event-related evoked potential 
(EVP) and steady-state evoked potential (SSEP) ac‐
cording to the mode of external stimuli (Norcia et al., 
2015). The detection of EPs aids in the diagnosis and 
monitoring of brain disorders like schizophrenia and 
AD.

3 Artificial intelligence 

AI has emerged as a transformative force in the 
field of biomedical engineering, specifically in the do‐
main of disease diagnosis. Over the preceding de‐
cades, AI technologies have significantly enhanced diag‐
nostic accuracy and facilitated novel avenues for com‐
prehending intricate brain disorders. Conventional ML 
and DL techniques both belong to the subfield of 
AI. ML primarily concentrates on the development of 
algorithms and models that empower computers to 
learn and make predictions or decisions without being 
explicitly programmed (Mohri et al., 2018). SVM, lo‐
gistic regression (LR), decision tree (DT), random for‐
est (RF), naive Bayes (NB), k-nearest neighbor (KNN), 
linear discriminant analysis (LDA), and other com‐
monly utilized ML models are frequently employed. 
In brain disease detection tasks, feature extraction is 
an important step that requires manually extracting 
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features and performing feature selection. DL, a more 
sophisticated branch of ML, distinguished itself by its 
capacity to automatically extract, analyze, and com‐
prehend intrinsic information from raw data (LeCun 
et al., 2015; Schmidhuber, 2015; Goodfellow et al., 
2016). DL includes various types of classifiers, includ‐
ing CNN, RNN, LSTM, autoencoder network (AEN), 
and graph neural network (GNN). The common ML 
and DL methods for EEG signals to detect brain dis‐
eases can be categorized as depicted in Fig. 2. Add‑
itionally, Fig. 3 illustrates a representative AI-based 
BCI system employed for the classification of normal 
and abnormal EEG signals. Fig. 4 shows a general 
summary diagram of AI-auxiliary EEG diagnosis of 
brain diseases.

4 Contemporary AI approaches for brain 
disease diagnosis using EEG signals 

4.1 Epilepsy

Epilepsy is a neurological disorder characterized 
by the occurrence of recurrent seizures, which can be 
manifested in various symptoms such as convulsions, 

loss of consciousness, and atypical sensations or move‐
ments (Krook-Magnuson and Soltesz, 2015). The global 
prevalence of epilepsy exceeds 50 million individu‐
als, with a continued upward trend. Although the pre‐
cise etiology of epilepsy remains elusive, potential 
triggers include brain trauma, infections, and genetic 
factors. The impact of epilepsy on quality of life can 
include consequences such as physical injury, cogni‐
tive impairment, and social isolation. Therefore, timely 
and effective diagnosis and treatment of epilepsy are 
necessary. Clinically, the brain activity of individuals 
with epilepsy can be categorized into the following 
four states based on EEG readings: preictal, referring 
to the period immediately preceding a seizure; ictal, 
representing the time during which a seizure occurs; 
postictal, denoting the period following a seizure; and 
interictal, corresponding to the state between seizures 
(Jemal et al., 2021). Several studies emphasize the po‐
tential of AI-based techniques in predicting epileptic 
seizures using EEG data, which could yield substan‐
tial clinical advancement. These advancements are out‐
lined in Table 1.

ML methods have been employed in classification 
tasks where feature selection is necessary to identify 

Fig. 2  Common machine learning (ML) and deep learning (DL) methods. AI: artificial intelligence; SVM: support vector 
machine; LR: logistic regression; DT: decision tree; RF: random forest; NB: naive Bayes; KNN: k-nearest neighbor; LDA: 
linear discriminant analysis; ANN: artificial neural network; KMC: k-means clustering; MLP: multilayer perceptron; 
CNN: convolutional neural network; RNN: recurrent neural network; AEN: autoencoder network; GNN: graph neural 
network; LSTM: long short-term memory network; GRU: gated-recurrent unit; GAN: generative adversarial network; 
AE: autoencoder.
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the most informative features. Alickovic et al. (2018) 
developed an automated model for detecting and pre‐
dicting seizure onset, applying ANN, KNN, SVM, 
and RF ML algorithms to Freiburg and CHB-MIT data‐
sets (Shoeb, 2009; Ihle et al., 2012). The presented 
model successfully differentiated between interictal, 
preictal, and ictal EEGs with an accuracy of 99.77%. 
In a study conducted by Li Y et al. (2019), a high-
resolution time-frequency image was initially generated 
using the multiscale radial basis function (MRBF)-
modified particle swarm optimization (MPSO)-orthogonal 

least squares (OLS) algorithm. From each sub-band 
image, gray-level co-occurrence matrix (GLCM) de‐
scriptors and the Fisher vector (FV) were extracted. 
Prior to being inputted to the SVM classifier, dimension‐
ality reduction was performed using the t-test statistical 
tool. The effectiveness of the proposed method was as‐
sessed using the datasets of Bonn and Hauz Khas, and 
the results demonstrated its capability to accurately dif‐
ferentiate between ictal signals and healthy brain activi‑
ties (Andrzejak et al., 2001; Swami et al., 2016). How‐
ever, the proposed framework used single-channel 

Fig. 3  Typical flow diagram of electroencephalogram (EEG)-based disease diagnosis. PSD: power spectral density; PLV: 
phase-locked value; MMN: mismatch negativity.

Fig. 4  General diagram of artificial intelligence (AI)-auxiliary electroencephalogram (EEG) for diagnosis of brain 
diseases. SVM: support vector machine; RF: random forest; KNN: k-nearest neighbor; CNN: convolutional neural 
network; LSTM: long short-term memory network; PD: Parkinson’s disease; AD: Alzheimer’s disease; ASD: autism 
spectrum disorder; AUC: area under the curve; ROC: receiver operating characteristic; FPR: false prediction rate.
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EEG segments, which may limit the optimal classifi‐
cation. Daoud and Bayoumi (2019) used a channel se‐
lection algorithm to extract the suitable channel and 
reduce the computational complexity, making the sys‐
tem suitable for real-time application. Autoencoder 
(AE) is an unsupervised ML model for which the input 
is the same as the output. Emami et al. (2019) em‐
ployed AE to identify seizures as anomalous occur‐
rences within interictal EEG data. The findings indi‐
cated that the AE error served as a viable feature for 
seizure detection, achieving a maximum sensitivity of 
100% in distinguishing between seizure and non-
seizure states. Savadkoohi et al. (2020) employed t-
test and sequential forward floating selection (SFFS) 
to determine the optimal and statistically significant 
features from the Bonn dataset. These selected features 
were fed into SVM and KNN classifiers. The outcomes 

demonstrated a 99.5% accuracy in the time domain, 
while the frequency domain and time-frequency domain 
exhibited the highest accuracy of 100%.

The clinical feasibility of seizure prediction has 
been established, but certain limitations persist, such 
as uncertainty regarding the occurrence of seizures 
among individuals with epilepsy. In order to address 
this, wearable devices have been developed to enable 
continuous monitoring. Kiral-Kornek et al. (2018) de‐
veloped an automated, patient-tunable epileptic seiz‑
ure prediction system based on DL and deployed the 
system on a low-power neuromorphic chip. A DL 
model was trained using annotated iEEG data from 
Cook et al. (2013)’ s dataset to distinguish between 
preictal and interictal signals and deployed onto the 
neuromorphic TrueNorth chip. The system allowed 
for instantaneous and easy adjustment, which meant 

Table 1  Summary of electroencephalogram (EEG)-based epilepsy diagnosis

Study
Alickovic et al., 2018
Kiral-Kornek et al., 2018
Antoniades et al., 2018
Acharya et al., 2018b

Truong et al., 2018

Tsiouris et al., 2018
Hussein et al., 2019
Li Y et al., 2019
Zhang et al., 2020
Daoud and Bayoumi, 2019

Emami et al., 2019
Liang et al., 2020

Geng et al., 2020

Savadkoohi et al., 2020
Usman et al., 2021

Shoeibi et al., 2021b

Gramacki and Gramacki, 
2022

Tveit et al., 2023

Database
Freiburg, CHB-MIT
Cook et al., 2013
Local
Bonn

Freiburg, CHB-MIT, 
Kaggle

CHB-MIT
Bonn
Bonn, Hauz Khas
CHB-MIT
CHB-MIT

Local
CHB-MIT

Freiburg

Bonn
CHB-MIT, Kaggle

Bonn

Local

Local

Classifier/detector
ANN, KNN, SVM, RF
MLP
CNN
CNN

CNN

LSTM
LSTM
SVM
CNN
MLP, DCNN, DCNN+

BiLSTM, DCAE+
BiLSTM

AE
LRCN

BiLSTM

SVM, KNN
SVM, CNN, LSTM

ML/CNN

CNN

CNN

Performance
99.77% accuracy
69% sensitivity
68% accuracy
88.67% accuracy, 90.00% specificity,

95.00% sensitivity
81.4% (Freiburg), 81.2% (CHB-MIT), and

75.0% (Kaggle) sensitivity
0.02–0.11 h−1 FPR
100% accuracy, 100% sensitivity, 100% specificity
100.00%, 99.30%, and 99.30% accuracy
92.2% sensitivity, 0.12 h−1 FPR
99.6% accuracy, 0.004 h−1 FPR

100% sensitivity
84% sensitivity, 99% specificity, 99% accuracy,

0.2 h−1 FPR
98.09% sensitivity/98.69% specificity (segment-

based), 96.3% sensitivity/0.24 h−1 FPR (event-
based)

100% (SVM) and 99.5% (KNN) accuracy
96.28% sensitivity/95.65% specificity (CHB-MIT), 

94.2% sensitivity/95.8% specificity (Kaggle)
99.53% (two-classes) and 98.67% (multi-classes) 

accuracy
96%–97% accuracy

88.3% accuracy

CHB: Boston Children’s Hospital; MIT: Massachusetts Institute of Technology; ANN: artificial neural network; KNN: k-nearest neighbor; 
SVM: support vector machine; RF: random forest; MLP: multilayer perceptron; CNN: convolutional neural network; LSTM: long short-term 
memory network; DCNN: deep convolutional neural network; BiLSTM: bidirectional LSTM; DCAE: deep convolutional autoencoder; AE: 
autoencoder; LRCN: long-term recurrent convolutional network; ML: machine learning; FPR: false prediction rate.
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that patients or clinicians could prioritize high sensi‐
tivity or low warning time depending on different needs 
or circumstances. The prediction system achieved a 
mean sensitivity of 69% using iEEG data. Although 
iEEG data improve data training due to their high 
SNR, iEEG’s invasive recording is impractical. Scalp 
EEG data represent a more convenient alternative.

To ensure the acquisition of high-quality data 
comparable to iEEG, Antoniades et al. (2018) proposed 
an ensemble DL architecture. This approach non‐
linearly maps scalp EEGs to pseudo-intracranial EEGs, 
which are subsequently fed into a CNN model. Re‐
markably, the authors achieved an accuracy of 68% in 
automatically discriminating intracranial epileptic dis‐
charges (IEDs). Acharya et al. (2018b) constructed a 
13-layer-deep CNN architecture to detect normal, pre‐
ictal, and seizure classes using the Bonn dataset and 
achieved an accuracy, specificity, and sensitivity of 
88.67%, 90.00%, and 95.00%, respectively. Neverthe‐
less, large DL models involve a large number of par‑
ameters, which may impose additional computational 
burden. Truong et al. (2018) applied a simple and shal‐
low CNN model with only three convolutional blocks. 
Information from both frequency and time domains 
was extracted using a short-time Fourier transform, 
and then the optimized features were automatically 
generated in an image-like format. This approach 
achieved sensitivity of 81.4%, 81.2%, and 75.0%, 
respectively, in classifying preictal and interictal seg‐
ments using Freiburg, Boston Children’s Hospital 
(CHB)-Massachusetts Institute of Technology (MIT), 
and Kaggle datasets (Brinkmann et al., 2016). Zhang 
et al. (2020) also used the CHB-MIT dataset for seiz‑
ure prediction but a data augmentation was imple‐
mented to obtain a diversity of data to solve the trial 
imbalance problem. A spatial filtering algorithm was 
adopted to extract the component signal that could 
best transduce the cerebral activity in seizure predic‐
tion, and a shallow CNN was utilized. Finally, the pro‐
posed approach achieved a sensitivity of 92.2% and a 
false prediction rate (FPR) of 0.12 h−1.

CNNs are capable of extracting spatial features 
from input data, but they tend to overlook temporal 
features, particularly in time series data like EEG. 
Epilepsy detection using EEG signals involves tempo‐
ral aspects. In order to enhance the accuracy of detec‐
tion, certain recurrent DL architectures have been im‐
plemented. Tsiouris et al. (2018) designed a two-layer 

LSTM network for seizure prediction. Time and fre‐
quency domain features, cross-correlation between chan‐
nels, and graph theoretic features were fed into the 
model. An evaluation was performed on the CHB-MIT 
dataset, and the result showed a low FPR of 0.02–
0.11 h−1, depending on the length of preictal windows. 
Instead of choosing features manually, Hussein et al. 
(2019) exploited an LSTM network to learn high-level 
representations of EEG signals, and a fully connected 
(FC) layer was applied to extract the most robust 
EEG features. They tested the approach on the Bonn 
dataset and achieved 100% classification accuracy, 
100% sensitivity, and 100% specificity in both two-
class and multi-class tasks using clean EEG signals 
that were free of artifacts and noise. They also evalu‐
ated the model on EEG signals without artifact removal 
and achieved an accuracy of over 90% in multi-class 
classification, which demonstrated its ability to be de‐
ployed in real-life conditions. Compared to LSTM’s 
single-time direction processing, bidirectional LSTM 
(BiLSTM) could process time series in both direc‐
tions simultaneously. Geng et al. (2020) presented a 
BiLSTM algorithm that could automatically select 
features from the time-frequency matrix obtained by 
S-transform and perform classification tasks. The pro‐
posed system was evaluated on the Freiburg dataset. 
Results showed that segment-based classification 
achieved a sensitivity of 98.09% and a specificity of 
98.69%. The event-based classification obtained a sen‐
sitivity of 96.3% and an FPR of 0.24 h−1.

However, it should be noted that training a DL 
model necessitates a substantial amount of data for ef‐
fective learning. On the other hand, handcrafted fea‐
tures are computationally efficient and suitable for im‐
plementation. Shoeibi et al. (2021a, 2021b) employed 
handcrafted features for DL models. They first com‐
pared 50 different handcrafted features in terms of im‐
portance and computational complexity. The best fea‐
tures selected by the Fisher algorithm were then com‐
bined with CNN-AE. The performance of this ap‐
proach was assessed using the Bonn dataset, revealing 
an accuracy of 99.53% in two-classes classification and 
98.67% in multi-classes classification. Because of the 
efficient combination capabilities of the multi-networks 
method, Daoud and Bayoumi (2019) introduced a fu‐
sion DL model for automatic seizure prediction, 
where raw EEGs were input directly into the models 
without any handcrafted feature extraction. Initially, 

920



J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2024 25(10):914-940    |

they implemented a deep convolutional autoencoder 
(DCAE) architecture to pre-train the model front-end 
in an unsupervised manner. Transfer learning was em‐
ployed to enhance the generalization capability of the 
DCAE. Subsequently, the pre-trained encoder was in‐
tegrated with a BiLSTM network for classification. 
The CHB-MIT EEG dataset achieved a performance 
with 99.6% accuracy and a 0.004 h−1 FPR.

Long-term recurrent convolutional network (LRCN) 
is a spatiotemporal model that combines characteris‐
tics of both CNN and LSTM. Liang et al. (2020) pro‐
posed an 18-layer LRCN to realize automatic seizure 
detection and epileptogenic zone localization. The 
model was trained and evaluated using the CHB-MIT 
database. The resulting classifier demonstrated a sen‐
sitivity of 84%, specificity of 99%, accuracy of 99%, 
and a relatively low FPR of 0.2 h−1. Nevertheless, it is 
important to acknowledge the potential limitation of 
computational intensity and the risk of overfitting due 
to the limited dataset availability. To address these 
concerns, Usman et al. (2021) employed ensemble 
learning of multiple classifiers, including SVM, CNN, 
and LSTM. Model-agnostic meta-learning (MAML) 
was used by feeding the output probabilities of each 
classifier to give the final decision of whether it was a 
preictal or interictal state. In this way, they trained the 
classifier with a smaller number of training examples 
without overfitting. The model achieved an average 
sensitivity of 96.28% and a specificity of 95.65% 
with an average anticipation time of 33 min on the 
CHB-MIT dataset and an average sensitivity of 94.2% 
and a specificity of 95.8% on the Kaggle dataset.

To improve the reproducibility of different data‐
sets, Gramacki and Gramacki (2022) proposed a com‐
plete framework for EEG-based seizure detection using 
DL techniques. They have also proposed a sliding 
window design to generate fully balanced training data. 
Based on their open-access code, researchers could 
analyze their own EEG datasets with only minor 
modifications.

Beyond distinguishing abnormal from normal or 
identifying epileptiform activity, Tveit et al. (2023) 
reported a new CNN model, standardized computer-
based organized reporting of EEG (SCORE)-AI, 
which could classify abnormal recordings into the major 
categories that were most relevant for decisions in‐
volving patients. These included epileptiform-focal, 
epileptiform-generalized, nonepileptiform-focal, and 

nonepileptiform-diffuse abnormalities. SCORE-AI had 
an area under the receiver operating characteristic 
(ROC) curve between 0.89 and 0.96 for the different 
categories of EEG abnormalities. This performance 
was comparable to the consensus of human experts.

4.2 Schizophrenia

Schizophrenia is a chronic neurodevelopmental 
disorder with a global prevalence of 1% (Saha et al., 
2005). While the underlying mechanism remains un‐
clear, numerous studies have established a correlation 
between schizophrenia and structural and functional 
abnormalities in the brain. Individuals suffering from 
schizophrenia typically present a heterogeneous com‐
bination of psychotic symptoms, including hallucin‑
ations and delusions, as well as behavioral and cogni‐
tive impairments (McCutcheon et al., 2020) that sig‐
nificantly impact their daily lives. Timely diagnosis of 
schizophrenia is essential to patients so that pharma‐
cological treatments can be used to relieve the symp‐
toms. Recent research has demonstrated the signifi‐
cance of EEG patterns in the identification of schizo‐
phrenia. Various ML techniques have been employed 
to achieve automated and accurate classification out‐
comes. Additionally, the potential of neural networks 
in the scope of schizophrenia diagnosis has been under 
investigation (Barros et al., 2021). Table 2 provides 
an overview of studies conducted on the diagnosis of 
schizophrenia using EEG signals.

Numerous experimental approaches have been 
introduced to investigate the EEG biomarkers in schizo‐
phrenia patients. Studies on the diagnosis of schizo‐
phrenia have examined the event-related potential 
(ERP) components of patients through the collection 
of EEG data during working memory tasks or visual 
and auditory processing tasks, which allowed the evalu‑
ation of brain response due to the result of specific 
sensory cognitive features. Johannesen et al. (2016) 
conducted EEG recordings while subjects were com‐
pleting a Sternberg working memory task (SWMT), 
which consisted of four processing stages: baseline, 
encoding, retention, and retrieval. The utilization of 
an SVM classifier resulted in an accuracy of 87%. Add‑
itionally, frontal gamma at the encoding stage was 
identified by SVM as the most highly weighted fea‐
ture, which coincided well with early studies about the 
gamma band’s role in memory encoding. Researchers 
have also recognized the potential utility of P300 and 
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mismatch negativity (MMN) as biomarkers for assess‐
ing schizophrenia, which can be elicited through audi‐
tory oddball tasks. These tasks involve the presenta‐
tion of infrequent deviant stimuli amidst frequent stand‑
ard tones. Shim et al. (2016) conducted a study in 
which they collected EEG data while participants 
were engaged in a passive auditory oddball paradigm. 
They combined P300 peak data from 62 electrodes as 
sensor-level features with cortical current density as 
source-level EEG features. By utilizing an SVM clas‐
sifier, they were able to achieve a classification accur‑
acy of 88.24%. In a separate study, Chang et al. 
(2021) utilized MMN signals from ERPs and em‐
ployed SVM to extract graph-theoretic features. These 
features were then used to classify individuals into 
three groups: first-episode schizophrenia, chronic schizo‐
phrenia, and healthy control. This classification ap‐
proach was based on the understanding of the neural 
mechanism underlying MMN damage in different stages 
of schizophrenia.

However, these tasks were often goal-directed, 
which posed challenges for schizophrenia patients 
with cognitive impairments and distorted perception. 
In order to address this issue, Devia et al. (2019) em‐
ployed a straightforward visual task-free paradigm to 
record EEG while participants viewed natural scenes. 
By examining the average EEG activity synchronized 
with the onset of the images, the researchers iden‑
tified differences between patients with schizophrenia 

and healthy controls. Specifically, the patients exhibited 
a diminished occipital ERP amplitude of approximately 
500 ms following the presentation of the images in 
comparison to the control group. Subsequently, these 
differences were employed for the categorization of 
individuals diagnosed with schizophrenia. The evalu‐
ation encompassed three classifiers: LDA, a rule-based 
classifier, and a combination of the posterior probabil‐
ity of two LDAs. Remarkably, the classifier based on 
the comparison of the posterior probability, employ‐
ing occipital ERPs, exhibited the most notable sensi‐
tivity at 81% and accuracy at 71%.

Furthermore, alternative methodologies centered 
on resting-state EEG data were explored, and these 
data were suggested to reflect intrinsic neural activity 
(Ciprian et al., 2021). A publicly available database at the 
Repository for Open Data (RepOD) contains EEG data 
at eyes-closed resting state (Olejarczyk and Jernajczyk, 
2017; Jahmunah et al., 2019). Multiple classifiers were 
evaluated, including DT, LDA, KNN, probabilistic 
neural network (PNN), and SVM. The SVM with 
radial-basis-function (SVM-RBF) classifier yielded the 
highest accuracy of 92.91%. Based on the same dataset, 
Goshvarpour and Goshvarpour (2020) implemented 
a feature-level fusion strategy to combine extracted 
features, resulting in improved accuracy compared to 
separate feature stacks. Classification was performed 
with PNN to separate the EEG features of schizo‐
phrenic patients and healthy controls.

Table 2  Summary of electroencephalogram (EEG)-based schizophrenia diagnosis

Study

Johannesen et al., 2016

Shim et al., 2016

Oh et al., 2019

Jahmunah et al., 2019

Devia et al., 2019

Li FL et al., 2019

Phang et al., 2020

Goshvarpour and Goshvarpour, 2020

Ahmedt-Aristizabal et al., 2021

Chang et al., 2021

Yin et al., 2023

Saadatinia and Salimi-Badr, 2024

Database

Local

Local

Institute of Psychiatry and 
Neurology in Warsaw, Poland

Institute of Psychiatry and 
Neurology in Warsaw, Poland

Local

Local

Lomonosov Moscow State 
University, Russia

RepOD

Local

Local

Local

Local

Classifier/detector

SVM

SVM

CNN

SVM-RBF

LDA

SVM/LDA

Multi-domain connectome 
CNN (MDC-CNN)

PNN

CNN-LSTM

SVM/GNN

GCN

CNN

Performance

87% accuracy

88.24% accuracy

98.07% and 81.26% 
accuracy

92.91% accuracy

71% accuracy

90.48% accuracy

91.69% accuracy

100% accuracy

89.98% accuracy

81.33% accuracy

90.01% accuracy

99.0% accuracy

SVM: support vector machine; CNN: convolutional neural network; RBF: radial-basis-function; LDA: linear discriminant analysis; PNN: 
probabilistic neural network; LSTM: long short-term memory network; GNN: graph neural network; GCN: graph convolutional network; 
RepOD: Repository for Open Data.
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According to certain studies, the absence of task-
related elements in data may lead to a deficiency of 
comprehensive information for discrimination. How‐
ever, incorporating features derived from both rest 
and task states can provide distinct insights into brain 
deficits associated with schizophrenia. Inspired by this 
theory, Li FL et al. (2019) conducted an experiment in 
which they trained LDA and SVM classifiers using 
concatenated inherent spatial pattern of network (SPN) 
features from both resting and task P300 EEGs. As a 
result, they achieved an accuracy of 90.48%.

When examining the DL method, most studies 
have utilized resting-state data as they allow for the 
automatic extraction of abstract and high-level fea‐
tures from raw data. Among the various DL models 
employed in the detection of schizophrenia, CNN 
stands out as one of the most extensively utilized. Oh 
et al. (2019) proposed an eleven-layered CNN model 
to distinguish schizophrenia patients and obtained an 
accuracy of 81.26% and 98.07% for the non-subject-
based testing and subject-based testing, respectively. 
However, it is important to note that the study’s pri‐
mary constraint lies in the limited sample size, which 
may not provide adequate training for a DL model. 
Phang et al. (2020) used multi-channel EEG as train‐
ing data to enlarge the dataset. They designed a multi-
domain connectome CNN (MDC-CNN) with a com‐
bined connectivity feature, which was suitable for spa‐
tial proximity modeling. The algorithm outperformed 
single-domain CNNs using individual features, achiev‐
ing an accuracy of 91.69%. As well as enlarging the 
dataset, Saadatinia and Salimi-Badr (2024) generated 
synthetic datasets to solve the limited training data 
and overfitting problem. They used Wasserstein genera‑
tive adversarial network (GAN) with gradient penalty 
(WGAN-GP) and variational autoencoder (VAE) for 
data augmentation, with the VAE improving accuracy 
by 3.0%, reaching 99.0%. Spectrograms were extracted 
from raw signals to utilize time-frequency features, 
and CNN was selected for initial diagnosis. They also 
employed the local interpretable model-agnostic ex‐
planation (LIME) algorithm to explain the most im‐
portant frequencies in the diagnosis process, thus solv‐
ing the trust issues.

However, it is possible that CNNs do not ad‐
equately represent the graph structure of brain net‐
works. As a result, models that generalize CNNs to 
graphs (e.g., GNN and graph convolutional network 

(GCN)) have been explored. Chang et al. (2021) le‑
veraged a GNN model to successfully learn the topo‐
logical structure of brain networks, leading to supe‐
rior improvements in classifying schizophrenia patients 
and healthy controls. Similarly, Yin et al. (2023) de‐
veloped a GCN-based automatic recognition model 
for detecting schizophrenia using resting-state EEG. 
The feature matrix consisted of time-frequency fea‐
tures of the EEG signal and the local features of the 
brain network. The result showed that the parietal 
lobe was the most significant brain region contribut‐
ing to the classification. They also compared the re‐
sults using other models (CNN-2, CNN-5, and SVM). 
The highest accuracy achieved by the proposed model 
in identifying first-episode schizophrenia patients was 
90.01%.

Recent studies have focused on distinguishing 
between people with schizophrenia and healthy con‐
trols. However, fewer studies have been conducted on 
people at risk of schizophrenia. The situation is more 
complicated because brain abnormalities are less evi‐
dent among people at risk. Ahmedt-Aristizabal et al. 
(2021) identified children at risk of schizophrenia by 
exploring several ML and DL techniques. They col‐
lected MMN signals from children with a positive 
family history of schizophrenia and/or children who 
exhibit antecedents of schizophrenia. In the proposed 
DL architecture, they not only used CNN but also 
added recurrent layers (LSTM). The results showed 
improved performance of the hybrid network 2D-
CNN-LSTM with an average accuracy of 89.98%.

4.3 Depression

Depression is a common psychiatric disorder. 
According to the World Health Organization (WHO), 
about 340 million people suffer from different degrees 
of depression worldwide. The neurological mech‐
anism and pathological principle of depression still re‐
main unclear. People with depression have severe psy‐
chological disorders and negative emotions character‐
ized by grief, fatigue, despair, and even suicidal thoughts. 
They also have physical symptoms such as headaches, 
constipation, weight changes, and insomnia (Simon 
et al., 1999). The most commonly used international 
diagnostic criterion is the Diagnostic and Statistical 
Manual of Mental Disorders, Fifth Edition (DSM-5), 
set by the United States (American Psychiatric Associ‐
ation, 2013). However, such a questionnaire-based 
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approach is prone to doctor and patient subjectivity. 
With that in mind, studies have explored the use of 
EEG to find depression biomarkers that can be used 
as an objective indication. Researchers also made ef‐
forts to develop ML/DL-based techniques for depres‐
sion recognition. A summary of the presented studies 
is provided in Table 3.

Regarding biomarkers to detect depression, a re‐
view highlights that some features of EEG, such as 
alpha asymmetry, are promising (Yasin et al., 2021). 
Mumtaz et al. (2017) compared EEG alpha interhemi‐
spheric asymmetry between major depressive dis‐
order (MDD) patients and healthy controls. Their find‐
ings revealed that depressed individuals showed greater 
anterior EEG activity. The most significant features 
were selected from candidate features (power compu‐
tation at different frequency bands and EEG alpha 
asymmetry) according to a criterion named ROC. Fea‐
tures with substantial weights were used for training 
and testing classifier models, namely LR, SVM, and 
NB. Among these models, SVM demonstrated the high‐
est performance (accuracy=98.4%, sensitivity=96.66%, 
specificity=100%).

Several studies have been conducted using ERP. 
Li et al. (2016) performed an experiment involving a 
facial expression-viewing task, building upon previ‐
ous findings that depression can affect the ability to 

recognize different facial emotions. EEG signals were 
analyzed, specifically focusing on the theta, alpha, 
and beta frequency bands. Multiple classifiers and fea‐
ture selection methods were employed in the analysis. 
The highest accuracy of 98% was achieved through 
the utilization of the feature selection method Greedy 
Stepwise (GSW) based on correlation features selec‐
tion and the KNN classifier for the beta frequency 
band. It has been established that the ERP component 
P300 correlates with depression (Mumtaz et al., 2015). 
Shim et al. (2019) conducted a study to investigate 
the potential effectiveness of utilizing P300 features 
at both the sensor and source levels for the classifica‐
tion of post-traumatic stress disorder (PTSD) and MDD. 
During the auditory oddball tasks, they collected P300 
signals and extracted the amplitude and latency of 
P300 as sensor-level features and the current source 
density (CSD) of P300 components as source-level 
feature. A classification accuracy of 70.34% for the 
discrimination between PTSD and MDD was obtained 
using a two-class linear SVM classifier.

As traditional ML classification methods require 
greater computational resources and process more feature 
dimensions, an increasing number of DL-based ap‐
proaches have been proposed for classifying EEG data 
of both depressed and healthy individuals. Li XW 
et al. (2019) incorporated spatial information obtained 

Table 3  Summary of electroencephalogram (EEG)-based depression diagnosis

Study

Li et al., 2016

Mumtaz et al., 2017

Acharya et al., 2018a

Shim et al., 2019

Ay et al., 2019

Li XW et al., 2019

Shah et al., 2019

Cai et al., 2020

Sharma et al., 2021

Sarkar et al., 2022

Wang et al., 2022

Dataset

Local

Local

Local

Local

Acharya et al., 2018a

Local

Local

Local

Psychology Department, 
University of Arizona, USA

Kaggle

MODMA dataset, University of 
New Mexico, USA

Classifier/detector

ML (BN/SVM/LR/KNN/RF)

LR/SVM/NB

CNN

SVM

CNN-LSTM

SVM/CNN

SNN

KNN/DT/SVM

CNN-LSTM

MLP/CNN/RNN/LSTM/
SVM/LR

CNN

Performance

>91% accuracy

98.4% accuracy

93.54%/95.49% (left/right 
hemisphere EEG data) accuracy

70.34% accuracy

99.12% accuracy

89.02% (SVM)/84.75% (CNN) 
accuracy

68.18% (eyes-closed)/72.13% 
(eyes-open) accuracy

86.98% accuracy (KNN)

99.10% accuracy

96.50% accuracy (RNN)

93.97% accuracy

ML: machine learning; BN: BayesNet; SVM: support vector machine; LR: logistic regression; KNN: k-nearest neighbor; RF: random forest; 
NB: naive Bayes; CNN: convolutional neural network; LSTM: long short-term memory network; SNN: spiking neural network; DT: decision 
tree; MLP: multilayer perceptron; RNN: recurrent neural network; MODMA: multi-modal open dataset for mental-disorder analysis.

924



J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2024 25(10):914-940    |

from EEG caps to enhance the analysis of original fea‐
tures, namely power spectral density (PSD) in the fre‐
quency domain and activity in the time domain. 
These features were transformed into images that in‐
cluded spatial information, and a CNN was subse‐
quently employed to recognize these feature images. 
The method achieved a maximum accuracy of 84.75%. 
Acharya et al. (2018a) employed a 13-layer-deep CNN 
model and achieved a higher accuracy of 95.49% when 
analyzing right hemisphere EEG signals. This finding 
aligns with previous research indicating a correlation 
between depression and heightened activity in the right 
hemisphere. Using the same dataset, Ay et al. (2019) 
improved the classification performance by employ‐
ing a novel hybrid model that combined CNN and 
LSTM architectures. Their findings align with those 
of previous studies, indicating a superior performance 
of right-hemisphere compared to left-hemisphere EEG 
signals, achieving an accuracy of 99.12%. However, 
the aforementioned models entail significant compu‐
tational demands. In contrast, Sharma et al. (2021) 
proposed a CNN-LSTM hybrid neural network model 
for depression screening that exhibits reduced time 
and computational complexity. CNN was used in tem‐
poral learning, and LSTM was used in sequence learn‐
ing. The proposed model yielded a classification accur‑
acy of 99.10%. Sarkar et al. (2022) comprehensively 
compared DL and ML techniques for depression de‐
tection using EEG. RNN achieved the highest ac‐
curacy, reaching 97.50% during training and 96.50% 
during testing.

Nevertheless, it is worth noting that the afore‐
mentioned studies solely employed a single pattern 
recognition technique, lacking the capability to ac‐
quire more profound diagnostic insights. The multi-
modal technique has gained popularity in recent times 
due to its ability to offer more comprehensive infor‐
mation. Li XW et al. (2019) conducted an experiment 
utilizing an emotional face stimulus task and extracted 
the PSD and original activities as features. They 
adopted ensemble learning and SVM to process and 
classify these features, acquiring the best accuracy of 
89.02%. Cai et al. (2020) proposed a multi-modal de‐
pression discrimination model that integrated EEG 
data from three modalities collected during neutral, 
negative, and positive audio stimuli, respectively. Linear 
and nonlinear features were extracted from each in‐
dividual modality, followed by a feature-level fusion 

method to linearly combine the feature matrices of the 
three modalities. Several ML classifiers were em‐
ployed, with the KNN classifier achieving the highest 
accuracy of 86.98%. Both studies shared the limita‐
tion of small sample sizes. To address this issue, Wang 
et al. (2022) employed multi-channel data fusion and 
clipping augmentation. Previous studies have consis‐
tently demonstrated the close association between the 
frontal lobe and depression as well as psychological 
activities (Shi et al., 2020). Therefore, they only uti‐
lized three electrode signals, namely Fp1, Fp2, and 
Fpz, originating from the prefrontal lobe section. They 
fused the 3-channel EEG signals and transformed them 
into 2D images. This approach improved depression 
diagnosis accuracy and clustering effects while main‐
taining low complexity and robust signal processing.

In addition to the utilization of deep neural net‐
work (DNN), some biologically realistic models have 
been employed, such as the spiking neural network 
(SNN). The SNN model is inspired by the spike activ‐
ities observed in the human brain (Maass, 1997). 
Shah et al. (2019) employed the NeuCube SNN archi‐
tecture to analyze data from a depression case study. 
The obtained accuracy was 68.18% for eyes-closed 
data and 72.13% for eyes-open data. Nevertheless, 
SNN was still inferior to the DL method in terms of 
accuracy, as DL models employ backpropagation to 
reduce the error. Future research endeavors may con‐
sider extracting features using CNN or other DL models 
and subsequently integrating them into the SNN frame‐
work to improve performance.

4.4 Parkinson’s disease

PD is a progressive neurological disorder that 
arises with the loss of neurons responsible for produc‐
ing dopamine. It is the second most prevalent neuro‐
degenerative disorder to increase with age after AD. 
People with PD encounter symptoms such as rest 
tremors, slow movements (bradykinesia), and muscu‐
lar rigidity (Jankovic, 2008). PD diagnosis is mostly 
based on motor symptoms such as speech defects or 
freezing of gait. However, autopsy and neuroimaging 
studies indicate that the emergence of motor symp‐
toms is a late manifestation, occurring when there is 
widespread degeneration of dopaminergic neurons 
(Beitz, 2014). Therefore, early identification of PD is 
vital for effective neuroprotective treatments. The ap‐
plication of ML/DL techniques in EEG has revealed 

925



|    J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2024 25(10):914-940

another method for PD diagnosis with a low error 
rate, low cost, and low invasiveness. The summary of 
the selected studies is shown in Table 4.

The investigation of reliable and quantitative PD 
biomarkers derived from EEG is currently a thriving 
research field. In the majority of studies, EEG record‐
ings are obtained during the resting state. Chaturvedi 
et al. (2017) employed ML techniques to identify a 
subset of features from quantitative EEG (QEEG) par‑
ameters. They calculated relative power in different 
frequency bands across different brain regions. Me‐
dian and peak frequencies as well as alpha/theta ratios 
were calculated. The RF and the least absolute shrink‐
age and selection operator (LASSO) methods were 
employed for feature selection. Extracted features in‐
dicated that the alpha/theta spectral ratio in the central 
left region could be an influential feature for discrimin‑
ating between PD patients and healthy controls. The 
discrimination method finally achieved an accuracy 
of 78%.

However, Shah et al. (2020) believed that the ac‐
quired EEG signals exhibited chaotic characteristics, 
yet neurodegenerative disorders such as PD progres‐
sively resulted in alteration in the dynamical prop‐
erties of EEG. In accordance with this theory, they chose 
beta frequency synchronization and phase amplitude 
coupling (PAC) in the EEG signals as potential bio‐
markers. To emphasize the PD-associated alterations 
in the dynamical properties of the EEG data, an em‐
bedding reconstruction technique derived from chaos 
theory was employed on the EEG data sourced from 

the patient repository for EEG data+computational tools 
(PRED+CT) data repository (Cavanagh et al., 2017).

The utilization of DL has been shown to mitigate 
the necessity for feature engineering. Oh et al. (2020) 
designed a 13-layer CNN architecture to classify PD 
and healthy individuals, achieving an accuracy of 
88.25%, a sensitivity of 84.71%, and a specificity of 
91.77%. Khare et al. (2021) implemented an automatic 
PD detection approach named PD CNN (PDCNNet), 
wherein they transformed 1D signals into 2D time-
frequency plots. Smoothed pseudo Wigner Ville distri‐
bution (SPWVD) was used to obtain time-frequency 
representation from EEG signals. Then, the 2D plots 
were fed to a CNN. The model achieved 100% and 
99.97% accuracy for two public datasets, respectively.

In the context of multi-modal techniques, the 
combination of EEG and electromyography (EMG) 
was utilized to detect cognitive decline and muscle 
conditions in PD. Saikia et al. (2019) conducted a 
study in which EEG signals were extracted from the 
frontal and temporal brain, along with muscle activ‐
ities associated with wrist flexion and extension. ANNs 
were employed for classification, and the result showed 
that the combination of EEG and EMG features resulted 
in the highest classification rate of 98.8%.

Recent research has focused on reducing the 
number of electrodes, as high-density EEG montages 
are not commonly utilized in hospitals. Suuronen et al. 
(2023) conducted an investigation on the impact of 
electrode placement on classification performance. 
They employed a budget-based search algorithm and 

Table 4  Summary of electroencephalogram (EEG)-based Parkinson’s disease (PD) diagnosis

Study

Chaturvedi et al., 2017

Saikia et al., 2019

Oh et al., 2020

Shah et al., 2020

Khare et al., 2021

Lee et al., 2021

Qiu et al., 2022

Suuronen et al., 2023

Bdaqli et al., 2024

Database

Local

Local

Local

PRED+CT data repository

OpenNeuro, Hospital Universiti 
Kebangsaan Malaysia

Local

OpenNeuro, Iowa dataset

University of Turku, Finland

UCSD

Classifier/detector

ML

ANN

CNN

DGHNet

CNN

ML/CRNN

SVM/MCNN

ML

CNN-LSTM

Performance

78% accuracy

98.8% classification rate

88.25% accuracy, 84.71% sensitivity, 
91.77% specificity

99.22% accuracy

100% and 99.97% accuracy

99.2% accuracy

0.999 AUC (MCNN)

76% accuracy

99.51% (binary) and 99.75% (multi-
class) accuracy

ML: machine learning; ANN: artificial neural network; CNN: convolutional neural network; PRED+CT: patient repository for EEG data+
computational tools; DGHNet: dynamical system generated hybrid network; CRNN: convolutional recurrent neural network; SVM: support 
vector machine; MCNN: multi-scale CNN; AUC: area under the curve; UCSD: University of California, San Diego; LSTM: long short-term 
memory network.
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successfully developed a unique channel-wise feature 
selection method. The result demonstrated that a mere 
five channels positioned at right-frontal, left-temporal, 
and midline-occipital sites were adequate for detect‐
ing PD with an accuracy of 76%.

However, the majority of participants in the 
aforementioned studies were taking medication, thus 
introducing potential confounding effects. Several 
studies have been conducted to classify patients in on-
medication vs. off-medication conditions. Shah et al. 
(2020) proposed a DNN architecture named dynam‐
ical system generated hybrid network (DGHNet) for 
the classification of PD patients in on-medication vs. 
off-medication states. The network had a convolutional 
layer as the input layer to extract spectral features and 
an LSTM layer as the output layer, resulting in an accur‑
acy of 99.22%. In a separate study, Lee et al. (2021) 
recorded two EEG sessions during off- and on-medication 
states, respectively. They employed a convolutional 
RNN (CRNN) model consisting of CNN and RNN, 
which achieved 99.2% accuracy, 98.9% precision, 
and 99.4% recall in classifying PD. Furthermore, the 
proposed model demonstrated its ability to detect the 
impact of dopaminergic medication by utilizing phase 
information. Phase-related features were also used in 
Qiu et al. (2022)’s study. They implemented a multi-
pattern analysis that incorporated PSD and phase-
locked value (PLV) features from EEG data. The re‐
sults showed significant differences in PSD and PLV 
between healthy controls and PD patients (including 
PD_OFF and PD_ON), particularly within the beta 
and gamma frequency bands. Their proposed multi-
scale CNN (MCNN) model exhibited exceptional 
performance.

In Bdaqli et al. (2024)’s work, a novel 1D CNN-
LSTM architecture was introduced to extract salient 
features from the EEG signals. For classification, 
three algorithms were used, and the results indicated 
that SVM performed best, achieving a high accuracy 
of 99.51% in binary classification and 99.75% in 
multi-class classification. To enhance model interpret‐
ability, t-distributed stochastic neighbor embedding 
(t-SNE) was used as an explainable AI (XAI) method 
in the post-processing stage.

4.5 Alzheimer’s disease

AD is the most common cause of dementia and 
holds the seventh position as a leading cause of mortality 

on a global scale. It is a neurodegenerative disease 
with a high incidence among people over the age of 
65 years, characterized by its hidden progression and 
devastating impact on cognitive function. Common 
pathological features of the disease include beta-
amyloid plaques, dystrophic neurites associated with 
plaques, and neurofibrillary tangles within nerve cells 
(Vickers et al., 2000). The early and accurate diagno‐
sis of AD is crucial for timely intervention and treat‐
ment strategies. The diagnosis of AD involves a range 
of clinical procedures, including neuropsychological 
tests, cognitive function evaluation, biochemical analy‐
sis, and brain imaging (Bateman et al., 2012). The 
most common cerebrospinal fluid (CSF) biomarkers 
used for AD diagnosis are amyloid beta and tau (Anoop 
et al., 2010). In the early clinical stages, AD often mani‑
fests as mild cognitive impairment (MCI) (Albert 
et al., 2011), which is a transitional stage between nor‐
mal aging (NA) and more severe cognitive decline. 
During this stage, patients often exhibit cognitive al‐
terations that surpass the expected performance for 
their age, while still maintaining a degree of functional 
independence. The distinguishing factor is whether the 
patient has specific cognitive deficits beyond typical 
age-related changes. Accurately diagnosing AD, espe‐
cially in the MCI stage, poses a significant challenge 
in AD detection. Brain imaging techniques, such as 
functional magnetic resonance imaging (fMRI), com‐
puted tomography (CT), and positron emission tom‑
ography (PET), require exhaustive procedures and 
high cost. In the past decade, EEG signal analysis has 
emerged as an alternative method due to its non-
invasive and cost-effective features.

The classification problems of identifying EEG 
for AD, MCI, and healthy control can be categorized 
into two or three categories. ML and DL can help ro‐
bustly learn abstract representations from EEG so that 
better generalization can be achieved. In Table 5, the 
most recent advancements in diagnosing AD through 
the integration of EEG and AI are presented.

Several works have utilized ML technique to 
distinguish individuals with AD from healthy. For 
instance, Cassani et al. (2017) proposed an automatic 
EEG-based AD diagnosis system based on automated 
artifact removal (AAR) and a 7-channel EEG setup, 
which provided an opportunity for portable and af‐
fordable AD detection. EEG data from healthy controls 
and AD patients were analyzed, including spectral 
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power, coherence, and amplitude-modulation. SVM 
was utilized as classifier and the system was evaluated 
on two different datasets, the 7-channel and the 20-
channel datasets, with the accuracy of 77.3% and 
91.4%, respectively. Vecchio et al. (2020) explored the 
automatic classification of healthy aging and AD 
based on EEG connectivity using SVM. Brain con‐
nectivity was computed using graph theory analysis 
on 84 regions of interest (ROIs) from both the left 
and right hemispheres. The results offered high accur‑
acy (area under the curve (AUC) of 0.97), indicating 
that EEG connectivity analysis combined with source/
connectivity biomarkers could be a promising method 
for identifying AD patients. Additionally, Alsharabi 
et al. (2022) developed a band-pass elliptic digital filter 
to remove interference, followed by discrete wavelet 
transform (DWT) to extract EEG signal features. Mul‐
tiple features were integrated into the DWT to en‐
hance diagnostic capabilities. Nine ML methods were 
evaluated for classifying EEG features. Among them, 
KNN classifier achieved the highest accuracy (99.98%).

Traditional EEG-based automatic systems aimed 
at early diagnosis of MCI and AD have heavily em‐
phasized feature engineering. Unlike previous studies, 
an automated AD detection model was explored, 

using a directed graph for local texture feature extrac‐
tion from EEG signals (Dogan et al., 2023). The graph 
is constructed based on a primate brain pattern (PBP) 
derived from neuronal pathways associated with visual 
object recognition and motor response. The model 
combined PBP with a tunable q-factor wavelet trans‐
form for multilevel feature extraction, achieving 100% 
and 92.01% accuracy using the KNN classifier with 
tenfold and LOSO cross-validation, respectively.

In addition to resting EEG, ERPs have shown 
promise in AD diagnosis. A study demonstrated that 
the amplitude and latency of the P300 component vary 
with age and the progression of AD following stimula‐
tion (Rad et al., 2021). This study employed four task 
states, namely closed-eye, open-eye, recall, and stimu‐
lation EEGs. Three channels (frontal zero (Fz), pari‐
etal zero (Pz), and central zero (Cz)) were used to re‐
cord brain activity. LDA, Elman neural network, and 
CNN were used for classification. Notably, the Pz 
channel exhibited better features, achieving 97.5% and 
99.0% accuracy in the recall and stimulation stages, 
respectively, when employing CNN for classification.

The two categories are less complex than the 
three categories, but the latter is more significant in re‐
search. The diagnosis of MCI can help in prevention 

Table 5  Summary of electroencephalogram (EEG)-based Alzheimer’s disease (AD) diagnosis

Study

McBride et al., 2014

Cassani et al., 2017

Ieracitano et al., 2019

Bi and Wang, 2019

You et al., 2020

Vecchio et al., 2020

Alsharabi et al., 2022

Rad et al., 2021

Xia et al., 2023

Dogan et al., 2023

Han et al., 2024

Boudaya et al., 2024

Size of dataset

15 HC, 16 MCI, 17 AD

85 HC, 99 AD

63 HC, 63 MCI, 63 AD

4 HC, 4 MCI, 4 AD

17 HC, 35 MCI, 35 AD

120 HC, 175 AD

35 HC, 31 mild AD,
22 moderate AD

17 HC, 10 AD

14 HC, 37 MCI, 49 AD

11 HC, 12 AD

21 NA, 29 NCD

13 MCI, 11 HC

Classifier/detector

SVM

SVM

CNN

CDBM

GCN

SVM

LDA, QDA, SVM, NB, KNN, 
DT, ELM, ANN, RF

CNN

CNN

KNN

SVM

Hybrid ML (SVM, RF, GB)

Performance

85.4% accuracy

91.4% (20-channel) and 77.3% 
(7-channel) accuracy

89.8% (AD vs. HC) and 83.3%
(AD vs. MCI vs. HC) accuracy

95.04% accuracy

91.07% accuracy

95% accuracy

99.98% accuracy (KNN)

97.5% (recall stage) and 99.0% 
(stimulation stage) accuracy

97.10% accuracy

100% (tenfold cross-validation) and 
92.01% (LOSO cross-validation) 
accuracy

92.69% accuracy

93.86% accuracy, 93.87% sensitivity, 
93.53% specificity

HC: healthy control; MCI: mild cognitive impairment; NA: normal aging; SVM: support vector machine; CNN: convolutional neural network; 
CDBM: convolutional deep Boltzmann machine; GCN: graph convolutional network; LDA: linear discriminant analysis; QDA: quadratic 
discriminant analysis; NB: naive Bayes; KNN: k-nearest neighbor; DT: decision tree; ELM: extreme learning machine; ANN: artificial neural 
network; RF: random forest; NCD: neurocognitive disorder; ML: machine learning; GB: gradient boosting.
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and treatment of AD. McBride et al. (2014) used scalp 
EEG to detect cognitive impairments in older adults, 
specifically amnestic MCI (aMCI) and early AD. Spec‐
tral and complexity features were extracted and SVM 
model was used to distinguish between groups. The 
highest classification accuracy of 85.4% was achieved 
when analyzing EEG data during eyes closed condi‐
tions. One limitation of the study was the small sam‐
ple size of participants. Ieracitano et al. (2019) ex‐
panded the dataset and proposed a method that in‐
volves analyzing PSDs of EEG traces and represent‐
ing them as 2D grayscale images (PSD-images). A 
customized CNN is designed to extract features from 
these PSD-images for both binary and three-way clas‐
sification tasks. The CNN outperforms traditional meth‐
ods, achieving an average accuracy of 89.8% for binary 
classification and 83.3% for three-way classification.

However, the accuracy of the three-class classifi‐
cation task was diminished due to the minimal distinc‐
tions observed in the PSD between AD and MCI. 
Multi-task learning has recently been explored to ad‐
dress the risk of overfitting of deep models, which often 
occurs with small sample sizes. Bi and Wang (2019) in‐
troduced a multi-task learning approach using a dis‐
criminative convolutional high-order Boltzmann ma‐
chine with hybrid feature maps. The deep Boltzmann 
machine (DBM) and its variants have proven to be a 
potentially powerful alternative tool for feature extrac‐
tion. To further improve the model, a label layer was 
introduced to bridge the gap between feature learning 
and classification. In this study, EEG signals were 
transformed into a 2D image format to preserve spa‐
tial structure, while multiple color channels were em‐
ployed to represent the spectral dimension. Ultimately, 
the model successfully classified EEG spectral images 
into one of three classes (healthy control, MCI, and 
AD) with an accuracy of 95.04%. Nevertheless, the 
process of converting 1D signals into images required 
complicated data processing, and the dataset was in‐
sufficient in size. To overcome the problem of limited 
data and improve the generalization ability of deep 
models, Xia et al. (2023) employed overlapping slid‐
ing windows to augment the EEG data. They also de‐
signed a deep pyramid CNN (DPCNN) to discrimi‐
nate the resting-state EEGs of AD, MCI, and healthy 
controls. The model achieved an accuracy of 97.10% 
in classifying the augmented datasets into three dis‐
tinct categories.

In addition to utilizing solely EEG signals, You 
et al. (2020) combined both gait and EEG data to 
achieve classification of AD. To this end, they pro‐
posed a two-step cascade neural network approach. 
The first step involved the implementation of attention-
based spatial temporal graph convolutional network 
(AST-GCN) on gait data to distinguish between 
healthy controls and patients. The second step utilized 
spatial-temporal convolutional networks on EEG data 
to classify patients as either MCI or AD. Experimen‐
tal results with three-way classification showed out‐
performance of 91.07% compared to other methods. 
Apart from the recorded signals, omics maps can also 
be used to aid in the diagnosis of brain diseases. Re‐
searchers collected fecal samples and urine exosomes 
from NA and neurocognitive disorder (NCD) seniors 
to identify multi-omics signatures and metabolic path‐
ways (Han et al., 2024). SVM achieved 92.69% accur‑
acy in classifying the NA and NCD groups based on 
fused EEG data and multi-omics profiles. Boudaya et al. 
(2024) incorporated EEG and heart rate variability 
(HRV) to classify MCI patients and healthy control 
while subjects were taking the cognitive examina‐
tions. A hybrid ML model (SVM, RF, and gradient 
boosting (GB)) with a voting system was proposed to 
improve accuracy. The hybrid model finally achieved 
an average accuracy of 93.86%, sensitivity of 93.87%, 
and specificity of 93.53%.

4.6 Brain stroke

Stroke is a devastating disease and has become 
one of the leading causes of death globally (Feigin 
et al., 2014). There are two main types of brain strokes: 
ischemic and hemorrhagic. Acute ischemic stroke 
(AIS) is a prevalent form of cerebral infarction, ac‐
counting for over 80% of cases. It arises from an in‐
terruption in the cerebral blood flow (CBF) to a spe‐
cific region, resulting in diminished oxygen and nutri‐
ent supply neurons. The consequences of a brain 
stroke can be severe, as they can affect various cogni‐
tive, motor, and sensory functions. Common symp‐
toms include sudden weakness or numbness on one 
side of the body, speech impairment, impaired coord‑
ination, intense headache, and confusion. Early prog‐
nosis is necessary to mitigate the negative impact for 
patients. MRI and CT are commonly diagnostic tech‐
niques for AIS, but they are not suitable for long-term 
monitoring. Recently, EEG has emerged as a promising 
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tool for both diagnosis and prognosis of AIS (Jor‐
dan, 2004; Foreman and Claassen, 2012). The observa‐
tion of an increase in slow-wave (delta) activity com‐
pared to faster (alpha/beta) activity following the 
stroke has been well-documented (Finnigan et al., 
2016). Here we collected several representative studies 
in EEG-based stroke detection and the summary is 
provided in Table 6.

Currently, there are limitations in brain stroke de‐
tection using EEG as most of the datasets were ob‐
tained after the stroke onset. However, CBF reperfu‐
sion and restoration may change the EEG characteris‐
tics compared with the hyper-acute phase of stroke. 
Most studies focused on investigating EEG as a prog‐
nostic tool to identify the severity of post-stroke pa‐
tients. Dewi et al. (2020) proposed a method that em‐
ploys the PSD of EEG recordings as inputs and em‐
ploys CNN for the automatic extraction of features, 
which achieved 97.3% accuracy in distinguishing nor‐
mal, mild, moderate, and severe stroke. Guntari et al. 
(2020) proposed a novel approach to optimize EEG 
channels for evaluating post-stroke patient. Genetic al‐
gorithms optimized channel combinations, followed 
by RNN to classify the signals into three categories: 
stroke-free, minor stroke, and moderate stroke. The 
proposed method demonstrated an accuracy of 90.00% 
when using only 12 channels, surpassing the 72.22% 
accuracy when using all channels.

Other studies have explored the feasibility and uti‑
lity of using portable and low-density EEG systems in 
time-sensitive scenarios such as ambulances or emergency 
rooms for stroke detection. Giri et al. (2016) used 2-channel 
EEG (C3 and OZ), along with 2-electrooculography 

(EOG) channels (left EOG and right EOG) to classify 
stroke data from health controls. It achieved an aver‐
age accuracy of 86% using 1D convolutional neural 
network (1DCNN) with batch normalization, which 
outperformed other classifiers with simple feature ex‐
traction. Qureshi et al. (2018) used wearable EEG de‐
vices and ML for ischemic stroke detection. EEG data 
were collected from only six channels. MLP and boot‐
strap models obtained 95% accuracy and a ROC curve 
area of 0.85. Wilkinson et al. (2020) designed an af‐
fordable and portable EEG system consisting of seven 
electrodes that could detect stroke and stroke severity. 
They investigated ratios like delta/alpha ratio (DAR) 
and (delta+theta)/(alpha+beta) ratio (DTABR), along 
with head movement data. RF was employed for sub‐
group differentiation. Moderate/severe stroke from 
minor stroke/controls could be distinguished with 63% 
sensitivity, 86% specificity, and 76% accuracy.

The aforementioned research used QEEG meas‑
ures as stroke biomarkers, involving numerical analy‐
sis of the EEG signal spectrum. ERP was also used as 
an assessment feature to assess the extent of motor 
impairment in stroke patients. Li et al. (2014) con‐
ducted cognitive tasks involving working memory to 
collect ERP data, wherein participants were presented 
with a random sequence of 4-digit numbers on a mon‐
itor and tasked with determining if a specific digit ap‐
peared on the screen (0-back task) or if the current 
number had been previously shown (1-back task). 
Health controls and stroke patients could be classified 
using the multiple kernel learning (MKL)-SVM algo‐
rithm with over 89% accuracy for the 0-back task and 
80% accuracy for the 1-back task.

Table 6  Summary of electroencephalogram (EEG)-based brain stroke diagnosis

Study

Li et al., 2014

Giri et al., 2016

Qureshi et al., 2018

Li et al., 2020

Wilkinson et al., 2020

Dewi et al., 2020

Guntari et al., 2020

Singh et al., 2024

Detection type

Stroke

Stroke

Stroke

Ischemic/hemorrhagic stroke

Stroke type/stroke severity

Stroke type/stroke severity

Stroke type/stroke severity

Stroke type/stroke severity/
affected artery

Classifier/detector

MKL-SVM

CNN

MLP

SVM, DT, RF

RF

CNN

RNN

FCNN

Performance

89% (0-back) and 80% (1-back) accuracy

86% accuracy

95% accuracy

98.51% accuracy

76% accuracy

97.3% accuracy

90.00% accuracy

97.74% accuracy (stroke type)/2.1955 
RMSE (stroke severity)/95.7% 
accuracy (affected artery)

MKL: multiple kernel learning; SVM: support vector machine; CNN: convolutional neural network; MLP: multilayer perceptron; DT: decision 
tree; RF: random forest; RNN: recurrent neural network; FCNN: fully connected neural network; RMSE: root mean square error.
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Besides stroke and stroke severity detection, re‐
search has also been conducted on the classification 
of ischemic stroke and hemorrhagic stroke. Li et al. 
(2020) presented a novel method for classifying EEG 
signals obtained from stroke patients with cerebral in‐
farction and cerebral hemorrhage. A feature extraction 
method based on the fusion feature of wavelet packet 
energy and hierarchical entropy feature was intro‐
duced. SVM, DT, and RF were employed as classi‑
fiers. Results showed that the RF using the proposed 
fusion method achieved the best accuracy of 98.51%. 
Singh et al. (2024) proposed a diagnostic tool that 
could quickly obtain multiple stroke information us‐
ing one-minute EEG data. Three different fully con‐
nected neural network (FCNN) models were de‑
veloped for each task: classifying stroke type, iden‑
tifying the affected artery, and assessing stroke sever‐
ity. The models achieved impressive results, including 
an accuracy of 97.74% for stroke type classification, a 
root mean square error (RMSE) of 2.1955 for stroke 
severity assessment, and an accuracy of 95.7% for 
identifying the affected artery.

4.7 Autism spectrum disorder

ASD is a complex neurodevelopmental condi‐
tion characterized by disorders in social interaction 
and communication, along with restricted or repeti‐
tive behaviors (Lord et al., 2018). The etiology of its 
onset remains incompletely elucidated, yet it is postu‐
lated to result from a combination of genetic and envir‑
onmental factors impacting brain development. ASD 

is referred to as a spectrum disorder as it manifests a 
wide range of symptoms that vary greatly among indi‐
viduals. The association between epilepsy and ASD 
has been recognized due to the higher prevalence of 
epilepsy among individuals with ASD (Amiet et al., 
2008). The most common protocol used to diagnose 
ASD involves a qualitative behavioral assessment 
conducted by experts following internationally estab‐
lished criteria such as the DSM-5. Early intervention 
and therapies for behavior and speech are crucial in 
improving communication skills and overall quality 
of life for individuals with ASD. Some research has 
indicated a U-shaped profile EEG pattern from patients 
with ASD, where the activity of high-frequency bands 
(beta and gamma) and low-frequency bands (delta and 
theta) abnormally increases, and the activity in the mid‐
dle frequencies appears reduced (Wang et al., 2013). The 
summary of the related studies is presented in Table 7.

Multiscale entropy (MSE) is designed to differ‐
entiate various levels of complexity and information 
within a biological signal. Bosl et al. (2011) used 
modified MSE derived from resting-state EEG data to 
distinguish between typically developing children and 
those who were at high risk for autism (HRA) based 
on older siblings’ ASD diagnoses. A multiclass SVM 
algorithm was employed for classification within dif‐
ferent age groups (6 to 24 months). Infants were clas‐
sified with over 80% accuracy into control and HRA 
groups at nine months of age. This research indicated 
that EEG complexity could be a potential biomarker 
for ASD at very early ages before the onset of symp‐
toms. However, children at high risk do not necessarily 

Table 7  Summary of electroencephalogram (EEG)-based autism spectrum disorder (ASD) diagnosis

Study
Bosl et al., 2011
Jamal et al., 2014
Grossi et al., 2017
Bosl et al., 2018

Ibrahim et al., 2018
Thapaliya et al., 2018
Abdolzadegan et al., 2020
Bouallegue et al., 2020
Abou-Abbas et al., 2021

Magboo and Magboo, 2022

Detection type
HRA
ASD
ASD
LRC vs. HRA vs. ASD

Epilepsy vs. ASD vs. normal
ASD
ASD
ASD
HRA without ASD vs. HRA 

with ASD
ASD

Classifier/detector
SVM
SVM
ML
SVM

ANN, KNN, SVM, LDA
NB, LR
SVM
CNN
SVM, KNN

SVM, LR, AdaBoost

Performance
Over 80% accuracy
94.7% accuracy
92.8% accuracy (RF)
99% specificity, 82% sensitivity,

97% positive predictive values 
(three-month infants)

94.6% accuracy
100% accuracy
99.91% sensitivity, 90.57% accuracy
99.5% accuracy
88.44% accuracy

99%–100% accuracy

HRA: high risk for autism; SVM: support vector machine; ML: machine learning; RF: random forest; LRC: low-risk control; ANN: artificial 
neural network; KNN: k-nearest neighbor; LDA: linear discriminant analysis; NB: naive Bayes; LR: logistic regression; CNN: convolutional 
neural network.

931



|    J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2024 25(10):914-940

develop ASD; typically developing children can also 
show developmental problems later on. Grossi et al. 
(2017) collected EEG data from a group of 15 chil‐
dren with proven ASD and 10 proven typically devel‐
oping children. They also introduced an advanced pro‐
cessing algorithm called multi-scale ranked organiz‐
ing map coupled with implicit function as squashing 
time (MS-ROM/I-FAST) algorithm, extracting features 
from EEG data without pre-processing. Results showed 
consistent 100% accuracy in distinguishing autistic 
cases using various ML systems in a training-testing 
protocol. The Leave One Out protocol yielded the 
highest accuracy of 92.8% using the RF classifier. 
However, due to the limitation of the small sample 
size, it was not enough to derive definitive conclu‐
sions. Later, Bosl et al. (2018) improved their previ‐
ous study by extending the EEG measurement period. 
EEG data from 99 infants with ASD-risk siblings 
(high-risk) and 89 low-risk controls were collected 
from 3 to 36 months of age. Then, participants were 
classified into three outcome groups: low-risk control 
(LRC)—infants from the low-risk group without ASD; 
HRA—infants from the high-risk group without 
ASD; ASD—infants from either group who received 
an ASD diagnosis. Classification and prediction were 
computed using the SVM, which and achieved accu‐
rate diagnosis of ASD or not ASD from as early as the 
age of three months, with high specificity (99%), sen‐
sitivity (82%), and positive predictive values (97%).

However, recording accurate EEG signals from 
restless children with autism is challenging. Commonly, 
recordings are taken during sleep with medication, 
which may alter the EEG and complicate the analysis. 
Abdolzadegan et al. (2020) introduced a new protocol 
to record EEG without sedation as well as extract re‐
liable features. EEG was acquired during cartoon video 
playback, and density-based spatial clustering of ap‐
plications with noise (DBSCAN) was used to remove 
the artifacts. SVM classifiers achieved a classification 
accuracy of 90.57% and a notably high sensitivity of 
99.91%. Besides solely focusing on EEG, Thapaliya 
et al. (2018) combined EEG and eye-tracking data to 
identify ASD. Data retrieval was performed while 
watching video clips. Multiple ML classifiers were 
employed, and 100% accuracy was obtained using 
NB and LR classifiers.

Studies have investigated impairments in emotion 
perception in ASD using ERPs recorded in response 
to different face stimuli. Jamal et al. (2014) extracted 

EEG signals during face processing tasks when three 
types of emotional face stimuli were presented, in‐
cluding fearful, neutral, and happy facial expres‐
sion. Complex network parameters were used as fea‐
tures, and SVM was used as the classifier; the re‐
search achieved an accuracy of 94.7%. Abou-Abbas 
et al. (2021) explored visual ERPs and ML to classify 
high-risk infants who later developed ASD. ERP data 
were collected from infants reacting to changing gaze 
directions in faces (Elsabbagh et al., 2012). They used 
the empirical mode decomposition (EMD) technique 
to decompose ERPs into a set of intrinsic mode func‐
tions. Features extracted via IMFs were input into 
SVM and KNN for classification. The highest accuracy 
the study reached was 88.44% using SVM.

Ibrahim et al. (2018) investigated EEG classifica‐
tion techniques for epilepsy and ASD automated diag‐
nosis. DWT and cross-correlation (measuring synchro‐
nization between EEG channels) were used to extract 
features from the EEG segment. Several ML methods, 
including ANN, KNN, SVM, and LDA, were used 
for classification. The ASD dataset was provided by 
King Abdulaziz University (KAU) in Saudi Arabia 
with ten normal controls and nine ASD patients 
(Alhaddad et al., 2012). The study finally obtained an 
overall accuracy of 94.6% on the three-class classifi‐
cation problem (normal vs. epilepsy vs. autism). Based 
on the same dataset, Bouallegue et al. (2020) proposed 
an approach involving a DL process. They used finite 
impulse response (FIR) and infinite impulse response 
(IIR) filters with a gated-recurrent unit (GRU) RNN 
to preprocess informative sub-bands, followed by in‐
dependent component analysis (ICA). CNN was em‐
ployed in the classification. The system attained an ac‐
curacy of 99.5% for autism diagnosis. Magboo and 
Magboo (2022) applied several ML models, including 
SVM, LR, and AdaBoost, to a publicly available child 
ASD dataset. The best models could achieve 99%–100% 
accuracy. The LIME algorithm provided model ex‐
plainability, helping physicians understand the model’s 
predictions.

5 Discussion 

5.1 Types of EEG dataset and challenges in brain 
disease diagnosis

Different types of EEG signals, including resting-
state EEG and ERP, should be taken into account 
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depending on the disease. It is important to determine 
which type of biomarker from an EEG signal is the 
most informative for a certain situation. For instance, 
in schizophrenia detection, ERPs such as the MMN 
component were used to study auditory processing 
deficits in individuals (Shim et al., 2016; Chang et al., 
2021). The P300 component was frequently utilized 
to investigate cognitive and memory functions in indi‐
viduals with depression and AD (Shim et al., 2019; 
Rad et al., 2021). Greater anterior EEG activity, par‐
ticularly the EEG alpha asymmetry and beta frequency 
band, has shown promise for depression detection (Li 
et al., 2016; Mumtaz et al., 2017). In the context of 
PD diagnosis, alpha/theta spectral ratio, alterations in 
beta frequency synchronization, and PAC have been 
emphasized as potential biomarkers (Chaturvedi et al., 
2017; Shah et al., 2020). Additionally, time-frequency 
plots from EEG signals have also been used as EEG 
biomarkers. Some studies have successfully converted 
1D EEG signals into 2D feature images, a transforma‐
tion that has improved the applicability of image-
based models such as CNN and GNN (Truong et al., 
2018; Bi and Wang, 2019; Ieracitano et al., 2019; Li 
XW et al., 2019; Li Y et al., 2019; Khare et al., 2021; 
Wang et al., 2022). This advancement allows for the 
capture of both spatial and hierarchical patterns. How‐
ever, computational intensity should be considered at 
the same time to strike a balance between improved 
representation and efficient processing.

When designing the architecture of the detection 
model, both the size and characteristics of the dataset 
should be considered, as AI is based on methods driven 
by data. Datasets in most of the studies accommo‐
dated a relatively small number of participants, which 
may lead to a lack of generalizability and pose limita‐
tions when translating into clinical utilities. Solutions 
include data augmentation, such as applying transform‑
ations to EEG signals or using GANs to create syn‐
thetic data, which can expand the dataset and improve 
model robustness (Zhang et al., 2020; Wang et al., 
2022; Saadatinia and Salimi-Badr, 2024). Transfer 
learning, which uses a pre-trained model on a larger 
relevant dataset and fine-tunes it on a smaller target 
dataset, is also useful for solving overfitting problems 
(Daoud and Bayoumi, 2019). Regularization tech‐
niques, like dropout and weight regularization, can also 
help prevent overfitting by ensuring simpler models 
that generalize better. Data-sharing platforms can also 

be established among researchers to create larger, more 
diverse datasets.

In some mental diseases, such as depression, pa‐
tients participating in the test were under medication, 
and the possible confounding effects of psychotropic 
medication may not be controlled. Even when partici‐
pants are asked to be medication-free for a while be‐
fore EEG recording, the effect of medication cannot 
be ruled out completely. Studies could explore strat‐
egies to minimize confounding variables or conduct 
research to assess the impact of specific psychotropic 
medications on EEG (Shah et al., 2020; Lee et al., 
2021; Qiu et al., 2022).

Most published work on EEG-based brain dis‐
ease diagnosis typically relied on EEG setups ranging 
among 16, 20, 32, 64, and 128 electrodes. In the fu‐
ture, it would be advantageous to focus on acquiring 
data with a reduced number of electrodes, thereby en‐
abling the development of portable EEG devices capa‐
ble of conducting long-term recordings in everyday 
settings.

5.2 Advancements and challenges of AI models

Before the advent of DL, many analyses from 
statistics, time, frequency, or time-frequency domains 
were used in various conventional ML algorithms. 
Comparing the classification performance achieved 
by different architecture designs across diverse brain 
diseases and EEG datasets poses challenges, but the 
complexity of EEG signals makes it difficult to achieve 
truly spectacular results. DL deployment stands out as 
having several advantages. First, DL models can 
achieve a deeper understanding of data due to their 
ability to learn hierarchical representations directly 
from raw data. This hierarchical learning enables the 
extraction of complex and abstract features that might 
be difficult to identify using traditional ML methods. 
Second, DL models facilitate automatic feature selec‐
tion, reducing the reliance on hand-crafted features 
and domain-specific knowledge. In addition, hybrid 
algorithms, such as CNN-LSTM or CNN-AE, tend to 
outperform other individual algorithms in ablation 
experiments (Ay et al., 2019; Daoud and Bayoumi, 
2019; Liang et al., 2020; Ahmedt-Aristizabal et al., 
2021; Sharma et al., 2021). However, one of the prob‐
lems of the DL models is their limited interpretability; 
because they involve intricate mathematical opera‐
tions, clinicians may find it challenging to trust and 
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adopt DL models for EEG data analysis in medical 
contexts. This can be improved through the develop‐
ment of techniques such as attention mechanisms or 
the use of XAI methods.

One limitation in determining the best model is 
the database used. Local datasets can introduce biases 
due to varying factors such as age and gender, poten‐
tially affecting the reported results. Conversely, using 
open-access databases makes research more compar‑
able and helps identify the best methods. For instance, 
in schizophrenia detection research, studies by Oh et al. 
(2019) and Jahmunah et al. (2019) utilized the same 
dataset from the Institute of Psychiatry and Neurol‐
ogy in Warsaw, Poland. Their results demonstrated that 
the CNN model outperformed the traditional SVM 
model. However, even studies using the same model 
and dataset can yield different results due to minor 
differences in parameters and data processing methods. 
For example, in seizure detection research, Acharya 
et al. (2018b) and Shoeibi et al. (2021b) proposed 
CNN models based on the same dataset but achieved 
different performance levels. In the future, efforts 
should be made to standardize the reporting of AI 
technologies with standardized methods for describ‐
ing and measuring results (Sounderajah et al., 2021).

In general, high accuracy often comes with low 
specificity compared to recall and accuracy, highlight‐
ing the challenge of achieving relative precision. Add‑
itionally, DL models, such as CNNs and LSTMs, are 
increasingly favored for their ability to automatically 
extract and learn complex features from high-
dimensional data. CNNs automatically extract spatial 
features from EEG data and are efficient at parameter 
sharing. LSTMs can capture long-term temporal de‐
pendencies in EEG signals and alleviate vanishing 
gradient issues. Traditional ML models like SVMs re‐
main valuable, especially when combined with hand-
crafted features and used in ensemble approaches.

Integrating advanced AI-driven methodologies 
into the diagnosis and management of brain diseases 
also holds significant promise for enhancing diagnos‐
tic precision and improving patient outcomes. By 
leveraging natural language processing (NLP) and 
large language models like chat generative pre-trained 
transformer (ChatGPT), clinicians can screen clinical 
notes for risk factors and suggest potential diagnoses, 
thereby facilitating earlier intervention. Additionally, the 
future exploration of web-based diagnosis techniques 

has the potential to improve the efficiency of CAD 
systems. Pre-trained models can be deployed based on 
cloud computing, reducing the computational burden 
on local systems and enabling healthcare profession‐
als to receive results in a timely manner.

5.3 Potential of multimodal EEG and neuro‐
physiological data

The exploration of multimodal EEG holds poten‐
tial for the future. For example, the simultaneous col‐
lection of EEG and EOG or eye-tracking data helps 
us to understand how visual attention and processing 
are reflected in both brain activity and eye movement 
(Giri et al., 2016; Thapaliya et al., 2018). EMG and 
gait data provide insight into the motor conditions of 
PD and AD patients (Saikia et al., 2019; You et al., 
2020). EMG can also aid in the elimination of muscle 
artifacts in EEG data. It has been indicated that changes 
in short-term heart rate recordings can be observed 
during a seizure preictal state (Moridani and Farhadi, 
2017).

However, EEG has its own advantages and dis‐
advantages. For instance, while EEG is non-invasive 
and relatively inexpensive and provides real-time brain 
activity data, it has limited spatial resolution com‐
pared to imaging modalities like MRI. Additionally, 
EEG is sensitive to noise and artifacts, which can 
complicate data interpretation. Apart from EEG data, 
combining multiple data sources such as medical re‐
cords, imaging studies, and omics data can provide a 
comprehensive view of a patient’s condition. By inte‐
grating EEG and MRI data, it is possible to capture 
comprehensive information about both brain activity 
and structure, considering spatial and temporal aspects 
simultaneously. HRV can be further combined with 
EEG recordings to improve epilepsy prediction methods, 
as HRV offers valuable information about the auto‐
nomic nervous system’s functioning, reflecting the 
balance between sympathetic and parasympathetic ac‐
tivity. In the diagnosis of complex brain diseases such 
as AD, PD, and schizophrenia, omics data provide a 
comprehensive view of the molecular mechanisms 
underlying brain function and disease. By exploring 
the interaction between neural oscillations and molecu‑
lar pathways, clinicians can uncover biomarkers that 
are more specific and informative. Future research 
can investigate innovative techniques to fuse informa‐
tion from different modalities, thereby offering a more 
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comprehensive understanding of brain diseases, lead‐
ing to improved diagnostic precision and more person‐
alized therapeutic strategies. To merge different modal‐
ities, several approaches can be explored. For ex‐
ample, DL methods, such as multimodal neural networks 
and attention mechanisms, dynamically integrate mul‐
tiple data sources. Graph-based methods, like GNN, 
model interactions between modalities, while canon‑
ical correlation analysis (CCA) finds shared patterns 
between them.

6 Conclusions 

In this article, a review of EEG-based diagnosis 
of brain disease is presented with a focus on AI tech‐
nology. AI has shown significant promise in the diag‐
nosis of brain diseases using EEG signals. By leverag‐
ing both traditional ML and advanced DL techniques, 
AI systems can enhance diagnostic accuracy and offer 
insights into complex brain disorders. The studies re‐
viewed highlight the effectiveness of various AI models, 
such as SVM and CNN, and hybrid models, like 
CNN-LSTM, in classifying and predicting conditions 
such as epilepsy, schizophrenia, depression, PD, AD, 
brain stroke, and ASD. Key considerations include the 
selection of the most informative type of EEG signal 
for specific diseases, the balance between improved 
representation and computational efficiency, and the 
need for larger and more balanced datasets to improve 
generalizability. Future research should integrate multi‑
modal data, including other types of EEG, such as 
EOG and EMG, or combine EEG with other brain im‐
aging techniques, like MRI and HRV, to provide a 
more comprehensive understanding of brain diseases. 
Additionally, enhancing the interpretability of DL 
models and exploring web-based diagnostic systems 
using pre-trained models on cloud platforms could 
further improve the efficiency and accessibility of AI-
driven diagnostic tools.
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