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Abstract: Thalamocortical circuitry has a substantial impact on emotion and cognition. Previous studies have demonstrated 
alterations in thalamocortical functional connectivity (FC), characterized by region-dependent hypo- or hyper-connectivity, among 
individuals with major depressive disorder (MDD). However, the dynamical reconfiguration of the thalamocortical system over 
time and potential abnormalities in dynamic thalamocortical connectivity associated with MDD remain unclear. Hence, we analyzed 
dynamic FC (dFC) between ten thalamic subregions and seven cortical subnetworks from resting-state functional magnetic 
resonance images of 48 patients with MDD and 57 healthy controls (HCs) to investigate time-varying changes in thalamocortical 
FC in patients with MDD. Moreover, dynamic laterality analysis was conducted to examine the changes in functional lateralization 
of the thalamocortical system over time. Correlations between the dynamic measures of thalamocortical FC and clinical assessment 
were also calculated. We identified four dynamic states of thalamocortical circuitry wherein patients with MDD exhibited 
decreased fractional time and reduced transitions within a negative connectivity state that showed strong correlations with 
primary cortical networks, compared with the HCs. In addition, MDD patients also exhibited increased fluctuations in functional 
laterality in the thalamocortical system across the scan duration. The thalamo-subnetwork analysis unveiled abnormal dFC 
variability involving higher-order cortical networks in the MDD cohort. Significant correlations were found between increased 
dFC variability with dorsal attention and default mode networks and the severity of symptoms. Our study comprehensively 
investigated the pattern of alteration of the thalamocortical dFC in MDD patients. The heterogeneous alterations of dFC 
between the thalamus and both primary and higher-order cortical networks may help characterize the deficits of sensory and 
cognitive processing in MDD.

Key words: Major depressive disorder; Resting-state functional magnetic resonance imaging; Thalamocortical circuitry; Dynamic 
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1 Introduction 

Major depressive disorder (MDD) is a prevalent 
psychiatric disorder characterized by persistent de‐
pression, anhedonia, and cognitive function impair‐
ment (Otte et al., 2016). It is associated with atypical 
brain activity and functional interactions within large-
scale brain networks (Kaiser et al., 2015; Sacchet et al., 
2016; Zhao et al., 2022). The thalamus, known for its 
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intricate feedforward and feedback connections with 
the cortex, has been implicated in the transmission 
and regulation of information between cortical regions 
(Sherman, 2007). A previous study by Yuan et al. 
(2016) indicated that the dysfunctional circuits involv‐
ing the thalamus may contribute to the clinical symp‐
toms and cognitive impairments of MDD. Therefore, 
investigating brain network dysfunctions in patients 
with MDD requires a comprehensive examination of 
thalamic involvement (Behrens et al., 2003; Zhang 
et al., 2010), and exploring thalamocortical connectiv‐
ity may offer further insights into the pathogenesis and 
pathophysiological process of MDD.

Resting-state functional magnetic resonance im‐
aging (rs-fMRI) provides an effective approach to sys‐
tematically investigate thalamocortical circuitry by es‐
timating functional connectivity (FC). Several studies 
have found an association between altered thalamo‐
cortical FC and MDD, suggesting that disrupted thala‐
mocortical FC may serve as a neurobiological marker 
for MDD (Brown et al., 2017; Kong et al., 2018). For 
example, Lui et al. (2011) reported an association be‐
tween decreased thalamo-prefrontal connectivity and 
treatment resistance in patients with depression. Add‑
itionally, reduced FC between the thalamus and bilateral 
precuneus after electroconvulsive therapy adversely 
affects cognitive performance in individuals with MDD 
(Wei et al., 2020). Moreover, MDD patients have 
demonstrated decreased connectivity between the thal‐
amus and the orbitofrontal cortex (Tadayonnejad et al., 
2015), along with increased connectivity connecting 
the thalamus to the temporal (Brown et al., 2017) and 
somatosensory cortices (Kang et al., 2018). Neverthe‐
less, these studies assumed the constancy of brain con‐
nectivity patterns during the entire scan, overlooking 
the dynamic nature of the brain.

Previous studies have revealed that the brain op‐
erates as a dynamic system, and the resting-state FC 
can vary across different temporal scales (Hutchison 
et al., 2013; Allen et al., 2014). To capture the tempo‐
ral variability of FC and uncover underlying neuro‐
physiological mechanisms that static FC analysis fails 
to detect, the concept of dynamic FC (dFC) analysis 
was introduced (Allen et al., 2014). Recent studies 
using the sliding-window method have identified dFC 
dysconnectivity within and between resting-state con‐
nectivity networks in patients with MDD, suggesting 
a potential connection between the dFC properties and 
cognitive performance and the severity of depression 

(Zhi et al., 2018; Yao et al., 2019a; Sendi et al., 2021). 
Moreover, individuals with MDD and bipolar depres‐
sion exhibited shared and distinct disruptions in thala‐
mocortical dFC variability, further substantiating the 
significance of thalamocortical FC dynamics in the 
pathological mechanism underlying depression (Lu 
et al., 2023). However, there have been few investiga‐
tions into thalamocortical dFC patterns in MDD, and 
the sliding-window method fails to capture sudden 
changes in FC patterns effectively (Lindquist et al., 
2014). In contrast, the dynamic conditional correlation 
(DCC) model estimates FC at each time point by con‐
sidering time courses as a weighted combination of 
preceding time points, demonstrating superior per‐
formance compared to the sliding-window method 
(Lindquist et al., 2014; Choe et al., 2017). Neverthe‐
less, the DCC model assumes zero autocorrelation 
among the input samples, which may not always hold 
(Lenoski et al., 2008; Arbabshirani et al., 2014). To 
address this issue, an auto-regressive DCC (AR-DCC) 
model was proposed, which better captures the dFC 
patterns in the brain compared with both the sliding-
window method and the DCC model (Hakimdavoodi 
and Amirmazlaghani, 2020). By using the AR-DCC 
model, researchers have reported altered dFC in the 
frontoparietal, dorsal attention, and sensorimotor net‐
works in patients with attention-deficit/hyperactivity 
disorder (ADHD) (Hakimdavoodi and Amirmazlag‑
hani, 2020). These findings are consistent with previ‐
ous literature, showing impaired structural and func‐
tional connectivities within these networks in ADHD 
cohorts (Choi et al., 2013; McLeod et al., 2014; Bos 
et al., 2017). Due to its advantages over other dFC 
models and its good interpretability, it is advisable to 
use the AR-DCC model to enhance the detection of 
temporal dynamic characteristics of the thalamocorti‐
cal FC in patients with MDD.

Most studies investigating thalamocortical FC in 
MDD have treated the thalamus as a uniform anatomi‐
cal entity. This approach limits the ability to make pre‐
cise inferences about specific locations of thalamocor‐
tical FC abnormalities. It is now recognized that the 
thalamus is a complex structure, composed of multi‐
ple nuclei with distinct projections to different areas 
of the cerebral cortex (Behrens et al., 2003). For ex‐
ample, the intralaminar and medial thalamic nuclei, 
which are primarily connected with frontoparietal and 
prefrontal areas, have been linked to various cognitive 
functions such as attention and reward-related behavior 
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(Saalmann, 2014). The anterior thalamic nuclei, con‐
nected with the frontal and limbic cortices, play a cru‐
cial role in memory processing and affective cogni‐
tion (Dupire et al., 2013; Sweeney-Reed et al., 2021). 
The ventral thalamic nuclei have a projection to motor 
and premotor regions, and dysfunctions in these 
nuclei may affect attention biases toward positive 
stimuli in MDD (Gotlib et al., 2011; Hamilton et al., 
2015). Recent investigations have sought to explore 
thalamocortical FC abnormalities in MDD by di‐
viding the thalamus into different subregions. These 
studies have revealed subregion-dependent alterations 
in thalamocortical connectivity in patients with MDD 
(Kong et al., 2018; Xue et al., 2019). However, whether 
MDD is associated with aberrant dynamic functional 
interactions between thalamic subfields and cortical re‐
gions remains an open question.

In this study, we used the AR-DCC model and a 
precise thalamic atlas comprising ten subregions to 
analyze rs-fMRI data from 48 patients with MDD and 
57 healthy controls (HCs). Our primary goal was 
to examine the presence of abnormal thalamocortical 
dFC patterns in patients with MDD, with a specific 
focus on temporal properties, dFC variability, and lat‐
erality dynamics, which could be associated with clin‐
ical symptoms. Specifically, we first used the k-means 
clustering method to identify distinct dFC states in the 
thalamocortical system. Four temporal properties and 
dFC variability were then computed to capture time-
varying changes in thalamocortical FC patterns. In add‑
ition, we conducted dynamic laterality analysis to as‐
sess the changes in functional lateralization within the 
thalamocortical system over time.

2 Methods 

2.1 Participants

A total of 123 participants, including 58 patients 
with MDD and 65 age- and sex-matched HCs, were 
recruited. MDD patients were enrolled from Gansu 
Provincial Hospital (Lanzhou, China) and diagnosed 
by the Structured Clinical Interview for the fourth ver‐
sion of Diagnostic and Statistical Manual of Mental 
Disorders (DSM-IV) Axis I Disorders (SCID). The 
HCs were enrolled through newspaper advertisements 
and were interviewed by the Structured Clinical In‐
terview for DSM-IV (non-patient edition). The 17-item 

Hamilton Rating Scale for Depression (HAMD) (Ham‐
ilton, 1967) was used to assess the severity of depres‐
sive symptoms for each participant. All patients with 
MDD included in this study had a total score of ≥8 on 
the HAMD (Williams, 1988; Long et al., 2020). The 
exclusion criteria in this work included: the presence 
of other major psychiatric diseases, a declared history 
of illegal substance abuse, the presence of severe phys‐
ical illness, organic brain disease, left-handedness, and/
or pregnancy. Then, the data from ten MDD patients 
and eight HCs were excluded from the study due to 
low image quality, evident head motion, and inade‐
quate segmentation of thalamic nuclei (refer to Sec‐
tions 2.3 and 2.4 for details). As a result, further analy‐
sis used the remaining dataset comprising 48 MDD 
patients and 57 HCs. Detailed demographic and clin‐
ical information is shown in Table 1.

2.2 Data acquisition

MRI data were acquired via a 3.0T Siemens Trio 
scanner (Siemens, Erlangen, Germany). The T1-weighted 
data were obtained with the following parameters: 
repetition time (tR)/echo time (tE)=2530 ms/3.39 ms, 
inversion time=1100 ms, matrix size=256×256, flip 
angle=7°, and sagittal slice number=128. The rs-fMRI 
data were collected using an echo-planar imaging se‐
quence with the following parameters: tR/tE=2000 ms/
30 ms, matrix size=64×64, flip angle=90°, field 
of view=220 mm×220 mm, slice number=33, slice 
thickness=3.5 mm, slice gap=0.6 mm, and a total of 
240 volumes.

2.3 Data preprocessing

The T1-weighted data were preprocessed using 
FreeSurfer v7.2.0 (Fischl, 2012). Specifically, the 
“recon-all” function with default settings was per‐
formed, which included skull-stripping, motion cor‐
rection, Talairach registration, intensity normaliza‐
tion, white matter labeling, topology correction and 
surface deformation, and segmentation of cortical and 
subcortical brain structures. Then, the Euler number, 
an automated quality control strategy provided by 
FreeSurfer, was used to exclude potential outliers 
(Rosen et al., 2018), i.e., patients with an Euler number 
below Q1−1.5×interquartile range or above Q3+1.5×
interquartile range (only one MDD patient).

The rs-fMRI data were preprocessed using a 
MATLAB toolbox called Data Processing Assistant for 
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Resting-State fMRI (DPARSF) (Yan and Zang, 2010) 
based on the Statistical Parametric Mapping (SPM; 
https://www.fil.ion.ucl.ac.uk/spm). The preprocessing 
procedure was as follows: (1) removal of the first 
ten volumes; (2) slice timing and head motion correc‐
tion; (3) nuisance covariate regression (including the 
white matter signal, cerebrospinal signal, linear trends, 
and Friston’s 24 motion parameters); (4) spatial nor‐
malization to the Montreal Neurological Institute (MNI) 
space with 3 mm×3 mm×3 mm resolution; (5) spatial 
smoothing using an 8-mm full-width at half maxi‐
mum Gaussian kernel; (6) band-pass filtering at 
0.01‒0.08 Hz. Participants with a head displacement 
of >2 mm, rotation angle of >2°, or mean frame-wise 
displacement (FD) of >0.2 mm were excluded to min‐
imize the effect of head motion (including seven MDD 
patients and four HCs).

2.4 Definition of thalamic subregions

The ThalamicNuclei pipeline in FreeSurfer v7.2.0 
(Fischl, 2012) was used to segment thalamic nuclei. 
Briefly, the probabilistic thalamic segmentation algo‐
rithm was performed on the preprocessed T1-weighted 
images to segment the whole thalamus into 50 differ‐
ent subregions (Iglesias et al., 2018). The automatic 
segmentation of each participant was then visually in‐
spected to assess the segmentation quality of thalamic 
nuclei. As a result, data from two MDD patients and 
four HCs with biologically implausible segmentation 
of nuclei groups were discarded. Next, we grouped tha‐
lamic nuclei into five different subregions for each side 
in the native space according to previous studies (Wee‐
land et al., 2022a, 2022b), including anterior, lateral, 
ventral, intralaminar/medial, and pulvinar subregions 
(Table S1, Fig. 1a). The thalamic mask of each partici‐
pant was spatially normalized to the MNI space using 
the Advanced Normalization Tools (ANTs) (Avants 
et al., 2009).

2.5 Auto-regressive dynamic conditional correlation 
model for dynamic functional connectivity analysis

The cortex was divided into 200 regions of inter‐
est (ROIs) according to the Schaefer atlas (Schaefer 
et al., 2018) (Fig. 1a). For each participant, the mean 
time courses of 10 thalamic subregions and 200 corti‐
cal regions were extracted. Then, the AR-DCC model 
that combines the AR and DCC models was applied 
to estimate the dFC patterns between 10 thalamic 

subregions and 200 cortical regions (Hakimdavoodi 
and Amirmazlaghani, 2020). Compared with the sliding-
window method, the AR-DCC model eliminates the 
need for window size adjustments, enabling the esti‐
mation of the FC between each pair of brain regions 
at each time point. Assume that Yt (t=1, 2, ..., T) is an 
N-dimensional time series:

Y t = M t + X t, Y t : = [ y1,t,  y2,t, ..., yN,t ]
T

, (1)

where t is a time in the time series in each region, N 
is the number of brain regions, Mt is computed via the 
N different AR models, and Xt is estimated using the 
DCC model.

The first part of the AR-DCC model estimates 
the temporal autocorrelation of the fMRI time series 
through an AR model, such as low-frequency correla‐
tions caused by equipment and wide-band correla‐
tions caused by underlying physiological fluctuations 
(Purdon and Weisskoff, 1998; Lund et al., 2006). Spe‐
cifically, N-dimensional time series Yt (t=1, 2, ..., T) 
follows the N different AR models of order p, which 
can be written as follows:

yd,t = ad,0 + ∑
k = 1

p

ad,k yd,t − k + xd,t,  xd,t~N (0, δ2
d ) , 

d = 1, 2, ..., N, (2)

where yd,t is the dth element of Yt, ad,0, ad,k≠0 (k=1, 
2, ..., p) are AR parameters, and xd,t is the dth element 
of Xt with a zero mean and a variance δ2

d.
The second part of the AR-DCC model consid‐

ers the correlation changes estimated by the DCC 
model fitted on the AR residuals. Assuming that Xt is 
an N-dimensional mean zero time series, the dynamic 
correlation matrix Rt can be calculated as follows:

hi,t = ω i + α i X
2

i,t − 1 + β ihi,t − 1, i = 1, 2, ..., N, (3)

D t = diag ( )h1/2
1,t , h

1/2
2,t , ..., h

1/2
N,t , (4)

U t = [ u1,t, u2,t, ..., uN,t ]
T with ui,t = D− 1

i,t X i,t,
 i = 1, 2, ..., N, (5)

Q t = (1 − γ − κ ) E [U tU
T
t ] + γ (U t − 1U

T
t -- 1 ) + κQ t − 1,

(6)

R t = diag (Q t )
− 1

2 Q tdiag (Q t )
− 1

2 . (7)

The second part of the AR-DCC model can be 
split into the following steps. Firstly, fitting the gen‐
eralized autoregressive conditional heteroscedastic 
(GARCH) model to each time series within Xt, the 
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conditional standard deviation hi,t of the ith time-series 
is modeled as a linear combination of hi,t−1 and X2

i,t − 1 
(Eq. (3)). Secondly, the standardized residual Ut is 
computed through Eqs. (4) and (5). The D t in Eq. (4) is 
a diagonal matrix, and the ith diagonal element corres‑
ponds to hi,t. Thirdly, an exponentially weighted mov‐
ing average (EWMA) window is applied to the Ut 
to compute a non-normalized version of the time-
varying correlation matrix termed as Qt (Eq. (6)). The 
E [U tU

T
t ] in Eq. (6) represents the unconditional covari‑

ance matrix of U t. Finally, Qt is rescaled to ensure a 
proper correlation matrix Rt being created (Eq. (7)). 
The diag (Q t ) in Eq. (7) is a diagonal matrix formed 
by diagonal elements of Qt. The ω i, αi, βi, γ, and κ are 
non-negative parameters of the DCC model, estimated 
by the quasi-maximum likelihood method.

As a result, a total of 230-time windows were ob‐
tained for each participant and a 10×200 thalamocor‐
tical correlation matrix was computed for each win‐
dow. To assess recurring dFC patterns over time, the 
k-means clustering method was performed on all cor‐
relation matrices of all participants (Allen et al., 2014). 
The L1 distance was used as a similarity measure be‐
tween matrices (Aggarwal et al., 2001) and the k-
means clustering method was iterated 200 times with 
random initialization of cluster centroids to escape 
local minima (Allen et al., 2014). Here, the optimal so‐
lution of clusters was determined by the elbow criter‑
ion with k varying from 2 to 10 (Calhoun et al., 2014). 
After clustering, each participant obtained a state 
vector representing changes in dFC states over time. 
Finally, four measures were calculated to estimate 
temporal properties of dFC states, including (1) frac‐
tional time, defined as the proportion of time spent in 
each state; (2) mean dwell time, defined as the aver‐
age number of consecutive windows in a certain state 
before switching to another state; (3) number of tran‐
sitions between different states; (4) transition proba‐
bility, defined as the probability of switching from 
one state to another state. Moreover, we also calculat‐
ed the variance of FC across all windows clustered 
into one state, i.e., dFC variability, to characterize the 
thalamocortical dFC fluctuations. The pipeline of dFC 
analysis is shown in Fig. 1.

2.6 Dynamic laterality analysis

To capture the dynamics of laterality in the thala‐
mocortical circuit, we calculated a dynamic laterality 

index (DLI) for each thalamic subregion at each time 
window (Chen et al., 2019; Wu et al., 2022). The DLI 
at the tth window is defined as

DLI t =
∑j = 1

n r (ROI i, ROI j )

n
− ∑k = 1

m r (ROI i, ROIk )

m
,

(8)

where 
1
n∑j = 1

n r (ROI i, ROI j ) indicates the averaged 

FC strength between the ith thalamic ROI and all corti‐

cal regions in the left hemisphere;
1
m

 ∑k = 1

m r(ROIi, 

ROIk ) indicates the averaged FC strength between the 
ith thalamic ROI and all cortical regions in the right 
hemisphere. j represents jth cortical region in the left 
hemispheres; k represents kth cortical region in the 
right hemispheres; n and m represent the numbers of 
cortical regions in the left and right hemispheres, 
respectively. Then, a measure termed laterality fluctua‐
tion (LF), defined as the variance of the time series 
of DLI across all windows, was computed to charac‐
terize the dynamic changes in laterality during the 
whole scan.

2.7 Dynamic functional connectivity analysis of 
thalamo-subnetwork connectivity

Previous analyses conducted on the thalamus and 
the entire cortex only emphasized the global dynamic 
interactions of the thalamocortical system, potentially 
neglecting important insights into abnormal dFC pat‐
terns within local thalamocortical circuits (i.e., dy‐
namic interactions between the thalamus and func‐
tional subnetworks). In this study, the 200 cortical re‐
gions were categorized into seven networks, includ‐
ing the visual network (Vis), somatomotor network 
(SomMot), dorsal attention network (DorsAttn), salient 
ventral attention network (SalVentAttn), limbic net‐
work (Limbic), executive control network (Cont), and 
default mode network (Default). We then investigated 
local dFC patterns of the thalamocortical system 
using the experimental procedure mentioned in Sec‐
tions 2.5 and 2.6.

2.8 Statistical analysis

Group differences in age and sex were exam‐
ined using the two-sample t-test and Chi-square test, 
respectively. A non-parametric permutation test (5000 
repetitions), with age and sex as covariates, was per‐
formed to investigate the statistical significance of 
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changes in the dFC metrics (i.e., four temporal prop‐
erties, dFC variability, and LF) in MDD patients rela‐
tive to the HCs. Briefly, we first calculated the real 
between-group difference of each metric. To determine 
whether the group differences could occur by chance, 
we then randomly reassigned all participants into the 
two groups and recomputed the differences between 
the two randomized groups based on each metric. This 
randomization procedure was repeated 5000 times, 
which could result in a null distribution of between-
group differences. An observed difference value out‐
side the 95% confidence interval of the distribution in‐
dicated the existence of statistical difference for a given 
metric between the two groups. Multiple comparisons 
were corrected via the false discovery rate (FDR) 
method at the level of q=0.05. The Pearson correla‐
tion coefficients between altered dFC metrics (i.e., four 
temporal properties, dFC variability, and LF) and clin‐
ical data (i.e., HAMD, the Hamilton Rating Scale for 
Anxiety (HAMA), and illness duration) were calcu‐
lated for the MDD group.

3 Results 

3.1 Demographic characteristics

A total of 48 MDD patients and 57 HCs were in‐
cluded in the current study. As shown in Table 1, no 

significant differences were detected between MDD 
and HC groups in age (P=0.989), sex (P=0.561), or 
mean FD (P=0.291).

3.2 Dynamic functional connectivity between the 
thalamus and the whole cortex

3.2.1　Dynamics of thalamocortical connectivity

Four recurring states of thalamocortical connec‐
tivity were identified using k-means clustering (Figs. 2a 
and S1a). State 1 (15.5%) and state 4 (9.2%) were 
less frequent than state 2 (30.1%) and state 3 (45.2%). 
State 1 showed highly positive correlations between 
the thalamus and the whole cerebral cortex. The con‐
nectivity patterns of state 2 and state 3 resembled 
those of state 1, but were accompanied by a re‐
duced connectivity strength. State 4 showed strong 
negative connectivity between the thalamus and pri‐
mary cortical networks (e.g., Vis and SomMot) and 
less positive thalamic connectivity with higher-order 
cortical networks (e.g., DorsAttn, SalVentAttn, Cont, 
and Default). Compared with the HCs, patients with 
MDD exhibited significantly decreased fractional 
time in state 4 and reduced transition probability 
from both state 2 and state 3 to state 4 (all P<0.05, 
with FDR corrected; Figs. 2b and S1b). No signifi‐
cant between-group differences were found in dFC 
variability.

Fig. 1  Pipeline of dynamic functional connectivity (dFC) analysis in thalamocortical connectivity. (a) Identification of 
thalamic and cortical regions. The thalamus was segmented into 50 thalamic nuclei using a probabilistic thalamic 
segmentation algorithm in FreeSurfer. Then, the 50 nuclei were grouped into five thalamic subregions for each side 
(including anterior thalamus (Anterior), lateral thalamus (Lateral), ventral thalamus (Ventral), intralaminar/medial 
thalamus (ILM), and pulvinar thalamus (Pulvinar)), and spatially normalized to the Montreal Neurological Institute (MNI) 
space. The 200 cortical regions were defined by the Schaefer atlas, which was categorized into seven networks including 
visual network (Vis), somatomotor network (SomMot), dorsal attention network (DorsAttn), salient ventral attention network 
(SalVentAttn), limbic network (Limbic), executive control network (Cont), and default mode network (Default). The regional 
mean time courses of ten thalamic regions and 200 cortical regions were extracted. (b) Estimation of thalamocortical dFC 
patterns. The auto-regressive dynamic conditional correlation (AR-DCC) model was used to obtain 230 correlation matrices 
(10×200) for each participant. (c) Thalamocortical dFC state analysis. Correlation matrices of all participants were 
clustered into four dFC states using the k-means clustering algorithm. Four temporal properties (i.e., fractional time, 
mean dwell time, number of transitions, and transition probability) and the dFC variability were calculated for analysis. 
MRI: magnetic resonance imaging; rs-fMRI: resting-state functional MRI; ROI: region of interest.

Table 1  Demographic and clinical characteristics of participants

Group
MDD (n=48)
HCs (n=57)
P

Age (years)
33.67±12.45
33.70±12.41

0.989a

Sex (female/male)
24/24
32/25
0.561b

HAMA
17.92±6.66

HAMD (17-item)
18.56±6.18

Illness duration (years)
4.50 (1.52, 8.18)

Mean FD (mm)
0.07±0.04
0.08±0.04

0.291a

Data are displayed as mean±standard deviation (SD), except numbers for sex or illness duration which is presented as median (interquartile 
range (IQR)). MDD: major depressive disorder; HCs: healthy controls; HAMA: Hamilton Rating Scale for Anxiety; HAMD: Hamilton Rating 
Scale for Depression; FD: frame-wise displacement. a P values for the two-sample t-test; b P values for the Chi-square test.
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Fig. 2  Temporal properties of thalamocortical connectivity. (a) Cluster centroids for each state in thalamocortical 
connectivity. The total number and percentage of state occurrences are listed above each centroid. (b) Temporal properties of 
thalamocortical dynamic functional connectivity (dFC) states. * PFDR<0.05. FDR: false discovery rate; LH: left hemisphere; 
RH: right hemisphere; Anterior: anterior thalamus; ILM: intralaminar/medial thalamus; Lateral: lateral thalamus; 
Pulvinar: pulvinar thalamus; Ventral: ventral thalamus; Vis: visual network; SomMot: somatomotor network; DorsAttn: 
dorsal attention network; SalVentAttn: salient ventral attention network; Limbic: limbic network; Cont: executive 
control network; Default: default mode network; HCs: healthy controls; MDD: major depressive disorder.
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To assess the influence of smoothing kernel size 
on our data, we compared the effect of the 6-mm and 
8-mm smoothing kernels on both the thalamus and 
thalamocortical circuit scales. The thalamic activation 
and thalamocortical FC patterns at 6 mm were re‐
markably similar to those at 8 mm (Fig. S2, Table S2), 
suggesting that the size of smoothing kernels did not 
significantly influence the results of the analysis.

In addition, we also re-performed the dFC analy‐
sis on the global thalamocortical circuits via the slid‐
ing window method with a window size of 50 TR and 
a step of 1 TR. After the k-means clustering analysis, 
we also obtained four thalamocortical dFC states, 
whose patterns were largely consistent with the results 
of the AR-DCC model (Fig. S3). However, no signifi‐
cant between-group differences were found in the 
four temporal properties (Table S3). In contrast, the 
AR-DCC model is more sensitive in capturing dFC 
patterns that MDD patients showed significantly de‐
creased fractional time and reduced transition proba‐
bility between dFC states.

3.2.2　Dynamic laterality index analysis

The functional laterality of the thalamocortical 
system in MDD altered considerably over all time 

windows. As shown in Fig. 3a, the LFs of the bilateral 
anterior thalamus, intralaminar/medial thalamus, pul‐
vinar thalamus, and ventral thalamus significantly in‐
creased in patients with MDD relative to the HCs (all 
P<0.05, with FDR corrected).

3.3 Dynamic functional connectivity between the 
thalamus and cortical subnetworks

3.3.1　Dynamics of thalamo-subnetwork connectivity

We identified five recurring dFC states in the 
thalamo-Vis (Figs. 4a and S4a), thalamo-SomMot 
(Figs. 5a and S5a), thalamo-Limbic (Fig. S6a), thalamo-
Default (Fig. S7), and thalamo-DorsAttn (Fig. S8a) 
connectivity, and four states in the thalamo-Cont 
(Fig. S6b) and thalamo-SalVentAttn (Fig. S8b) con‐
nectivity. The detailed characteristics of all states are 
summarized in Table 2. Compared to the analysis be‐
tween the thalamus and the whole cortex, the thalamo-
subnetwork analysis offered a deeper understanding of 
the dynamic pattern of interaction between the thala‐
mus and each subnetwork. The more dFC states we 
identified within these local circuits indicated that 
thalamo-subnetwork analysis could provide a more 
comprehensive understanding of the dynamic changes 
in local loops. Such changes could not be completely 

Fig. 3  Results of dynamic laterality analysis. (a) The laterality fluctuations (LFs) in thalamic connectivity with the whole 
cortex. (b–d) LF in thalamic connectivity with the Cont (b), DorsAttn (c), and SalVentAttn (d) networks. * PFDR<0.05. Data are 
displayed as mean±standard error of the mean (SEM), n=48 (MDD) or n=57 (HCs). FDR: false discovery rate; LH: left 
hemisphere; RH: right hemisphere; Anterior: anterior thalamus; ILM: intralaminar/medial thalamus; Lateral: lateral 
thalamus; Pulvinar: pulvinar thalamus; Ventral: ventral thalamus; Cont: executive control network; DorsAttn: dorsal 
attention network; SalVentAttn: salient ventral attention network; HCs: healthy controls; MDD: major depressive disorder.
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captured when considering the thalamocortical circuit 
as a whole.

Regarding the temporal properties, significant 
group differences in the thalamocortical system were 
observed only between the thalamus and primary cor‐
tical networks (e.g., Vis and SomMot) (all P<0.05, 
with FDR corrected). Specifically, for the thalamo-Vis 
system, MDD patients showed decreased fractional 

time and mean dwell time in state 3, as well as a lower 
probability of transition from both state 1 and state 
4 to state 3 relative to the HCs (Figs. 4b and S4b). 
Moreover, a significant decrease in fractional time of 
state 2 in the thalamo-SomMot system was also ob‐
served in MDD patients (Figs. 5b and S5b).

The comparison of the dFC variability between 
the two groups showed significant differences in 

Fig. 4  Temporal properties of thalamo-Vis connectivity. (a) Cluster centroids for each state in thalamo-Vis connectivity. 
The total number and percentage of state occurrences are listed above each centroid. (b) Temporal properties of dynamic 
functional connectivity (dFC) states in thalamo-Vis connectivity. * PFDR<0.05. FDR: false discovery rate; LH: left hemisphere; 
RH: right hemisphere; Anterior: anterior thalamus; ILM: intralaminar/medial thalamus; Lateral: lateral thalamus; 
Pulvinar: pulvinar thalamus; Ventral: ventral thalamus; Vis: visual network; Vis_[i]: the ith region of the visual network; 
HCs: healthy controls; MDD: major depressive disorder.
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connectivity between the thalamus and higher-order 
cortical networks (e.g., Default, DorsAttn, and Sal‐
VentAttn) (all P<0.05, with FDR corrected). In state 5, the 
MDD patients showed significant differences in the 
thalamo-Default connectivity (Fig. 6a). Specifically, a 
significant increase in dFC variability was observed be‐
tween the left middle temporal gyrus and the right intral‐
aminar/medial thalamus, as well as the left anterior, 

pulvinar, and ventral thalami. There was also signifi‐
cantly more dFC variability between the right medial su‐
perior frontal gyrus and the left pulvinar thalamus and 
between the right superior frontal gyrus and all the bi‐
lateral anterior, intralaminar/medial, and ventral thalami. 
The thalamo-DorsAttn circuit in state 5 also showed 
significant increases in dFC variability for connectivity 
linking the right superior frontal gyrus with the left 

Fig. 5  Temporal properties of thalamo-SomMot connectivity. (a) Cluster centroids for each state in thalamo-SomMot 
connectivity. The total number and percentage of state occurrences are listed above each centroid. (b) Temporal properties 
of dynamic functional connectivity (dFC) states in thalamo-SomMot connectivity. * PFDR<0.05. FDR: false discovery rate; 
LH: left hemisphere; RH: right hemisphere; Anterior: anterior thalamus; ILM: intralaminar/medial thalamus; Lateral: 
lateral thalamus; Pulvinar: pulvinar thalamus; Ventral: ventral thalamus; SomMot: somatomotor network; SomMot_[i]: 
the ith region of the somatomotor network; HCs: healthy controls; MDD: major depressive disorder.
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intralaminar/medial thalamus, right lateral thalamus, 
and bilateral ventral thalamus in MDD patients 

(Fig. 6b). For the thalamo-SalVentAttn connectivity, 
MDD patients showed increased dFC variability 

Table 2  Summary of the thalamo-subnetwork connectivity characteristics of all states

Thalamo-subnetwork 
connectivity

Thalamo-Vis

Thalamo-SomMot

Thalamo-Default

Thalamo-DorsAttn

Thalamo-Limbic

Thalamo-SalVentAttn

Thalamo-Cont

State

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

1

2

3

4

Frequency of 
different states (%)

34.3

16.4

10.2

28.7

10.4

34.1

9.2

10.5

16.1

30.1

27.2

9.9

11.4

36.6

14.9

36.7

10.6

10.6

15.1

27.0

11.4

23.9

15.1

36.9

12.7

28.8

41.1

16.9

13.2

28.0

15.7

16.0

40.3

Connectivity pattern

Weak positive connectivity state

Strong positive connectivity state

Strong negative connectivity state

Moderate positive connectivity state

Strong positive connectivity state, but has negative 
connections with bilateral lateral thalamic nuclei

Weak positive connectivity state

Strong negative connectivity state

Strong positive connectivity state, but has negative 
connections with bilateral lateral thalamic nuclei

Strong positive connectivity state

Moderate positive connectivity state

Moderate positive connectivity state

Strong positive connectivity state, but has negative 
connections with bilateral lateral thalamic nuclei

Strong negative connectivity state

Weak positive connectivity state

Strong positive connectivity state

Weak positive connectivity state

Strong negative connectivity state

Strong positive connectivity state, but has negative 
connections with bilateral lateral thalamic nuclei

Strong positive connectivity state

Moderate positive connectivity state

Strong positive connectivity state, but has negative 
connections with the bilateral orbital frontal cortex

Moderate positive connectivity state

Strong positive connectivity state

Weak positive connectivity state

Strong negative connectivity state

Moderate positive connectivity state

Weak positive connectivity state

Strong positive connectivity state

Strong negative connectivity state

Moderate positive connectivity state

Strong negative connectivity state, but has positive connections 
with bilateral cingulate and right prefrontal cortex

Strong positive connectivity state

Weak positive connectivity state

Vis: visual network; SomMot: somatomotor network; Default: default mode network; DorsAttn: dorsal attention network; Limbic: limbic net‐
work; SalVentAttn: salient ventral attention network; Cont: executive control network.
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between the right intralaminar/medial thalamus and left 
insula in state 1 (Fig. 6c). No significant between-
group difference was observed in temporal properties 
or dFC variability for the thalamo-Cont and thalamo-
Limbic circuits.

3.3.2　Dynamic laterality index analysis of thalamo-
subnetwork connectivity

Compared to the HCs, MDD patients showed 
greater variation across the scan duration in functional 

laterality of connectivity between the thalamus and 
higher-order cortical networks (e.g., Cont, DorsAttn, 
and SalVentAttn) (all P<0.05, with FDR corrected; 
Figs. 3b–3d). Specifically, significantly increased LF 
was found in the bilateral ventral thalamus (involving 
the thalamo-Cont, thalamo-DorsAttn, and thalamo-
SalVentAttn circuits), bilateral anterior thalamus and 
intralaminar/medial thalamus (involving the thalamo-
Cont and thalamo-DorsAttn circuits), bilateral lat‐
eral thalamus and pulvinar thalamus (involving the 

Fig. 6  Thalamo-subnetwork connectivity with significant variability changes in major depressive disorder (MDD) 
patients. Dynamic functional connectivity (dFC) variability was altered in the thalamo-Default (in state 5) (a), thalamo-
DorsAttn (in state 5) (b), and thalamo-SalVentAttn (in state 1) (c) circuits. The red lines indicate a significant increase in 
dFC variability in MDD patients compared to the HCs. LH: left hemisphere; RH: right hemisphere; Anterior: anterior 
thalamus; ILM: intralaminar/medial thalamus; Lateral: lateral thalamus; Pulvinar: pulvinar thalamus; Ventral: ventral 
thalamus; Default: default mode network; DorsAttn: dorsal attention network; SalVentAttn: salient ventral attention 
network; Temp_4: the fourth region of the temporal cortex (middle temporal gyrus); PFCdPFCm_4: the fourth region of 
the dorsal/medial prefrontal cortex (medial superior frontal gyrus); PFCdPFCm_5: the fifth region of the dorsal/medial 
prefrontal cortex (superior frontal gyrus); FEF_2: the second region of the frontal eye fields (superior frontal gyrus); 
FrOperIns_3: the third region of the frontal operculum insula (insula).
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thalamo-Cont and thalamo-SalVentAttn circuits), left 
lateral thalamus and pulvinar thalamus (involving 
the thalamo-DorsAttn circuit), and right intralaminar/
medial thalamus (involving the SalVentAttn circuit).

3.4 Correlations with clinical characteristics

The HAMD score was negatively correlated with 
the dFC variability between the left anterior thalamus 
and left middle temporal gyrus in state 5 in the thalamo-
Default connectivity (r=−0.296, P=0.041 (uncorrected); 
Fig. 7a), and positively correlated with the dFC vari‐
ability between the right lateral thalamus and right su‐
perior frontal gyrus in state 5 in the thalamo-DorsAttn 
connectivity (r=0.339, P=0.018 (uncorrected); Fig. 7b). 
These results suggest a clinically relevant association 
between the severity of MDD symptoms and abnor‐
mal dynamic functional interactions in the thalamo‐
cortical system. Other dynamic measures (including 
the LF and temporal properties) did not show a signifi‐
cant correlation with the clinical data.

4 Discussion 

In this study, we investigated the changes in thal‐
amocortical dFC patterns in patients with MDD from 
both whole-cortex and subnetwork perspectives. The 
major findings were as follows (Table 3): (1) MDD 
patients showed abnormal temporal properties in a 
negative connectivity state that was primarily involved 
in thalamic connectivity with primary cortical networks 
(e.g., Vis and SomMot); (2) the thalamo-subnetwork 
analysis detected more MDD-related nuances related 

to higher-order cortical networks (i.e., increased dFC 
variability between the thalamus and the Default, 
DorsAttn, and SalVentAttn), which had not been de‐
tected by the analysis at the thalamus-whole cortex 
level; (3) the functional lateralization of the thalamo‐
cortical system showed greater fluctuations over time 
in MDD patients, involving thalamo-Cont, thalamo-
DorsAttn, and thalamo-SalVentAttn circuits; and (4) 
the dFC variability of thalamo-Default and thalamo-
DorsAttn connectivity could predict the HAMD scores 
of patients with MDD. These findings suggest a hetero‐
geneous pattern of changes in the impaired dynam‐
ics of thalamic interactions with both primary and 
higher-order cortical networks, which may be respon‐
sible for sensory and cognitive impairments in MDD. 
To our knowledge, this is the first comprehensive 
study of dFC alteration patterns within the thalamo‐
cortical circuitry in MDD patients. The results sup‐
plement current knowledge about the dysfunction of 
the thalamocortical system in depression.

The analysis of dFC between the thalamus and 
the whole cortex revealed that MDD patients showed 
decreased fractional time in the negative connectivity 
state (state 4) and fewer transitions from the positive 
connectivity states (states 2 and 3) to state 4. Previous 
studies have documented that positive connectivity 
can be taken as the synchronization and integration of 
brain neuronal activity, while negative connectivity re‐
fers to the segregation of brain neuronal activity with 
competitive representations (Fox et al., 2005, 2009). 
Thus, state 4 dominated by negative connectivity might 
represent a status of high segregation, while states 2 
and 3 might represent highly integrated brain regions. 

Fig. 7  Correlations between altered dFC variability and the HAMD score in MDD patients. (a) dFC variability between 
LH_Anterior and LH_Temp_4 in state 5 in thalamo-Default connectivity. (b) dFC variability between RH_Lateral and 
RH_FEF_2 in state 5 in thalamo-DorsAttn connectivity. dFC: dynamic functional connectivity; HAMD: Hamilton 
Rating Scale for Depression; LH: left hemisphere; RH: right hemisphere; Anterior: anterior thalamus; Lateral: lateral 
thalamus; Temp_4: the fourth region of the temporal cortex (middle temporal gyrus); FEF_2: the second region of the 
frontal eye fields (superior frontal gyrus).
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Since the resting brain maintains a dynamic balance 
between segregation and integration, a higher switch 
probability between the positive and negative states in 
the HCs could suggest switch flexibility between net‐
work segregation and integration to satisfy the upcom‐
ing demands of different cognitive processes (Shine, 
2019; Wang et al., 2021). However, such a balance 
was disrupted in the MDD cohort, indicated by a re‐
duced fractional time and switch frequency to state 4 
compared to HCs. This is in line with a previous study 
indicating reduced segregation of brain functional net‐
works (i.e., clustering coefficient and local efficiency) 

in an MDD cohort (Yao et al., 2019b). Therefore, we 
speculate that a lower probability of transitions from 
positive to negative states of thalamocortical dFC 
might result in an imbalance between excitatory and 
inhibitory interactions, e.g., an absence of inhibitory 
interactions, with consequent cognitive and emotional 
deficits in MDD patients (Klingner et al., 2014). Other 
interpretations are possible. For example, the recipro‐
cal glutamatergic excitatory connections between the 
thalamus and cortex are modulated via inhibitory 
GABAergic neurons in the thalamic reticular nucleus 
(Pratt and Morris, 2015). Changes in glutamatergic 

Table 3  Summary of all statistical analysis results

Circuitry

Thalamo-cortical

Thalamo-Vis

Thalamo-
SomMot

Thalamo-Default

Thalamo-
DorsAttn

Thalamo-
SalVentAttn

Thalamo-Cont

Thalamo-Limbic

Fractional 
time

State 4↓

State 3↓
State 2↓

ns

ns

ns

ns

ns

Mean 
dwell time

ns

State 3↓
ns

ns

ns

ns

ns

ns

Transition 
probability

State 2 to state 4↓;
State 3 to state 4↓
State 1 to state 3↓;
State 4 to state 3↓

ns

ns

ns

ns

ns

ns

dFC variability between the 
thalamus and cortex

ns

ns

ns

LH_Anterior-LH_Temp_4↑(*);
RH_ILM-LH_Temp_4↑;
LH_Ventral-LH_Temp_4↑;
LH_Pulvinar-LH_Temp_4↑;
LH_Pulvinar-RH_PFCdPFCm_4↑;
LH_Anterior-RH_PFCdPFCm_5↑;
RH_Anterior-RH_PFCdPFCm_5↑;
LH_ILM-RH_PFCdPFCm_5↑;
RH_ILM-RH_PFCdPFCm_5↑;
LH_Ventral-RH_PFCdPFCm_5↑;
RH_Ventral-RH_PFCdPFCm_5↑
RH_Lateral-RH_FEF_2↑(*);
LH_ILM-RH_FEF_2↑;
LH_Ventral-RH_FEF_2↑;
RH_Ventral-RH_FEF_2↑
RH_ILM-LH_FrOperIns_3↑

ns

ns

LF in thalamus

Bilateral anterior, ILM, 
pulvinar, and ventral 
nuclei↑

ns

ns

ns

Bilateral anterior, ILM, 
ventral nuclei, and left 
lateral and pulvinar 
nuclei↑

Bilateral lateral, pulvinar, 
ventral nuclei, and 
right ILM↑

Bilateral anterior, ILM, 
lateral, pulvinar, and 
ventral nuclei↑

ns

LF: laterality fluctuation; LH: left hemisphere; RH: right hemisphere; Anterior: anterior thalamus; ILM: intralaminar/medial thalamus; Lateral: 
lateral thalamus; Pulvinar: pulvinar thalamus; Ventral: ventral thalamus; Vis: visual network; SomMot: somatomotor network; DorsAttn: dorsal 
attention network; SalVentAttn: salient ventral attention network; Limbic: limbic network; Cont: executive control network; Default: default 
mode network; Temp_4: the fourth region of the temporal cortex (middle temporal gyrus); PFCdPFCm_4: the fourth region of the dorsal/
medial prefrontal cortex (medial superior frontal gyrus); PFCdPFCm_5: the fifth region of the dorsal/medial prefrontal cortex (superior frontal 
gyrus); FEF_2: the second region of the frontal eye fields (superior frontal gyrus); FrOperIns_3: the third region of the frontal operculum insula 
(insula); ns: non-significant. ↓ indicates a significant decrease in MDD; ↑ indicates a significant increase in MDD. * indicates a significant 
correlation with the HAMD score.
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and GABAergic signals may interfere with the flow 
of information between the thalamus and cortex, prob‐
ably resulting in positive symptoms in MDD patients. 
This is consistent with growing evidence showing 
glutamatergic dysfunction in depression and the effi‐
cacy of the NMDA receptor antagonist ketamine in 
treatment-resistant depression (Sanacora et al., 2012). 
In addition, some electrophysiological studies have 
shown that an imbalanced excitatory and inhibitory 
neurotransmitter input to thalamic nuclei can produce 
hyperpolarized conditions that drive thalamic neurons 
into a low-frequency burst mode of low-threshold 
calcium spikes, leading to the thalamocortical dys‐
rhythmia, a common oscillatory mechanism in depres‐
sion (Llinás et al., 1999, 2005; Steriade, 2001). The 
abnormal low-frequency oscillations in the thalamo‐
cortical circuitry would disrupt perception and sensory 
integration, and have been proven to play an import‑
ant role in pain processing (Llinás and Paré, 1991; 
Groh et al., 2018). Thus, abnormal transitions between 
thalamocortical dFC states could be regarded as a po‐
tential manifestation of thalamocortical dysrhythmia, 
which may be linked to some common depression 
symptoms such as headaches and back pain (Vaccarino 
et al., 2009).

Generally, MDD is characterized by persistent 
low mood and absence of positive effect accompanied 
by behavioral and cognitive disturbances (Otte et al., 
2016). These symptoms are associated with increased 
thalamocortical FC. For example, hyper-connectivity 
connecting the thalamus with the prefrontal, temporal, 
and somatosensory cortices may be related to the im‐
pairments in somatic symptoms, attentional behavior 
(e.g., negative attentional bias), and self-consciousness 
(e.g., rumination) in patients with MDD (Brown et al., 
2017; Chen et al., 2021; Yu et al., 2021; Zheng et al., 
2021). These studies partly support our findings of the 
decreased occurrence of a negative connectivity state 
and increased FC dynamics of hyper-connectivity in 
the MDD group. In addition, more positive connectiv‐
ity between the thalamus and the higher-order cortices 
than the visual and somatomotor cortices in the nega‐
tive connectivity state (state 4) revealed by the analy‐
sis of the whole thalamocortical circuit might also 
indicate an abnormal inhibitory interaction between 
the thalamus and higher-order cortices 1 in the MDD 
cohorts (Klingner et al., 2014).

However, dFC analysis that treats the FC between 
the thalamus and the cortex as a whole system may 

not be able to capture the specific alterations in the 
local thalamocortical circuits. Therefore, we performed 
a thalamo-subnetwork dFC analysis to capture more 
detailed changes in dFC patterns and found aberrant 
dFC variability between the thalamus and higher-
order cortical networks (i.e., the Default, DorsAttn, 
and SalVentAttn) in MDD patients. These results sug‐
gest that discovering MDD-related dFC abnormalities 
in the thalamocortical system should not be limited to 
whole-circuitry analysis and should focus also on local 
circuits. The FC patterns between thalamic subre‐
gions (i.e., the pulvinar, mediodorsal, intralaminar, 
and ventral lateral nuclei) and higher-order cortical 
networks (i.e., the Default, DorsAttn, and salience 
networks) have been reported to be associated with 
the development of cognitive functions during brain 
maturation (Steiner et al., 2020). A previous study by 
Kong et al. (2018) revealed alterations in thalamic FC 
with the Default network in patients with MDD and 
suggested that the thalamus-targeted modulation of 
thalamo-Default connectivity might be an effective 
method to improve autobiographical memory disturb‑
ances in depression. In this study, we showed that 
MDD patients had aberrant FC dynamics between the 
thalamus and the Default and DorsAttn networks, with 
a focus on the frontal and temporal cortices that are 
implicated in negative emotions and self-related pro‐
cessing (Brown et al., 2017; Chen et al., 2021). This 
suggests that the altered dFC patterns between mul‐
tiple thalamic nuclei and higher-order cortical networks 
may be a potential neural basis of cognitive impair‐
ments in the MDD cohort.

Aberrant temporal properties were also detected 
in the primary local circuits (i.e., the thalamo-Vis and 
thalamo-SomMot connectivity) of the thalamocortical 
connectivity system. Specifically, patients with MDD 
spent less time in the negative connectivity state (state 
3 for the thalamo-Vis system and state 2 for the thalamo-
SomMot system) and were less inclined to transition 
from the positive connectivity state (states 1 and 4) 
to the negative connectivity state (state 3) in the 
thalamo-Vis system. The visual and somatomotor net‐
works are key components of the perceptual system, 
which is associated with the processing of external 
environment information (Liu et al., 2017). Previous 
rodent studies have suggested that the thalamus deliv‐
ers orientation- and direction-tuned inputs to layer 4 of 
the primary visual cortex and regulates the develop‐
ment and manifestation of arousal states in this region 
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(Sun et al., 2016; Murata and Colonnese, 2018). 
Moreover, studies of the primary visual and somato‐
sensory cortices provided evidence that response 
tuning of the layer 4 cells primarily depends on feed-
forward excitation from the thalamus and dominant 
feed-forward inhibition from the interneurons driven 
by the thalamus (Miller et al., 2001). Thus, the posi‐
tive and negative connectivities might reflect the ex‐
citatory and inhibitory modulation, respectively, of the 
thalamus to the primary visual/somatosensory cortex. 
The altered temporal properties within the thalamo-Vis 
and thalamo-SomMot circuits might indicate an im‐
balance of excitation-inhibition regulation between 
the thalamus and primary cortical networks. A previ‐
ous study showed that altered excitability of the vi‐
sual cortex might be related to a deficit of visual per‐
ception processing (Du et al., 2022). Moreover, the al‐
tered intrinsic activity in the somatosensory areas and 
the hyper-connectivity between the somatosensory 
cortex and the thalamus may serve as pathophysiolog‐
ical mechanisms of somatic symptoms in depres‐
sion (Brown et al., 2017; Liu et al., 2021). There‐
fore, the imbalanced excitation-inhibition regulation 
between the thalamus and primary cortical networks 
may be associated with somatic symptoms and impair‐
ment of sensory processing in the MDD cohort.

Brain functional lateralization, measured by inter- 
and intra-hemispheric functional interactions, is bene‐
ficial to efficient information processing (Zhu et al., 
2018; Güntürkün et al., 2020). The DLI and LF char‐
acterize the time-varying asymmetric patterns of inter-
hemispherical interactions in the thalamocortical sys‐
tem involved in adaptation to changing environmental 
demands (Doron et al., 2012; Wu et al., 2022). A higher 
LF value shows that connectivity switches more fre‐
quently between intra- and inter-hemispherical inter‐
actions over time, indicating that brain regions are 
constantly leaving their dominant functional states. 
This may hamper the cognitive performance of indi‐
viduals (Wu et al., 2022). In this study, we observed 
that MDD patients exhibited greater fluctuations of 
connectivity laterality between the thalamus and the 
whole cortex, suggesting an atypical inter-hemispheric 
interaction pattern in the thalamocortical system. Pre‐
vious studies have reported abnormal hemispheric 
specialization in MDD, demonstrating that the lateral‐
ized and efficient brain information processing sys‐
tem is damaged in patients with MDD (Bruder et al., 

2017; Ding et al., 2021). Our results provide further 
evidence for the disrupted brain lateralization architec‐
ture in MDD patients and go a step further by show‐
ing that the thalamocortical connectivity within and 
between hemispheres would vary considerably over 
time. This is probably related to emotional and cogni‐
tive processing deficits in the MDD cohort. Moreover, 
we observed greater temporal variation in functional 
laterality of connectivity between the thalamus and 
higher-order cortical subnetworks (e.g., Cont, DorsAttn, 
and SalventAttn), suggesting that the hemispheric con‐
nectivity patterns would vary at multiple scales in the 
thalamocortical circuitry. These changes might be as‐
sociated with potential cognitive deficits, especially in 
the aspects of attention and memory processing, in de‐
pressive patients (Kaiser et al., 2015; Ding et al., 2021).

There were several limitations in this study. 
First, we did not consider the effect of different anti‐
depressant medications, as the medication informa‐
tion of some participants was missing. It will be im‐
portant to explore the possible effects of antidepres‐
sant medications in future studies. Second, the sample 
size was relatively small, which may affect the gener‐
alization of the results. A replicated study on a large 
independent dataset is needed to test the reproducibility 
of this work. Third, we used the AR-DCC model to 
overcome the issue that conventional methods are 
largely influenced by the choice of window size. The 
AR-DCC model is suggested to be less susceptible 
to noise, but whether the findings are generalizable 
across different dFC methods (e.g., the coactivation 
pattern analytical approach (Liu et al., 2018), and the 
Hidden Markov Model (Chen et al., 2016)) remains 
unclear. Future studies are warranted to compare the 
results of different dFC approaches and assess their 
reproducibility.

5 Conclusions 

This is the first study that has comprehensively 
explored the alterations of dFC patterns in thalamo‐
cortical circuitry in patients with MDD. In particular, 
we have identified heterogeneous changes in dynamic 
interactions between the thalamus and both primary 
and higher-order cortical networks that may serve as a 
potential neural mechanism resulting in the deficits 
of sensory and cognitive processing in MDD. Our 
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findings support and extend the evidence for dy‐
namic alteration in patterns of thalamocortical cir‐
cuitry in MDD cohorts, thereby enhancing our under‐
standing of the essential role played by thalamocorti‐
cal connectivity in the pathophysiology of depression.
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