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A key challenge in molecular biology is to decipher the mapping of protein sequence
to function. To perform this mapping requires the identification of sequence features
most informative about function. Here, we quantify the amount of information (in
bits) that T cell receptor (TCR) sequence features provide about antigen specificity. We
identify informative features by their degree of conservation among antigen-specific
receptors relative to null expectations. We find that TCR specificity synergistically
depends on the hypervariable regions of both receptor chains, with a degree of synergy
that strongly depends on the ligand. Using a coincidence-based approach to measuring
information enables us to directly bound the accuracy with which TCR specificity
can be predicted from partial matches to reference sequences. We anticipate that
our statistical framework will be of use for developing machine learning models for
TCR specificity prediction and for optimizing TCRs for cell therapies. The proposed
coincidence-based information measures might find further applications in bounding
the performance of pairwise classifiers in other fields.

TCR | immune repertoire | information theory | Renyi information | receptor-ligand interaction

Mapping the amino acid sequence of a particular T cell receptor (TCR) to its antigen
specificity is a holy grail of systems immunology (1–3). The T cell receptor endows
T cells with the ability recognize snippets of pathogenic material presented on the surface
of antigen-presenting cells by major histocompatibility complexes (MHC) (4). TCRs
are specific, meaning a given T cell will only activate in response to a select range of
antigen stimuli. Coverage of the vast antigen space explored by evolving pathogens is
enabled by immense sequence variation within the TCR (5, 6), in particular within six
hypervariable loops of the heterodimeric receptor, named complementarity determining
regions (CDRs).

The immense diversity of TCRs implies that many have no experimentally determined
ligands (7). Emerging computational approaches predict the specificity of such orphan
TCRs by their sequence similarity to annotated TCRs (1, 3, 8, 9). However, which level of
partial matching is sufficient for reliable prediction has remained unclear. Moreover, there
is substantial interest in understanding for which immunological questions knowledge
of paired receptor chains obtainable by single-cell sequencing is worth the trade-off with
the higher throughput achievable by bulk sequencing (10) and which TCR features are
most informative for machine learning applications (3, 11).

Here, we address these important open questions by putting universal limits on the
accuracy with which TCR specificity can be predicted from partial information. Our
work takes inspiration from a long history of successful applications of information
theory to the study of complex biological input–output relationships from neural coding
(12–14) and transcriptional regulation (15, 16) to pattern formation during embryo
development (17–19). Following recent applications of information theory to TCR
repertoires by us (20) and others (21), our analysis builds on a fundamental insight
from evolutionary biology: Patterns of sequence conservation in protein families provide
clues about functionally relevant properties. In the immunological context, this means
that TCR features that are important for specific recognition of a particular epitope will
often be highly conserved among epitope-specific TCRs relative to their global diversity
(Fig. 1).

In our current work, we provide the first comprehensive map of how much information
each section of the paired chain TCR sequence provides about its specificity. To provide
such a map, we make use of two recent datasets that have sequenced TCRs specific
to a dozen viral MHC class I epitopes (1, 22). We overcame statistical limitations of
prior analyses to pairs of residues (20, 21, 23) using coincidence-based measures of
repertoire diversity (24). These measures can be estimated from smaller samples than
traditional measures based on Shannon entropy (25–27). The information-theoretic
approach naturally allowed us to identify synergies between different TCR sections
in determining antigen specificity. Importantly, our quantification of coincidence
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Fig. 1. Overview of analysis methodology. (A) Sketch of T cell receptor
structure highlighting the V, CDR3, and J regions and their interaction with
MHC-bound peptides. The TCR is composed of two chains, most commonly �
and � chains. Each chain is generated by the process of V(D)J recombination
during T cell development, which combines a V (variable), J (joining), and C
(constant) gene, with the addition of a D (diversity) gene in the � chain. Within
each chain, the CDR1 and CDR2 amino acid loops are coded for by the V gene
while the CDR3 regions are at the V(D)J intersection, which is additionally
diversified through the random insertion and deletion of nucleotides at
gene template junctions. (B) An abstracted view of TCR sequence space. The
set B includes all possible TCRs. The subsets Si represent TCRs specific to
particular ligands. (C) Sequencing TCR from either the whole repertoire or
epitope-specific subsets gives us samples from their respective distributions.
(D) The number of pairs which match in a particular feature may then be
recorded to compute a probability of coincidence. The logarithm of the
probability of coincidence gives a measure of the entropy of the feature. Our
information theoretic approach quantifies the change in entropy between
background TCRs and sets of specific TCRs of different features (Top to
Bottom). Features which experience a large reduction in entropy (Bottom)
are the most informative for predicting the epitope specificity of a sequence.

information is underpinned by theory that directly links achiev-
able classification accuracy to the coincidence information gained
from a partial match and prior beliefs about the prevalence of
epitope-specific T cells in a repertoire.

1. An Information-Theoretic Approach to T Cell
Specificity

1.1. Coincidence Analysis for Features. We have recently in-
troduced a coincidence-based statistical framework to measure
antigen-driven selection in TCR repertoires (24). The main idea
of this work was to quantify clonal convergence by counting
how often pairs of independently recombined clonal lineages in
a sample have TCRs that are more similar to each other than
some threshold level. Here, we pursue a conceptually related but
unique approach that considers near-coincidences as coincidences
on the level of coarse-grained TCR features. A feature may be a
gene segment choice at a given locus, an amino acid at a particular
residue, or a physical property of a hypervariable loop such as its

charge or length. Features may also contain other features such as
the � chain containing the V�, J�, and the CDR3� as component
features.

Mathematically, a feature is a random variable that maps the
sample space of all TCR sequences to a discrete set of possible
categories. We denote the measure on the feature set for randomly
drawn TCRs from a repertoire by P(X ). The probability that two
independent draws return the same outcome, i.e., the probability
of coincidence of X , is then defined by

pC [X ] =
∑
x

P(x)2, [1]

where P(x) represents P(X = x) and the sum runs over all
possible outcomes of X . We recall that in ecology, pC [X ] is
referred to as the Simpson’s diversity index of X with D2[X ] =
1/pC [X ] being an effective number of distinct species in a
population (28).

Intuitively, we expect the most informative features to be those
whose diversity is most reduced among TCRs specific to the
same epitope when compared with background TCRs. In the
following, we will make this intuition mathematically precise
using a coincidence-based formulation of information theory.

We note that feature importance in this information-theoretic
sense is not necessarily synonymous with the biophysical impor-
tance of a feature for the receptor–ligand interaction, as there are
often multiple binding solutions for a given ligand (1, 24): TCR
properties involved in binding but variable across solutions might
not be globally informative in the way considered here. We will
revisit the impact of the multiplicity of binding solutions on our
information-theoretic measures in Section 3.4.

1.2. Coincidence Entropy. A central quantity in information
theory is entropy. The entropy of a probability distribution P(X )
is given in its form proposed by Shannon in 1948 as (29)

H [X ] =
∑
x

P(x) log P(x). [2]

Entropy represents the average amount of information lacking
about the outcome of a measurement of discrete random variable
X . It is usually calculated with the logarithm taken to base 2 such
that its units are in bits and all logarithms in the following should
be understood as logarithms taken with respect to this base.
In 1961, Renyi showed that by relaxing one of the Shannon–
Khinchin axioms from which the mathematical form of entropy
is uniquely derived (strong additivity), a more general expression
for entropy may be obtained (30, 31)

H�[X ] =
1

1− �
log

(∑
x

P(x)�
)
, [3]

where � is referred to as the order of the Renyi entropy. The
family of Renyi entropies include Shannon’s entropy measure as
the limit of �→ 1.

We may note that the probability of coincidence introduced in
the previous subsection provides a measure for the Renyi entropy
of order � = 2

H2[X ] = − log pC [X ]. [4]

The Renyi entropy of order 2 is known as collision entropy in
cryptography and may also be motivated from an optimal code
length perspective with nonlinearly weighted length penalties
(32). Here, we use the term coincidence entropy to stress its
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relation to coincidence-counting among sample pairs. We focus
on this entropy measure in the following as we will show that it
relates directly to pairwise classification. For a generalization to
higher-order Renyi entropies, see SI Appendix, Text 4.

1.3. Coincidence Mutual Information. We have previously used
the coincidence ratio pC [X |Π]/pC [X ] between specific and
background TCRs as a measure of antigen-driven selection (24),
where pC [X |Π] is the probability of coincidence among epitope-
specific TCRs averaged over a distribution of epitopes, P(Π), and
pC [X ] the probability of coincidence among background TCRs.
Different definitions of conditional Renyi entropy for � 6= 1
have been proposed. Here, we follow refs. 33 and 34 and define

H2[X |Y ] = − log pC [X |Y ], [5]

where pC [X |Y ] is an average of pC [X |y] over all outcomes y of Y

pC [X |Y ] =
∑
y

�2(y)pC [X |y], [6]

with weighting factors

�2(y) =
P(y)2∑
y P(y)2 . [7]

Detailed justification for these definitions is provided in SI
Appendix, Text 1. This definition allows us to express the
coincidence probability ratio in terms of coincidence entropies

log
(
pC [X |Π]
pC [X ]

)
= H2[X ]−H2[X |Π]. [8]

We note that for Shannon entropy this difference defines the
mutual information between X and Π (29), which motivates the
following definition of coincidence mutual information

I2(X,Π) = log
(
pC [X |Π]
pC [X ]

)
. [9]

Importantly, our definition of conditional entropy maintains
additivity H2[X, Y ] = H2[X ] + H2[Y |X ], where H2[X, Y ]
is the coincidence entropy of P(X, Y ), the joint distribution
of the random variables X and Y . As a correlate it follows
that coincidence mutual information is symmetric, I2(X, Y ) =
I2(Y, X )—as is its Shannon counterpart—so it tells us not only
how much information we gain about sequence features upon
learning their epitope specificity, but also, by symmetry, how
much information a sequence feature provides about its epitope
specificity. Coincidence mutual information thus provides a
natural way to score the importance of a TCR feature in
predicting specificity, which we will refer to as the feature
relevancy.

1.4. Describing the Interactions between Features with
Redundancy and Synergy. The connection between coincidence
analysis and information theory naturally allows us to apply
additional notions from information theory (35, 36) to describe
how multiple features work in tandem to provide antigen
specificity. First, conditional mutual information

I2(X,Π|Y ) = H2[X |Y ]−H2[X |Π, Y ], [10]

describes the remaining information provided by feature X given
that the value of a second feature Y is already known. Here,

H2[X |Π, Y ] indicates conditioning on both epitope specificity
and feature Y . If I2(X,Π|Y ) = 0, then we refer to X as a fully
redundant feature in the context of Y . As a trivial example,
knowledge of the complete primary sequence of the full � chain
makes any information provided by CDR3� redundant, and
so on.

Second, interaction information

I2,int(X, Y |Π) = I2 ([X, Y ],Π)− I2(X,Π)− I2(Y,Π) [11]

describes how much additional information both features provide
in conjunction (SI Appendix, Text 2). Here, I2 ([X, Y ],Π) is the
relevancy of the feature produced by combining the two features
X and Y . If I2,int(X, Y |Π) > 0, then there is synergy between
the two features.

2. Bounding Classification Accuracy of Partial
TCR Matches

2.1. Pairwise Classification Odds. There are well-known con-
nections between information measures and achievable clas-
sification errors both in the Shannon (37) and Renyi case
(38, 39). In the following, we derive how TCR classification
accuracy using partial feature matches with a reference sequence is
bounded when only partial information is available. We consider
a classification setting where the task is to identify spiked-in
TCR sequences specific to a particular epitope � in an otherwise
naive repertoire. We will derive how posterior classification odds
depend on feature relevancy and prior beliefs, i.e., the fraction
of spiked-in sequences P(�). Mathematically, in this setting, the
presence of a TCR sequence � is due to either of two generative
processes:

P(�) = P(�)P(�|�) + P(B)P(�|B), [12]

where P(B) = (1− P(�)) and where P(�|�) is the probability
of drawing � from the distribution of TCR sequences specific
to epitope �, P(Σ|�), and P(�|B) the probability of drawing �
from the distribution of background TCR sequences according
to V(D)J recombination, P(Σ|B). In practice, we used a com-
putational model to determine the probability of generation of
TCR sequences P(Σ|B) (40). This choice of background yields
a distribution without the imprints of thymic or peripheral
selection that determine TCR coincidence probabilities in naive
and memory repertoires (24).

To recapitulate the empirical procedure of matching TCR
sequences to a database of known binders, we consider the
following one-shot classification strategy: We classify a query
sequence as having been generated from P(Σ|�), if it matches
in a feature X with a reference sequence randomly drawn from
P(Σ|�). Using the odds formulation of Bayes’ theorem, we may
express the posterior odds of correct classification as

P(�|x = x′)
P(B|x = x′)

=
P(x = x′|�)
P(x = x′|B)

P(�)
P(B)

. [13]

Here, P(x = x′|�) = pC [X |�] is the probability of a match in
feature X if both sequences were truly drawn from distribution
P(Σ|�), whileP(x = x′|B) is the probability of a match in feature
X for a query drawn from P(Σ|B) and a reference drawn from
P(Σ|�). Under the assumption that the propensity of a TCR for
specific binding is independent of its recombination probability
(24), one can show that P(x = x′|B) = pC [X ] (SI Appendix,
Text 3.A). Therefore,
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P(�|x = x′)
P(B|x = x′)

=
pC [X |�]
pC [X ]

P(�)
P(B)

[14]

This expression can be generalized for mixtures of multiple
epitope groups, in which case the average odds over epitopes
(SI Appendix, Text 3.B) can be expressed as〈

P(�|x = x′)
P(B|x = x′)

〉
=

pC [X |Π]
pC [X ]

〈
P(�)
P(B)

〉
, [15]

where pC [X |Π] is the conditional probability of coincidence
defined previously and the averages for the odds are taken over
P(�)/(1 − P(B)). By the definition of coincidence mutual
information (Eq. 9), we can rewrite the last equation as

Opost = 2I2(X,Π) Oprior, [16]

which links the average posterior odds Opost to average prior
odds Oprior via coincidence mutual information. Each bit of
coincidence mutual information between X and Π corresponds
to a two-fold gain in posterior odds.

2.2. When Is Partial Information Sufficient? Eq. 16 captures
an important Bayesian intuition about classification: Correct
classification depends not only on how much information we
have available but also on our prior belief. Here, our prior belief
about the likelihood that any particular sequence is specific should
reflect the total fraction of spiked-in sequences. If we are searching
for a needle in a haystack, this is when Oprior is small, we need
to use more highly informative features for correct classification.
Mathematically, a minimal prior odds of 2−I2(X,Π) T is needed to
ensure that the average posterior odds exceeds a threshold value
T . Expressed in terms of prior probabilities

Pprior(I2) ≥
T 2−I2

1 + T 2−I2
, [17]

is needed if only I2 bits are available for classification. To illustrate
this result, we performed in silico simulations with a toy model
of TCR specificity (SI Appendix, Text 3.D). These simulations
showed close agreement between predicted values for Pprior(I2)
and those obtained through numerical simulation (SI Appendix,
Fig. S1).

Note that sequences drawn fromP(Σ|B) may also be specific to
�. Therefore, P(�) and P(�|x = x′) are not exactly equal to the
fraction of sequences specific to � and the posterior probability of
specificity, respectively. However, as shown in SI Appendix, Text
3.C in most cases of practical interest, where P(�) exceeds the
background frequency of sequences specific to a given epitope,
this distinction is irrelevant.

3. Application of the Methodology to TCR
Sequence Data

To illustrate how our framework can be applied, we curated
a dataset of multimer-sorted TCRs from CD8+ T cells with
specificity to viral antigens (SI Appendix, Text 7). We restricted
our dataset to epitopes where at least one full TCR coincidence
was observed to allow computation of coincidence information
for the full TCR. Remarkably, such coincidences are observed
in many epitope-specific repertoires: Here, we combined nine
SARS-CoV-2-specific repertoires with such coincidences studied
by Minervina et al. (22) with three repertoires specific to other
viral epitopes from Dash et al. (1). To obtain background TCRs,
we randomly paired TCR� and TCR� sequences generated by a
computational model of V(D)J recombination (40).

3.1. A Decomposition of TCR Specificity into Its Component
Parts. To provide a top–down decomposition of the information
content of the TCR, we computed the relevancy of different sec-
tions of the TCR for its specificity, as well as their combinations
(Fig. 2). We first analyzed the information provided by the � and
� chains alone which recapitulated the expected greater relevancy
of the � chain (19 bits) than the � chain (12 bits). By Eq. 17, the
information provided by each chain bounds prior probabilities
needed for accurate classification using single chain matches. A
� chain match requires a prior probability Pprior ≥ 3 · 10−5 for a
95% posterior confidence. In contrast, an � chain match allows
reliable classification only for prior probabilities Pprior ≥ 3·10−3.
We then broke down the two chains further into their component
V and J gene segments and CDR3 amino acid sequence. A
CDR3� match provides 16 bits of information (corresponding
to Pprior ≥ 4 · 10−4) while a CDR3� match provides only 10
bits of information (corresponding to Pprior ≥ 1 · 10−2).

In addition to features such as the CDR3, V, and J regions,
our definition of a feature also extends to physical properties of
the TCR such as the length of the CDR3 loop and its net charge
(SI Appendix, Fig. S3). Our results confirm that these properties,
which have been described in the literature as being important for
epitope specificity (1, 41), have some relevancy in determining
TCR specificity. For instance, CDR3� net charge is roughly as
informative as J� choice. However, neither property captures a
substantial proportion of CDR3 information demonstrating the
contribution of higher-order sequence features to specific binding
(SI Appendix, Text 6).

To assess variations in feature relevancy across epitopes, we
defined local relevancy, i2(X,�) = log (pC [X |�]/pC [X ]), as
the information gain for a specific epitope �. Local relevancy
scores revealed a broadly consistent hierarchy of feature relevancy
across epitopes (SI Appendix, Figs. S4–S8). The analysis also
identified variability in local relevancy of features between

Fig. 2. Coincidence mutual information between TCR sections and antigen
specificity. Relevancy scores of various sections of the T cell receptor
sequence. The off-diagonal values indicate the amount of coincidence
information that combinations of features provide. The Top Right hand grid
shows the relevancy of combination of features where one is from the � chain
and the other the � chain. Interaction information between features can be
computed by taking the difference between the off-diagonals and the sum
of the corresponding diagonal values (Fig. 3).
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different epitopes not explained by finite sampling deviations
alone in line with our prior findings on a subset of the studied
epitopes (27). We will analyze this variability in more detail in
Section 3.4.

3.2. Synergy and Redundancy between TCR Features. Compar-
ing relevancy scores for individual and combined features revealed
the pervasiveness of interactions between TCR sections (Fig. 2),
where their combined information differed from the sum of
their individual relevancies. Fig. 3 summarizes the interaction
information between important TCR features.

Our analysis identified substantial synergy between the � and
� chains (4 bits). This synergy implies that there are pairing
restriction between � and � chains in specific TCRs, which
make each chain more informative when considered in its full
paired chain sequence context (SI Appendix, Text 2). These results
broaden our prior findings (24) to a broader set of epitopes, and
add to a growing literature investigating TCR �-� pairing rules
(20, 24, 41–44). Pairing restrictions imply that the diversity of
TCRs responding to a given epitope is lower than the product of
the diversities of responsive � and � chains.

We also analyzed the interaction information between the
CDR3 of each chain and the corresponding V segment choice.
We again identified substantial synergy, presumably reflecting
spatial constraints between V-gene encoded framework and
CDR1/2 variability and CDR3 choice. In contrast, the inter-
action information between the CDR3 and J gene is negative.
This is expected as the sequence variability provided by the J gene
is contained in the CDR3 region (45) but demonstrates how our
framework can identify redundant features without such a prior
knowledge.

3.3. CDR3 Compression and Information Loss. We next sought
to determine how much information about specificity is lost
when compressing the CDR3 amino acid sequence into reduced
representations of different complexities. We took conceptual
inspiration from the information bottleneck method, which
posits a trade-off between compression and preserved informa-
tion (46). As good compression schemes retain relevant features

Fig. 3. Synergistic and redundant TCR sequence features. Interaction infor-
mation scores for combinations of features. Positive interaction information
indicates that two features become more informative in the context of one
another and hence have synergy while negative interaction information
suggests redundancy between the features.

A

B

C

Fig. 4. Information preserved by different CDR3 compression schemes. (A)
Relevancy of bag-of-words (BOW) representations for the CDR3�, CDR3�,
and both CDR3 chains. CDR3 bag-of-words representations are vectors of
dimension 20 with each entry representing the number of occurrences of a
particular amino acid. (B) Information retained when compressing CDR3s
using reduced amino acid alphabets described in SI Appendix, Text 7.B.
R(CDR3) denotes the CDR3 remapped to the reduced alphabet. (C) Informa-
tion retained by different two letter alphabets for both CDR3 chains. Polarity,
solvation free energy, and normalized Van der Waals volume alphabets are
obtained by hierarchical clustering of amino acids with respect to these
biophysical properties. (For further properties and different alphabet sizes,
see SI Appendix, Table S3.) The optimal alphabet is obtained by a greedy
search algorithm described in SI Appendix, Text 7.D.

such analyses can provide insights into which properties of the
CDR3 sequence matter for its specificity.

First, we removed positional information by representing the
CDR3 sequence as an unordered collection of its individual
amino acids, referred to as bag-of-words representations in
natural language processing (47). Such compression loses 4 bits of
information for the paired chain receptor (Fig. 4A), highlighting
the importance of the ordering of amino acids within the TCR.
We next determined the relevancy of single dimensions of the
bag-of-word vector, this is the number of times individual amino
acids occur in the sequence. TCR amino acid contents provided
less than a single bit of information about specificity, with
arginine, proline, and glycine being most informative when
considering both chains (SI Appendix, Fig. S9). Interestingly,
glycine and proline content have been previously described as
important for determining TCR specificity (41, 48), and both
are determinants of protein flexibility
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Second, we compared different reduced amino acid alphabets
(49–53), which map amino acids to a smaller number of groups
(Fig. 4B). By quantifying the compression-information trade-
off of different reduced alphabets, our results can help guide
the choice of reduced alphabets for TCR applications, for
instance by identifying Pareto optimal alphabets at a given
alphabet size. We next determined how much information
is preserved by reduced alphabets obtained via hierarchical
clustering with respect to single biophysical properties (54, 55).
Our analyses (described in detail in SI Appendix, Text 7.3)
revealed major differences between the informativeness of such
alphabets (Fig. 4D and SI Appendix, Table S3). For instance,
steric properties such as radius of gyration of side chain or
accessible surface area in a tripeptide resulted in particularly
informative reduced alphabets across alphabet sizes. Finally, we
implemented a greedy search algorithm to find the best two-
letter alphabet (SI Appendix, Text 7.4). This algorithm identified
a maximally informative two letter alphabet, which retains
15.5 bits of information (Fig. 4D), providing proof-of-concept
for data-driven identification of an optimal coarse-graining
strategy.

3.4. Variability in Interaction Information across Epitopes Is
Explained by Mixture Models. To better understand potential
sources of variability of TCR sequence restriction across epitopes
we defined additional measures of local sequence variation:
Local conditional mutual information i2(X,�|Y ) = H2[X |Y ]−
H2[X |�, Y ] and local interaction information i2,int(X, Y |�) =
i2 ([X, Y ],�) − i2(X,�) − i2(Y,�). We then analyzed depen-
dencies across four variables (Fig. 5): Interaction information
i2,int(�, �|�), �-chain relevancy i2(�,�), �-chain relevancy
i2(�,�) and paired chain relevancy i2 ([�, �],�). These analyses
highlighted strong dependencies between the variables. The
more informative an � chain or � chain is for a given
epitope, the less �-� interaction information contributes to

global diversity restriction (Fig. 5 A and B). Moreover, epi-
topes with more informative � chains also have more infor-
mative � chains (Fig. 5C ) and more informative full TCR
sequences (Fig. 5D).

Unexpectedly, all variables were highly correlated with each
other and well fitted by linear regressions, suggesting the existence
of a single underlying degree of freedom that drives the observed
variability across epitopes. Based on the clustering of epitope-
specific TCRs, we had previously proposed mixture of motif
models (24), in which epitope-specific TCRs are composed
of a number of distinct binding solutions (binding modes
or motifs). We asked whether variability in the number of
such motifs across epitopes might provide the common degree
of freedom explaining the observed correlations. Deriving the
expected theoretical relationships between variables (SI Appendix,
Text 6), we found an increased local interaction information for
epitopes with more binding modes and a decrease in individual
feature relevance. Across all variable pairs studied in Fig. 5,
the mixture model predicted linear relations with slopes of
±1, in good agreement with the best fit lines to the empirical
data. Intuitively, if an epitope has multiple binding solutions,
more � and � chains will be able to bind it, given the right
complementary chain (thus lowering the information from each
individual chain). At the same time, where many solutions exist a
high degree of �–� pairing is expected as most � chains from one
binding solution would not be valid with � chains from another
solution (thus increasing the observed synergy between the
two chains).

Another consequence of the existence of multiple binding
solutions is a potential loss of relevance of features with variable
restriction across TCR clusters, as we have discussed when intro-
ducing our information-theoretic definition of feature relevance.
In analyzing the relevancy of CDR3 length and charges as features
(SI Appendix, Text 5), we found evidence for this phenomenon:
The relevancy of length and charge increases substantially when

A B C D E

Fig. 5. Correlation between �-� interaction information and per-chain information across epitopes. Local interaction information and single-chain information
across epitopes. Weighted linear fits (solid lines) obtained using orthogonal distance regression were used to quantify the dependence between variables, with
regression slopes a displayed above each panel. Epitope-specific interaction information depends negatively on the local informational value of the (A) � chain
and (B) �. We furthermore find that the (C) per-chain relevancies are positively correlated with each other as is (D and E) total information with both single chain
relevancies. The observed dependencies between variables agree well with theoretical expectations from a mixture model (dashed lines), in which epitopes
differ in the number of distinct binding solutions or contain false positives.
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conditioning on V and J gene usage, which acts as a simple proxy
for distinguishing TCR clusters (SI Appendix, Fig. S2). These
results further support modeling epitope-specific repertoires as
mixtures.

Given the low prevalence of epitope-specific TCRs in a
repertoire, we additionally expect the dataset to be a mixture
containing some false positive TCRs with no or low affinity to
the epitope of interest even if sorting has high specificity. As
we show in SI Appendix, Text 6 variations in the proportion
of false positives across epitopes can also explain the observed
dependencies among variables, with high interaction information
for epitopes with many false positives. Both models share the
common underlying insight that epitope-specific repertoires are
mixtures rather than draws from a unimodal distribution—
future research might elucidate the contributions of the different
underlying mechanisms to the observed variability.

4. Distance Metrics and Near-Coincidence
Entropy

4.1. Generalization of Coincidence Mutual Information to
Fuzzy Matches. As exact matches are rare for complex features,
it is of interest to also quantify the information provided by
fuzzy feature matches. As previously explored in ref. 24, we are
not limited to computing the probability of exact coincidences
between features but can also consider near-coincidences ac-
cording to some distance metric. Given a feature X distributed
according to P(X ) and a distance metric d(x, x′) between
outcomes x and x′, the probability that two draws from P(X ) are
at distance d(x, x′) = Δ can be defined as

pC [X ](Δ) =
∑
x,x′

P(x)P(x′)�d(x,x′),Δ, [18]

where �d(x,x′),Δ is the Kronecker delta. We use this mea-
sure to propose a near-coincidence entropy H2[X ](Δ) =
− log pC [X ](Δ), and a near-coincidence conditional entropy
H2[X |Y ](Δ) = − log pC [X |Y ](Δ), where pC [X |Y ](Δ) once
again is an average of pC [X |y](Δ) over outcomes of Y using
the �2(y) weighting factor. We define a near-coincidence mutual
information

I2 (ΔX,X ′ , Y ) = H2[X ](Δ)−H2[X |Y ](Δ), [19]

where ΔX,X ′ denotes that this information is computed for
near-coincidences in feature X at distance Δ. As this measure
deals with pairs of instances of a random variable rather than
single instances, this quantity cannot be defined straightforwardly
for Shannon entropy but is motivated naturally when using
coincidence entropy.

4.2. Pairwise Classification Using Fuzzy Matches. To obtain an
interpretation of near-coincidence entropy, we turn once again
to pairwise classification. We consider the same classification
procedure as previously but based on a fuzzy match where
the sequence with unknown specificity is distance Δ from the
sequence with known specificity such that d(x, x′) = Δ. Similarly
to our prior derivations, we find (SI Appendix, Text 3.E)

Opost = 2I2(ΔX,X ′ ,Π) Oprior. [20]

One bit of near-coincidence mutual information again
corresponds to an average two-fold increase in posterior

Fig. 6. Information theoretic analysis of fuzzy CDR3 matches. Critical prior
probabilities for 95% confidence in classification using a fuzzy match with
a Levenshtein distance Δ. Distances are CDR3� and CDR3� amino acid edit
distances as well as the sum of CDR3�+CDR3� edit distance. Levenshtein
distances are defined as the minimum number of insertions/deletions and
substitutions required to turn one sequence into another.

classification odds. As in the case of exact matching, Eq. 20
defines regimes in which fuzzy matches at a given distance are
expected to succeed or fail. In Fig. 6, we provide an example of this
by computing the required prior fraction of specific sequences to
obtain a posterior probability of 0.95 with fuzzy CDR3 matches
at a certain Levenshtein distance. Inversely, at a given prior odds
ratio and target posterior odds ratio we can use these results to
compute a critical distance beyond which classification becomes
unreliable.

5. Discussion

The ubiquity of information theory lies in its ability to describe
complex relationships between data points using a simple
quantitative vocabulary. As shown by Shannon (29), entropy
provides the most natural measure of uncertainty and hence
changes in entropy directly capture how knowledge of one
event increases understanding of another. The application of
information theory to the problem of immune receptor specificity
has proved highly fruitful in the past. In particular, estimates of
residue Shannon entropy aided in identifying potential comple-
mentary determining regions of the TCR and immunoglobulin
and highlighted that TCRs were the more diverse of these
two antigen receptors (56). Other, more recent studies have
employed concepts from information theory such as mutual
information to quantify interactions between various sections of
the TCR sequence (20, 21). These previous studies have taken a
“bottom–up” approach, computing an upper bound on sequence
diversity by summing up the entropy of each constituent amino
acid residue or pairs of residues. In part, this “bottom–up”
approach has been required due to biases in estimating Shannon
entropy in small samples. Although there exist methods for
reducing bias in Shannon entropy estimation, these still require
resolving higher-order distribution moments or essentially resort
to coincidence counting and use Renyi entropy to approximate
Shannon’s (57, 58). In this work, we have proposed a “top–
down” approach to decomposing TCR specificity firmly rooted
in second-order Renyi entropy.

Our methodology provides a general framework to assess the
role of individual TCR sequence features in determining antigen
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specificity as well as combinations of features by introducing
the concepts of relevancy, redundancy, and synergy. We first
compute the entropy of the full TCR sequence, divide this
into its two constituent amino acid chains and then further
subdivide these into their V, J, and CDR3 regions. Our
results identify the � chain as the most informative of the
heterodimeric TCR’s chains and the CDR3 regions to be the
most informative regions of each chain. However, we also find
that the information these constituent parts provide is far smaller
than that of the full TCR sequence. Although these results
are unsurprising, with previous work highlighting the higher
contribution of the � chain in epitope binding predictions and
the importance of paired chain data (23, 59, 60), we provide
the first full quantification of the information contained within
these regions and, as our methodology has its foundations in
coincidence-based statistics, we are able to directly interpret
information measures in terms of achievable pairwise classifi-
cation accuracy. Our work thus paves the way for the devel-
opment of principled Bayesian methods for interpreting partial
sequence matches.

Our results provide clear guides for when a limited amount of
TCR sequence information, such as a single chain, is on average
enough to solve an epitope specificity classification problem and
when this loss of information may seriously impact predictive
performance. We expect these insights to be important for
experimental design, to decide whether the time and cost trade-
off of single cell sequencing over bulk are worth the increase in
information paired chain information might provide.

We have also shown how the vocabulary of information theory
can be applied to TCR near-coincidence analysis, which we have
introduced in recent work (24). Our framework predicts pairwise
classification performance when using fuzzy matches at a given
threshold TCR distance. This approach may be used to define
relevant data regimes in which current or future distance metrics
(1, 61) may be usefully applied and allows setting critical distances
for classifying or clustering sequences (62).

Our “top–down” approach allows us to compute interaction
information, which describes synergistic and redundant rela-
tionships between TCR sequence features. We observe positive
interaction information, synergy, between the � and � chain
as well as the CDR3 and V regions, while knowledge of
CDR3 regions makes their associated J regions redundant. We
furthermore show how the relationship between interaction and
single chain information across epitopes is compatible with a
model in which epitopes vary in the number of distinct binding
solutions (or possibly in the rate of false positives). With the
steady accumulation of data on more epitopes, we envisage that
our approach will help decipher principles underlying sequence
space organization of responding TCRs.

Our framework can also be used to assess how much informa-
tion is retained by compressed representations of the TCR such
as bag-of-words vectors or reduced amino acid alphabets. We
provide proof-of-concept for how our information scores may
be used to construct reduced alphabets optimized for preserving
epitope specific information and to discover biophysically salient
measures of amino acid similarity.

The next steps for applying our theoretical approach are
numerous. On the practical side, we propose completing
the “top–down” approach and performing an analysis of the

informational value of the CDR3 sequences residue by residue.
This may allow for the identification of informationaly dense
regions of the CDR3s and for a quantification of more complex
allosteric interactions present across the receptor structure. Such
analyses could complement work on structure-based prediction of
TCR–pMHC interactions (63) and prediction with biophysical
interaction energy models using contact maps derived from
solved structures (64, 65). Further extensions of our framework
could account for the hierarchy of selective processes shaping
the TCR repertoire by varying the background used to compute
background entropy. For example, to bound the performance of
multiclass classification between a set of known epitopes, it may
be more appropriate to quantify the entropy of TCRs across the
chosen epitope-specific groups. Likewise, sequence statistics in a
naive T cell repertoire could be used as background to account
for the imprint of thymic selection. Our information theoretical
tools may also be used on problems other than epitope specificity.
For example, one may apply them to the study of TCR–MHC
associations (66, 67) or TCR sequence to phenotype relationships
(44, 68–70).

Linking feature information to classification isn’t a problem
unique to the field of protein function nor is the task of
class prediction from pairwise comparisons. Transformer neural
networks, the architecture underlying the current rise of large
language models, embed data in high dimensional vector spaces
(71) and may be trained in a pairwise contrastive manner, such
that items from the same class are closer together than items
from different classes (72–75). More generally, metric and repre-
sentation learning commonly utilize pairwise measures to tackle
problems ranging from sentence embeddings to facial recognition
(76–80). Our pairwise coincidence information measure may be
applicable for identifying interpretable informative features in
these applications.

To conclude, we have introduced a theoretical framework
for mapping the information content of the T cell receptor
sequence with regard to its antigen specificity. Our results confirm
prior insights from more limited structural studies regarding
the relative importance of the � and � chains (2, 5, 81–84)
but also highlight unexpected variability in the synergy between
chains across epitopes. As dataset sizes continue to increase, the
proposed framework should be able to guide the training of
protein language models for predicting TCR–pMHC specificity
(85–87) by information-content-driven masking strategies and
will provide a tool to find interpretable physical features learned
by such models.

Data, Materials, and Software Availability. Detailed source code and
pre-processed data necessary to reproducing all results reported in this
manuscript are available online at https://doi.org/10.5281/zenodo.13760163
(88). Antigen-specific TCR sequences were obtained from Dash et al. (1) as
deposited in VDJdb (89), and from the SI Appendix of Minervina et al. (2).
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