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Background. Emerging resistance to bedaquiline (BDQ) threatens to undermine advances in the treatment of drug-resistant 
tuberculosis (DRTB). Characterizing serial Mycobacterium tuberculosis (Mtb) isolates collected during BDQ-based treatment 
can provide insights into the etiologies of BDQ resistance in this important group of DRTB patients.

Methods. We measured mycobacteria growth indicator tube (MGIT)–based BDQ minimum inhibitory concentrations (MICs) 
of Mtb isolates collected from 195 individuals with no prior BDQ exposure who were receiving BDQ-based treatment for DRTB. We 
conducted whole-genome sequencing on serial Mtb isolates from all participants who had any isolate with a BDQ MIC >1 collected 
before or after starting treatment (95 total Mtb isolates from 24 participants).

Results. Sixteen of 24 participants had BDQ-resistant TB (MGIT MIC ≥4 µg/mL) and 8 had BDQ-intermediate infections 
(MGIT MIC = 2 µg/mL). Participants with pre-existing resistance outnumbered those with resistance acquired during 
treatment, and 8 of 24 participants had polyclonal infections. BDQ resistance was observed across multiple Mtb strain types and 
involved a diverse catalog of mmpR5 (Rv0678) mutations, but no mutations in atpE or pepQ. Nine pairs of participants shared 
genetically similar isolates separated by <5 single nucleotide polymorphisms, concerning for potential transmitted BDQ resistance.

Conclusions. BDQ-resistant TB can arise via multiple, overlapping processes, including transmission of strains with pre- 
existing resistance. Capturing the within-host diversity of these infections could potentially improve clinical diagnosis, 
population-level surveillance, and molecular diagnostic test development.
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Bedaquiline (BDQ) has markedly improved clinical outcomes 
for individuals with drug-resistant tuberculosis (DRTB) [1– 
3]. Bedaquiline-containing regimens have been standard of 
care for all patients with rifampin-resistant tuberculosis (TB) 
in South Africa since 2018 [4], where approximately 50 000 pa-
tients have received BDQ to date. Recent national-level surveil-
lance data found baseline BDQ resistance in 3.8% of individuals 
with rifampin-resistant TB in South Africa, and emerging 

resistance to this critical new drug could jeopardize future pro-
gress in TB care and prevention [5]. Expanding population- 
level surveillance for BDQ-resistant TB and providing early, ac-
curate diagnosis of BDQ-resistant infections are urgent public 
health priorities.

Bedaquiline resistance in clinical TB infections is almost en-
tirely attributable to mutations in mmpR5 (Rv0678), which may 
also confer resistance to clofazimine. Bedaquiline resistance as-
sociated with mutations in 2 other genes, pepQ and atpE, are 
rare outside of in vitro experiments [6]. A diverse collection 
of mmpR5 mutations, involving more than 200 different loci 
across the gene, have been reported in clinical isolates [7]. In ad-
dition, mmpR5 mutations are associated with a wide range of 
BDQ-resistance phenotypes, and some mmpR5 mutations do 
not appear to confer BDQ resistance at all [7–9]. Continued un-
certainty about how these mutations influence phenotypic BDQ 
susceptibility poses an important problem for the development 
of rapid genotypic tests for BDQ resistance.
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Mycobacterium tuberculosis (Mtb) bacterial populations in in-
dividual hosts are more diverse and dynamic than previously un-
derstood [10, 11], posing challenges for the scientific and public 
health response to DRTB. Difficulty capturing diverse Mtb sub-
populations [12, 13], including those with divergent 
drug-resistance phenotypes, is an important and enduring prob-
lem in the clinical management of DRTB [14]. Failure to detect 
these cryptic Mtb subpopulations can also result in misclassifica-
tion of patients or research participants by resistance phenotype, 
with important implications for public health surveillance, clin-
ical research, and molecular diagnostics for DRTB.

More comprehensive characterization of individual Mtb in-
fections, using serial Mtb isolates collected before and during 
DRTB treatment, has yielded important insights into the diver-
sity and within-host evolution of Mtb [15, 16]. Joint analysis of 
phenotypic drug susceptibility testing (DST) and whole-genome 
sequencing (WGS) data from serial Mtb isolates can differentiate 
infections with treatment-emergent resistance from infections 
involving strains with pre-existing (aka “primary”) resistance. 
Whole-genome sequencing also allows for the identification of 
polyclonal infections, which can involve different Mtb strains 
with divergent susceptibility phenotypes; without WGS, it is im-
possible to clearly differentiate this subset of polyclonal infec-
tions from monoclonal infections with treatment-emergent 
resistance. Last, the number of single nucleotide polymorphism 
(SNP) differences between isolates, derived from WGS data, pro-
vides an important quantitative measure of Mtb within-host ge-
netic diversity and between-host genetic similarity.

This study used WGS and BDQ minimum inhibitory con-
centration (MIC) testing to characterize serial Mtb isolates 
from a sample of participants with DRTB who had evidence 
of decreased BDQ susceptibility while receiving BDQ-based 
treatment. Using this approach, we describe how infection 
with pre-existing resistant strains, within-host evolution, and 
polyclonal infection shape the dynamics of BDQ-resistant TB 
at the individual level.

METHODS

Study Population and Design

Pharmacokinetics, Resistance, and Outcomes of Bedaquiline in 
MDR and XDR-TB (PROBeX) was an observational longitudinal 
cohort study conducted at 3 TB referral hospitals in Gqeberha, 
Cape Town, and Durban, South Africa, between 2016 and 2018 
[3]. PROBeX recruited 195 adult participants with culture- 
confirmed extensively drug-resistant (XDR) or pre-XDR TB, as de-
fined at the time of the study [17], who received treatment with a 
standardized BDQ-containing regimen. The study was approved 
by the institutional review boards at Albert Einstein College of 
Medicine, the University of Cape Town, Columbia University, 
and Emory University. Additional details on the PROBeX parent 
study [3] are included in the Supplementary Methods.

Bedaquiline Minimum Inhibitory Concentration Measurements

We measured BDQ MIC values (0.125–8 µg/mL) of Mtb iso-
lates using the BACTEC mycobacteria growth indicator tube 
(MGIT) 960 DST method [9] (Supplementary Methods). We 
performed repeat BDQ MIC measurements for any isolate 
with an initial MIC of 1 µg/mL or greater and, if repeat mea-
surements were discrepant, we used the larger of the 2 MIC val-
ues. We defined BDQ-susceptible strains as those with BDQ 
MICs of 1 µg/mL or less (MGIT), intermediate strains as those 
with BDQ MICs = 2 µg/mL, and resistant strains as those with 
BDQ MICs of 4 µg/mL or greater [9]. (Note that both resistant 
and intermediate strains, as defined here, had MGIT-based 
MICs above the World Health Organization [WHO]–recom-
mended critical concentration of 1 for BDQ in Mtb [18].)

Genetic Sequencing and Whole-Genome Sequencing–Based Strain 
Characterization

We conducted WGS for all available isolates from all partici-
pants who had at least 1 Mtb isolate with BDQ MIC greater 
than 1 µg/mL (n = 98). We used the Illumina NextSeq platform 
with read lengths of 150 bp and coverage at greater than 100× 
using the Nextera DNA Flex Library Preparation kit. 
Additional information on WGS data processing, sequence 
quality metrics, and WGS data availability is provided in the 
Supplementary Methods.

We conducted targeted Sanger sequencing to confirm 
mmpR5 genotypes obtained via WGS, as described in the 
Supplementary Methods. We accepted mmpR5 minority vari-
ants identified via WGS if they met the following criteria: (1) 
the proportion of all reads for a given minority variant was 
greater than 0.2 or (2) the minority variant was identified in an-
other sample from the same participant. Supplementary 
Table 1 compares the WGS-based and Sanger-based mmpR5 
genotypes for isolates in this study.

We determined lineages for each isolate using 
fast-lineage-caller v1.0 (https://github.com/farhat-lab/fast- 
lineage-caller) and the SNP-based lineage classification scheme 
developed by Coll et al [19]. We used Mykrobe [20] and the 
WHO TB drug-resistance mutations catalog [21] to generate 
genotypic resistance profiles to other non-BDQ TB drugs. 
We calculated the number of SNP differences for all between- 
participant and within-participant isolate pairs and construct-
ed a phylogenetic tree using maximum-likelihood methods 
(Supplementary Methods). The WGS data identified 3 isolates 
with apparent admixture, involving multiple distinct strains 
within the same sample (Supplementary Table 2 and 
Supplementary Figure 1), which were excluded from phyloge-
netic analyses.

Identification of Acquired Versus Pre-existing Bedaquiline Resistance

We used clinical information on each participant, combined 
with BDQ MIC values and WGS-based strain characterization, 
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to delineate whether participants had pre-existing versus 
treatment-emergent resistance; we also determined whether 
these infections were polyclonal—that is, those involving mul-
tiple, distinct Mtb strains.

We defined participants with pre-existing BDQ resistance as 
those who had any pretreatment isolate with BDQ MIC greater 
than 1 µg/mL. We defined participants as having treatment- 
emergent BDQ resistance if all pretreatment isolates had 
MICs less than 2 and any subsequent isolate (after starting 
treatment) had MICs of 2 or greater. Treatment-emergent re-
sistance, as defined, can be due to either monoclonal infections 
that acquire resistance de novo or polyclonal infections involv-
ing multiple strains with different BDQ MICs. To differentiate 
between these 2 situations, we further defined acquired resis-
tance as the subset of cases with treatment-emergent resistance 
that were not polyclonal. Polyclonal infections were defined as 
participants who had isolates from multiple phylogeographic 
lineages or different isolates from the same lineage that were 
separated by more than 12 SNP differences. Last, we defined ac-
quired BDQ resistance as mmpR5-mediated if pretreatment, 
susceptible isolates were mmpR5 wild-type and resistant iso-
lates collected later were mmpR5 mutants. Figure 1 provides in-
dividual participant examples to illustrate these definitions.

Genomically Linked Isolates

We used SNP differences, calculated from high-quality 
WGS-derived SNPs, to identify genomically linked isolate 
pairs. We applied 2 thresholds to classify isolates as genomically 
linked: fewer than 5 SNP differences [22] and a more conserva-
tive threshold of fewer than 2 SNP differences.

RESULTS

Pre-existing and Acquired Bedaquiline Resistance

We obtained Mtb BDQ MIC data for 147 of 195 participants in 
the PROBeX study, of whom 24 had at least 1 isolate with a BDQ 
MIC greater than 1. Sixteen of these participants (10.9% of 147) 
had at least 1 Mtb isolate with BDQ resistance (MICs ≥4) collect-
ed at any time during treatment. There were no significant dif-
ferences in the demographic characteristics of these 24 
participants compared with those without any BDQ-resistant 
isolates (Supplementary Table 3). The remaining 8 participants 
had at least 1 isolate with intermediate BDQ susceptibility 
(MIC = 2). Participants with BDQ-resistant or -intermediate 
strains were less likely to achieve clinical cure compared with 
participants with only BDQ-susceptible isolates, but this differ-
ence was not statistically significant (odds ratio: 0.87; 95% confi-
dence interval: .36–2.11) (Supplementary Table 4).

Figure 2 summarizes BDQ DST results for the 24 partici-
pants who had any isolate with a BDQ MIC greater than 
1 µg/mL. Nineteen of these participants had multiple Mtb iso-
lates collected during the study; 5 had only a single isolate. 

Thirteen participants had isolates collected both before and af-
ter treatment initiation.

Taken together, 12 of 147 participants with available BDQ 
MIC data (8.2%) in the PROBeX study had pre-existing BDQ 
resistance. Only 1 participant with pre-existing resistance had 
prior clofazimine exposure. Seven of 147 participants (4.8%) 
had evidence of treatment-emergent BDQ resistance, of which 
5 were polyclonal infections and 2 met criteria for acquired re-
sistance. One case of acquired BDQ resistance was 
mmpR5-mediated; the second had no evidence of any muta-
tions in mmpR5, atpE, or pepQ. Eight of 24 participants had 
polyclonal infections involving strains from multiple Mtb line-
ages or genetically distinct strains from the same lineage (ie, 
those separated by >12 SNP differences). One participant 
with polyclonal treatment-emergent resistance had isolates 
with a genetic admixture of multiple strains (Supplementary 
Table 2). Five participants did not have pretreatment isolates 
collected, such that we were unable to adjudicate whether these 
participants had pre-existing or treatment-emergent BDQ re-
sistance. We identified 4 participants with widely different 
BDQ MICs (≥4-fold difference) for highly related isolates 
from the same lineage that were collected within relatively short 
time spans (<56 days apart) and had no interval changes in 
mmpR5 genotypes (Supplementary Figure 2).

Genomically Linked Isolate Pairs

Supplementary Figure 3 shows the distributions of pairwise 
SNP distances for all within-participant and between- 
participant Mtb isolate pairs in our study sample. Using 
between-participant pairwise SNP distances, we identified 9 
participant pairs that shared genomically linked isolates differ-
ing by less than 5 SNPs (Figure 3); we identified 4 participant 
pairs sharing genomically linked isolates when the less-than-2 
SNP threshold was applied.

Using the less-than-5 SNP threshold, we found 4 specific 
strains (strains A, B, C, and D in Figure 3) involved in geneti-
cally similar between-participant isolate pairs. Strain A, a 
BDQ-resistant lineage 4.4.1 strain with a frameshift mmpR5 
mutation (144insC [E49fs]), was involved in a genomically 
linked cluster of 4 participants recruited at both the Durban 
and Gqeberha study sites (Figure 3A). The 3 other strains 
(strains B, C, and D) were each involved in a single pair of 
linked participants. Using the most stringent threshold of less 
than 2 SNPs, we identified 4 participant pairs, involving 7 
unique participants, that shared highly related isolates from 
strains A, B, or D, but not C (Figure 3B).

Tuberculosis Infections With Elevated Bedaquiline MICs Involve Diverse 
Mtb Populations

Phylogenetic analysis of 95 total sequenced isolates from 24 
participants identified BDQ resistance across multiple lineages, 
including lineages 2.2.2, 4.4.1 (including strain A described 
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Figure 1. Pre-existing resistance, polyclonal infection, and acquired resistance identified using WGS characterization of serial Mtb isolates. Each panel shows BDQ MICs 
over time for an individual participant (participants A–C). Each timepoint represents a single isolate, colored by phylogeographic lineage. The shape of each point shows the 
mmpR5 genotype of each isolate. Lines between each point are colored by the SNP difference between each isolate pair. Isolates collected prior to treatment initiation are 
highlighted in green. The x-axis (time in days) is square root transformed to better display isolates collected early during treatment. Abbreviations: BDQ, bedaquiline; MIC, 
minimum inhibitory concentration; Mtb, Mycobacterium tuberculosis; SNP, single nucleotide polymorphism; WGS, whole-genome sequencing; WT, wild-type.
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above), 4.3.2, and 4.8 (Supplementary Figure 4). Isolates from 
certain phylogeographic lineages shared similar resistance pro-
files for other, non-BDQ TB drugs. For example, the majority of 
isolates from lineages 2.2.2 and 2.2.1 were XDR by genotyping 
and the majority of isolates from lineage 4.4.1 were pre-XDR 
(2006 definition).

Multiple mmpr5 Mutations Are Associated With Elevated Bedaquiline 
MICs

Figure 4 shows the mmpR5 mutations identified among isolates 
in our cohort and the BDQ MIC values of isolates carrying each 
mutation. Considering all non-admixed isolates from each 

participant (including highly similar serial isolates collected 
from the same patient), 23 of 33 (69.7%) isolates with mmpr5 
frameshift mutations were BDQ resistant, 5 had intermediate 
susceptibility (15.1%), and 5 were susceptible (15.1%). Eight 
of 14 (57.1%) isolates with mmpR5 non-frameshift mutations 
were BDQ resistant, 3 (21.4%) had intermediate susceptibility, 
and 3 (21.4%) were susceptible. Forty-two of 48 (87.5%) 
mmpR5 wild-type isolates were BDQ susceptible, 4 (8.3%) 
were intermediate, and 2 (4.2%) isolates were BDQ resistant 
(Figure 4C). The mmpR5 mutations in participants with pre- 
existing resistance (139insG [D47fs], 139insGATC [P48fs], 
144insC [E49fs], 198delG [I67fs], 198insG [I67fs], A202C 

Figure 2. Mtb isolate collection and BDQ MIC results for 24 participants who had any isolate with a BDQ MIC ≥2. Counts for the number of participants at each node are 
shown in parentheses. Plot generated using the networkD3 package in R [23, 24]. Abbreviations: BDQ, bedaquiline; MIC, minimum inhibitory concentration; Mtb, Myco-
bacterium tuberculosis.

Figure 3. Genomically linked Mtb isolate pairs shared between participants. A, Participant pairs linked by highly related Mtb isolates differing by <5 SNPs. Symbols 
denote whether each participant had pre-existing or treatment-emergent resistance, no categorically intermediate or resistant strains (all with MIC ≤1), or no pretreatment 
isolates available (such that pre-existing vs treatment-associated resistance could not be adjudicated). Lines between symbols denote participants linked by closely related 
isolates (differentiated by <5 SNPs or <2 SNPs in panel B) from 1 of 4 strains—strain A: BDQ-resistant, lineage 4.4.1, mmpR5 144insC (E49fs); strain B: BDQ-resistant, 
lineage 2.2.2, mmpR5 A202G; strain C: BDQ-susceptible, lineage 2.2.2, mmpR5 WT; strain D: BDQ-resistant, lineage 4.3.3, mmpR5 198insC. Figure generated using the igraph 
package in R [25]. Abbreviations: BDQ, bedaquiline; MIC, minimum inhibitory concentration; Mtb, Mycobacterium tuberculosis; SNP, single nucleotide polymorphism; WT, 
wild-type.
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[S68R], G203A [S68N], T277C [F93L], and T437C[M146T]) 
differed from those with acquired resistance (349insC 
[L117fs] and 379delG [D127fs]). There were no isolates with 
polymorphisms detected in atpE or pepQ.

DISCUSSION

This study characterized serial Mtb isolates from individuals 
who had increased BDQ MICs during BDQ-based treatment 
for DRTB. This cohort included participants with pre-existing 
BDQ resistance, polyclonal infections with divergent BDQ re-
sistance phenotypes, and a small number of infections with ac-
quired BDQ resistance associated with de novo mutations in 
mmpR5. These infections were diverse across different partici-
pants, involving multiple Mtb strain types harboring a relative-
ly large set of different mmpR5 mutations, and also within 
individuals, with diverse isolates sampled at different time-
points during TB diagnosis and treatment.

Two of our findings have implications for clinical manage-
ment of BDQ-resistant TB. First, the high proportion of partic-
ipants with pre-existing BDQ resistance underscores the 
importance of pretreatment BDQ susceptibility testing, which 
can have important implications for therapeutic decision mak-
ing and preventing selection for resistance to other TB drugs 
(including pretomanid and delaminid, which have relatively 
lower barriers to resistance [26]). Second, our results indicate 

that mixed Mtb infections, involving polyclonal infections 
with different strain types, should be considered in patients 
who experience treatment failure or have unexpected changes 
in BDQ susceptibility during treatment. Clinical sampling of-
ten does not capture the full diversity of TB strains in a single 
host [10] and failure to identify Mtb populations with more ex-
tensive resistance profiles can have important consequences for 
TB treatment decisions and clinical outcomes [14, 27]. 
Emerging strategies for sequencing directly from sputum sam-
ples, without re-culturing [28], and microbiological methods 
for increasing the yield of differentially culturable Mtb popula-
tions [12] may be important for capturing the full genetic diver-
sity of Mtb isolates. Repeating phenotypic DST in individuals 
with poor clinical or microbiological response to treatment 
can help identify treatment-emergent resistance and inform 
therapeutic decision making.

Our findings also highlight important issues relevant to the 
classification of TB infections by resistance phenotype. 
Clinical studies that rely on more limited microbiological 
data (eg, DST on a single sample per participant, without 
WGS) may fail to capture the complexity and dynamic nature 
of drug-resistant and BDQ-resistant TB infections, resulting in 
multiple kinds of potential misclassification. For example, if 
clinical trial participants have unrecognized polyclonal infec-
tion, their clinical outcomes (eg, treatment failure) may be in-
correctly attributed to just 1 of multiple strains involved in their 

Figure 4. mmpR5 Mutations identified among study participants. The gene map (A) shows locations of mmpR5 mutations identified among participants in this study. Panels 
B and C show isolates grouped by mmpR5 mutation type (frameshift, non-frameshift, and WT). In panel B, each square represents a single isolate, each row of squares 
represents a single participant, and squares are colored by BDQ MIC. Abbreviations: BDQ, bedaquiline; MIC, minimum inhibitory concentration; WT, wild-type.
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infection. In our study, 8 BDQ-resistant infections would have 
been misclassified as susceptible if only their pretreatment sam-
ples were used for classification. Misclassification of this kind 
can also confound genotype–phenotype correlations, obfuscat-
ing attempts to identify molecular markers of resistance to 
BDQ. Whole-genome sequencing is thus an important asset 
for clinical studies where avoiding potential misclassification, 
and disambiguating strains involved in polyclonal infections, 
are important priorities.

Four participants in our study had wide differences in BDQ 
MIC values on nearly clonal samples that had no identifiable 
changes in their mmpr5 genotypes (Supplementary Figure 2). 
Variability is a well-documented feature of MIC measurements 
in Mtb, and many of the known factors underlying this variabil-
ity (including inherent laboratory measurement variance [29] 
and variable sampling from different disease sites and/or bacte-
rial subpopulations [30–32]) likely apply here. Additional work 
is needed to understand other determinants of BDQ resistance, 
including genetic variants that are difficult to identify with con-
ventional sequencing approaches (including large-scale genomic 
re-arrangements [33]). Last, variability in BDQ MIC measure-
ments poses an additional, important challenge for characteriz-
ing and classifying Mtb strains by resistance phenotype.

We found genomically linked infections with a specific 
BDQ-resistant strain (strain A in Figure 2) involving 4 different 
participants recruited at 2 different study sites (Durban and 
Gqeberha). Strain A is a highly drug-resistant lineage 4.4.1 
strain that carries the mmpR5 frameshift mutation 144insC 
(E49fs). This same mutation has been observed in previous 
studies of BDQ-resistant TB in South Africa, where a lineage 
2 strain with mmpR5 144insC (E49fs) was identified in a cluster 
of linked infections [5]. A local genomically linked cluster of 
BDQ-resistant strains from lineage 4.4.1 was recently observed 
in eSwatini, but in this case, BDQ resistance was associated with 
a distinct and more diverse set of mmpR5 mutations (G121R, 
N98D, and M146T) that predate the clinical use of BDQ [34]. 
Importantly, our study was not designed to infer transmission 
of specific strains between individual participants, and 
population-level estimates of transmission-associated 
BDQ-resistant TB cannot be extrapolated from our data. 
Infections with pre-existing resistance are arguably all attribut-
able to transmission, except for potential de novo acquisition of 
resistance in the interval between initial infection and treat-
ment initiation, which is likely exceedingly rare. The evolution-
ary processes behind the initial emergence of currently 
circulating BDQ-resistant strains remain uncertain [35]. 
Expanded surveillance for BDQ-resistant Mtb strains, includ-
ing studies specifically designed to track potential transmission 
of these strains, is urgently needed [36].

Our study has important limitations. First, conventional 
WGS can have difficulty resolving minority bacterial subpopu-
lations without high-depth read coverage, and the standard 

read depths used in our WGS may fail to capture the full Mtb 
genetic diversity in each sample, including heteroresistant in-
fections and polyclonal infections with very small minority 
strain populations. Second, SNP distance-based methods for 
inferring genomic linkages between isolates have several draw-
backs, including ambiguity about how to choose an SNP dis-
tance threshold and bias toward either over- or under-calling 
linkages based on which threshold value is used [37]. The 
SNP distance thresholds we used are comparable to or more 
stringent than other studies [22] (including those in South 
Africa [38]) and our analysis is likely biased toward under- 
calling the number of genetically linked infections in our co-
hort. Third, potential sampling bias may have enriched our 
study cohort for individuals with genomically linked isolates. 
Participants all had highly drug-resistant TB, relatively rare in-
fections that are caused by a restricted number of strains (com-
pared with drug-susceptible TB), making it more likely that 
isolates identified in this cohort would be genetically similar. 
Last, the small sample size in this study and nonrandomized se-
lection of participants for serial genotype–phenotype charac-
terization likely limit the generalizability of our findings.

Our findings highlight the complex, dynamic nature of Mtb 
strains involved in BDQ-resistant TB, with important implica-
tions for patient care and scientific and clinical research. 
Increased investment is needed to enhance public health surveil-
lance for BDQ-resistant TB and mitigate its potential spread.
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