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Background: Percutaneous coronary intervention (PCI) is one of the most important diagnostic and 
therapeutic techniques in cardiology. At present, the traditional prediction models for postoperative events 
after PCI are ineffective, but machine learning has great potential in identification and prediction of risk. 
Machine learning can reduce overfitting through regularization techniques, cross-validation and ensemble 
learning, making the model more accurate in predicting large amounts of complex unknown data. This study 
sought to identify the risk of hemorrhea and major adverse cardiovascular events (MACEs) in patients after 
PCI through machine learning.
Methods: The entire study population consisted of 7,931 individual patients who underwent PCI at Jiangsu 
Provincial Hospital and The Affiliated Wuxi Second People’s Hospital from January 2007 to January 2022. 
The risk of postoperative hemorrhea and MACE (including cardiac death and in-stent restenosis) was 
predicted by 53 clinical features after admission. The population was assigned to the training set and the 
validation set in a specific ratio by simple randomization. Different machine learning algorithms, including 
eXtreme Gradient Boosting (XGBoost), random forest (RF), and deep learning neural network (DNN), were 
trained to build prediction models. A 5-fold cross-validation was applied to correct errors. Several evaluation 
indexes, including the area under the receiver operating characteristic (ROC) curve (AUC), accuracy (Acc), 
sensitivity (Sens), specificity (Spec), and net reclassification improvement (NRI), were used to compare the 
predictive performance. To improve the interpretability of the model and identify risk factors individually, 
SHapley Additive exPlanation (SHAP) was introduced.
Results: In this study, 306 patients (3.9%) experienced hemorrhea, 107 patients (1.3%) experienced cardiac 
death, and 218 patients (2.7%) developed in-stent restenosis. In the training set and validation set, except 
for previous PCI and statins, there were no significant differences. XGBoost was observed to be the best 
predictor of every event, namely hemorrhea [AUC: 0.921, 95% confidence interval (CI): 0.864–0.978, Acc: 
0.845, Sens: 0.851, Spec: 0.837 and NRI: 0.140], cardiac death (AUC: 0.939, 95% CI: 0.903–0.975, Acc: 
0.914, Sens: 0.950, Spec: 0.800 and NRI: 0.148), and in-stent restenosis (AUC: 0.915; 95% CI: 0.863–0.967, 
Acc: 0.834, Sens: 0.778, Spec: 0.902 and NRI: 0.077). SHAP showed that the number of stents had the 
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Introduction

Worldwide, it has been discovered that the cardiovascular 
disease (CVD) leads to the death of middle-aged and elderly 
people, and its incidence is steadily rising (1). A report (2) 
indicated that CVD ranks first among causes of disease 
death throughout urban and rural residents in China. Thus, 
CVD is responsible for 2 out of every 5 deaths. Acute 
myocardial infarction (AMI), a type of CVD, stands out as 

a frequently occurring condition characterized by sudden 
onset, an increased death and disability rate, and a high 
recurrence rate (3). Percutaneous coronary intervention 
(PCI) is one of the most important and effective diagnostic 
and treatment techniques for AMI. Also, complications 
after PCI have attracted wide interest, particularly the long-
term prognosis after PCI (4). Although PCI can resolve 
coronary artery stenosis, it cannot affect atherosclerosis. 
Cardiovascular adverse events will still occur, and coronary 
artery stenosis will remain a possibility (5). Increasing 
incidences of major cerebrovascular and cardiovascular 
events can be discovered with prolongation of time after 
PCI (6). Further, patients who undergo PCI are at a higher 
risk of experiencing a cardiovascular adverse event such as 
rebleeding or reinfarction, which are unpredictable clinical 
difficulties (7). Therefore, it is very urgent to pay attention 
to the prediction of prognosis after PCI. Existing works 
have suggested the potential of machine learning to predict 
the major adverse events of CVD after PCI. Nonetheless, 
postoperative hemorrhea, cardiac death, and in-stent 
restenosis have not been appropriately predicted in CVD 
patients (8-11). 

Traditional prediction models paid little attention on 
patients’ medication information while paying too much 
attention on the past history, laboratory data, ignoring the 
effects of medication on prognosis. In addition, traditional 
models developed on the basis of large-scale data may not 
be able to provide individualized risk assessment for specific 
patients.

As an important branch of artificial intelligence, a 
high-dimensional and complex mathematical model has 
been built by machine learning to perform fast and good 
classifications and regressions on clinical and imaging 
data. Compared to traditional models, machine learning 
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can reduce overfitting through regularization techniques, 
cross-validation and ensemble learning, making the model 
more accurate in predicting large amounts of complex 
unknown data. Machine learning has shown great potential 
in healthcare for disease diagnosis, risk prediction, and 
identification (12-14). Motwani et al. studied 10,030 patients 
with suspected coronary artery disease (CAD) over a period 
of 5 years, all of whom underwent coronary computed 
tomography angiography (CCTA). The authors evaluated 
25 clinical and 44 CCTA features, and both categories were 
positive for CAD. Through machine learning, the authors 
predicted the overall mortality rate with a higher area under 
the curve (AUC) (15). As of now, machine learning has 
gradually been applied to the prediction of adverse events 
after PCI. Previous studies researches paid little attention 
on patients’ medication information while paying too much 
attention on the past history, laboratory data, ignoring the 
effects of medication on prognosis. In addition, few research 
focused on individualized risk factor identification.

The purpose of this study was to build a prediction 
model with added information such as drug therapy through 
machine learning to accurately predict the prognosis 
of patients after PCI, control the risk of postoperative 
hemorrhea and major adverse cardiovascular events 
(MACEs), as well as provide more evidence for clinical 
treatment. The modeling study includes the development 
and validation process. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
jtd.amegroups.com/article/view/10.21037/jtd-24-1362/rc).

Methods

Study population and criterion

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by the Ethics Committee of The Affiliated Wuxi Second 
People’s Hospital (No. 2022-Y-174) and informed consent 
was taken from all the patients and their families. Jiangsu 
Provincial Hospital was informed and agreed with this study.

In this study, we extracted medical records, treatment 
plans, and clinical outcome data from Jiangsu Provincial 
Hospital and The Affiliated Wuxi Second People’s Hospital. 
Finally, we obtained a total of 7,931 cases. All patients who 
met the criteria for PCI between January 2007 and January 
2022 were included in this study. The AMI patients with 
PCI met all the following criteria: (I) AMI must meet the 
diagnostic criteria set out in “Guidelines for the Diagnosis 

and Treatment of Acute ST-High Myocardial Infarction 
(2015 Edition)”(16); (II) without malignant tumors; (III) 
PCI was performed in an emergency situation; (IV) a good 
level of stability was maintained by the hemodynamics; (V) 
the patients were in good condition to detect the radial 
artery pulse; and (VI) informed consent forms were signed 
by the patients and their families. AMI patients with therapy 
contraindications were excluded from the study. 

Study outcomes

Primary outcomes included hemorrhea, cardiac death, 
and in-stent restenosis. Hemorrhea was defined as major 
or minor bleeding with Bleeding Academic Research 
Consortium (BARC) (17) score ≥2. Cardiac death was 
defined as an unexpected sudden death due to a heart 
condition occurring within 1 hour of symptom onset. In-
stent restenosis was defined as an event with re-narrowing 
of ≥50% of the vessel diameter.

Training and validation data

Of note, we randomly divided the entire data set into a 
validation set (30%, n=2,380) and a training set (70%, 
n=5,551). Classifiers can be biased toward the majority class 
if some classes have significantly fewer samples than others. 
To oversample the minority class, the Synthetic Minority 
Oversampling Technique (SMOTE) was applied in this 
study to balance the training set. Models were adjusted 
by 5-fold cross-validation. Later on, the best model with 
maximum mean AUC was applied to the validation set 
(Figure 1).

Feature selection

Vital signs, clinical manifestations, laboratory index, drug 
regimen, postoperative adverse events were recorded. After 
a hospital discharge, patient data were collected by trained 
researchers.

First, we selected 56 features and manually labeled 
each feature as a number or category. The features were 
as follows: sex, age (years), body mass index (BMI; kg/m2), 
weight (kg), anamnesis (history of hypertension, diabetes, 
coronary heart disease, myocardial infarction, cerebral 
infarction, smoking, and others), systolic and diastolic blood 
pressure (mmHg), heart rate (bpm), lab results [hemoglobin 
(g/L), platelet (PLT; ×109/L), and others], position of 
stents, application of drug-eluting stents (DESs) and drug-

https://jtd.amegroups.com/article/view/10.21037/jtd-24-1362/rc
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Figure 1 Machine learning model construction and validation. AUC, area under the curve; SMOTE, synthetic minority oversampling 
technique.

Figure 2 Missing values. ALB, albumin; WBC, white blood cell; DCB, drug-coated balloon; LDL-C, low-density lipoprotein cholesterol; 
TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; PT, prothrombin time; INR, international 
normalized ratio; APTT, activated partial thromboplastin time; FBG, fasting blood glucose; CCr, creatinine clearance rate; BMI, body mass 
index; hs-cTNT, high-sensitivity cardiac troponin T; HbA1c, hemoglobin A1c; CRP, C-reactive protein; cTNI, cardiac troponin I.
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cardiac troponin I (cTnI). Among features with less than 
80% missing values, continuous features such as albumin 
(ALB) and white blood cells (WBCs), were filled with the 
mean, whereas discrete features (such as drug eluting stents) 
were filled with the mode. 

In order to understand the internal relationships between 
the features, we calculated and drew a correlation matrix 
of balanced data. Except that some features, for example 
smoking history significantly correlated with sex, had one-
to-one correlation (Figure 3), we did not find that multiple 
features had complex correlations with each other. The 
selection of features was not affected. Ultimately, we 
included 53 features for the following study.

For each feature, we assessed the positive or negative 
effect on certain outcomes based on literature searches and 
clinical experience. For example, 24-hour blood pressure was 
strongly associated with all-cause mortality (18), whereas 
antiplatelet drugs had different effects on hemorrhea and 
in-stent restenosis. This helped feature preprocessing.

Statistical analysis

In this study, the versions of the tools and libraries we used 
were Python 3.10 (https://www.python.org/) and scikit-
learn 1.3 (https://scikit-learn.org/) for the machine learning. 
In a respective manner, frequencies and percentages were 
used to describe discrete features (e.g., sex), whereas mean 
and standard deviation (SD) were employed to report 
continuous features (e.g., diastolic and systolic blood 
pressures). A P value <0.05 was set as the statistically 
significant threshold.

This study primarily applied various methods, including 
logistic regression (LR) and machine learning models, 
including eXtreme Gradient Boosting (XGBoost), random 
forest (RF), and deep learning neural network (DNN). Due 
to the large number of features involved, it was difficult 
to determine whether the relationship between features 
and outcomes was linear or non-linear. Therefore, LR was 
chosen in this study to explore the linear relationship, while 
other models could explore the nonlinear relationship. 
These were all supervised learning models that fitted the 
features in the training set based on labeled data. Through 
the training process, the model was able to capture the 
importance of each feature in prognosis prediction, 
generating a distribution of feature importance. On this 
basis, the model predicted the probabilities of different 
prognostic outcomes, providing an evaluation of the 
likelihood of each outcome, thus supporting subsequent 

decision-making analysis. 

Model comparison

Herein, we drew receiver operating characteristic (ROC) 
curves of all the models before measuring their performance 
with sensitivity (Sens), specificity (Spec), accuracy (Acc), 
AUC, and net reclassification improvement (NRI). For 
imbalanced data sets, the binary classifiers’ performance 
was often evaluated using their AUCs. The model with 
higher Acc, Sens, Spec, AUC, and NRI has better predictive 
performance. Conversely, the closer the Acc, Sens, Spec, and 
NRI were to 0 (NRI was compared to LR) and the closer 
AUC was to 0.5, the worse the predictive performance was.

Model explanation

It was not convenient to directly interpret the model results, 
so the SHapley Additive exPlanation (SHAP) method was 
introduced to improve the interpretability of the results. 
Using the SHAP method, it was possible to understand 
the extent to which different features contribute to the 
prediction. In addition, the ranking of promoting and 
inhibiting features were visible when the prediction results 
were output for each unique patient.

Results

This study included a total of 7,931 independent cases, 
wherein the baseline characteristics were analyzed and the 
results are presented in Table 1. The patients had mean age 
of 65.8±11.3 years. Among all participants, men accounted 
for the majority (73.7%). With regards to the statistical 
analysis, 9 cardiovascular risk factors were selected. Most of 
the patients had hypertension (68.4%) or diabetes (70.5%), 
whereas nearly half of the patients were overweight (BMI 
≥24 kg/m2, 46.1%), and more than half of the patients had 
a history of smoking (54.4%). In addition, only a small 
proportion had hyperlipidemia (39.4%). The baseline 
characteristics of the training and validation sets are shown 
in Table S1.

In this study, we selected three machine learning models 
(RF, DNN, XGBoost) and LR. In the final comparison, 
overall NRIs of machine learning models were positive, 
whereas the prediction effect was improved compared with 
LR. Such results are in line with the advantages of machine 
learning in dealing with nonlinear, complex, and large data, 
among which XGBoost performed best in this study (Table 2).

https://www.python.org/
https://scikit-learn.org/
https://cdn.amegroups.cn/static/public/JTD-24-1362-Supplementary.pdf
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Figure 3 Correlation matrix of balanced data. BMI, body mass index; PCI, percutaneous coronary intervention; CABG, coronary artery 
bypass grafting; Hgb, hemoglobin; PLT, platelet; TC, total cholesterol; TG, triglyceride; LDL-C, low density lipoprotein cholesterol; 
HDL-C, high density lipoprotein cholesterol; Cr, creatinine; ALB, albumin; PT, prothrombin time; APTT, activated partial thromboplastin 
time; INR, international normalized ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CCr, endogenous creatinine 
clearance rate; FBG, fasting blood glucose; WBC, white blood cell; DCB, drug-coated balloon; ACEI, angiotensin-converting enzyme 
inhibitors; ARB, angiotensin receptor blocker; PPI, proton pump inhibitor.
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Hemorrhea

In the whole population, a total of 931 (3.9%) patients 
experienced bleeding. Among all of those with bleeding, 
hemorrhea with BARC score ≥2 accounted for 32.9% 
(306–931sts). This indicates that about 1/3 of patients 

with bleeding after PCI needed further treatment. The 
prediction effect of XGBoost on this event was impressive 
[AUC: 0.921, 95% confidence interval (CI): 0.864–0.978, 
Acc: 0.845, Sens: 0.851, Spec: 0.837, and NRI: 0.140] 
(Figure 4A), which was obviously better than other machine 
learning models and LR. The importance order was 
accordingly number of stents, position of stents, DCB, 
aspirin and clopidogrel, aspirin and ticagrelor, PLT, and 
other laboratory indexes (Figure 4B). The prediction of a 
unique individual suggested that the patient had a higher 
probability (0.94) of hemorrhea. Application of DCB, therapy 
of aspirin and ticagrelor, lack of proton pump inhibitor (PPI), 
β-blockers and angiotensin-converting enzyme inhibitor 
or angiotensin receptor blocker (ACEI or ARB), as well 
as weight (70 kg) had a promoting effect on hemorrhea, 
whereas the protective factor was the therapy of aspirin and 
clopidogrel (Figure 4C).

Cardiac death

A total of 107 (1.3%) patients died of heart diseases. 
Machine learning performed well in predicting cardiac 
death, with XGBoost still having the best predictive effect 
(AUC: 0.939, 95% CI: 0.903–0.975, Acc: 0.914, Sens: 0.950, 
Spec: 0.800 and NRI: 0.148) (Figure 5A). The features that 
affected the outcome in order of importance were age, 
number of stents, weight, DCB, urea and others (Figure 5B). 

Table 2 Comparison of different models by outcome

Outcome Model AUC (95% CI) Accuracy Sensitivity Specificity NRI

Hemorrhea LR 0.781 (0.733–0.829) 0.715 0.671 0.759 0

RF 0.852 (0.817–0.887) 0.752 0.750 0.754 0.710

DNN 0.882 (0.810–0.954) 0.803 0.773 0.833 0.101

XGBoost 0.921 (0.864–0.978) 0.845 0.851 0.837 0.140

Cardiac death LR 0.791 (0.722–0.860) 0.806 0.878 0.538 0

RF 0.884 (0.874–0.894) 0.783 0.808 0.684 0.093

DNN 0.906 (0.855–0.957) 0.913 0.945 0.789 0.115

XGBoost 0.939 (0.903–0.975) 0.914 0.950 0.800 0.148

In-stent restenosis LR 0.838 (0.792–0.884) 0.750 0.699 0.814 0

RF 0.863 (0.804–0.922) 0.779 0.646 0.939 0.025

DNN 0.887 (0.829–0.945) 0.801 0.778 0.829 0.049

XGBoost 0.915 (0.863–0.967) 0.834 0.778 0.902 0.077

AUC, area under the curve; CI, confidence interval; NRI, net reclassification index; LR, logistic regression; RF, random forest, DNN, deep 
learning neural network; XGBoost, eXtreme Gradient Boost.

Table 1 Baseline characteristics of the participants

Characteristics Data

Age, years 65.8±11.3

Sex

Male 5,844 (73.7)

Female 2,087 (26.3)

Cardiovascular risk factors

BMI ≥24 kg/m2 3,656 (46.1)

Diabetes 5,595 (70.5)

Hyperlipidemia 3,122 (39.4)

Hypertension 5,422 (68.4)

Prior reperfusion surgery 1,311 (16.5)

Prior myocardial infarction 418 (5.3)

Prior cerebral infarction or hemorrhage 991 (12.5)

Family history of CVD 418 (5.3)

Smoking history 4,313 (54.4)

Data are presented as mean ± SD or n (%). BMI, body mass 
index; CVD, cardiovascular disease; SD, standard deviation.
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Figure 4 Hemorrhea. (A) ROC curve of hemorrhea; (B) feature importance of hemorrhea; (C) model verification of hemorrhea. ROC, 
receiver operating characteristic; LR, logistic regression; AUC, area under the curve; DCB, drug-coated balloon; PLT, platelet; AST, 
aspartate aminotransferase; ALB, albumin; Cr, creatinine; ALT, alanine aminotransferase; CCr, creatinine clearance rate; APTT, activated 
partial thromboplastin time; TG, triglyceride; PPI, proton pump inhibitor; FBG, fasting blood glucose; BMI, body mass index; Hgb, 
hemoglobin; PT, prothrombin time; ACEI or ARB, angiotensin-converting enzyme inhibitor or angiotensin receptor blocker; XGBoost, 
eXtreme Gradient Boost.

During the model validation, a particular patient was shown 
to have had an extremely high chance (0.95) of experiencing 
cardiac death. For this patient, advanced age (80 years), urea 
(16.48 mmol/L), ALB (28 g/L), lack of PPI, creatinine (Cr; 
200.3 μmol/L), history of smoking, and weight (70 kg) were 
the risk features, whereas the displayed protective feature 
was the therapy of ACEI or ARB (Figure 5C).

In-stent restenosis

Of all the patients undergoing PCI, 7,775 (98.0%) were 
implanted with stents and 218 (2.7%) had in-stent restenosis. 
The XGBoost far outperformed other models (AUC: 0.915, 
95% CI: 0.863–0.967, Acc: 0.834, Sens: 0.778, Spec: 0.902, 
and NRI: 0.077) in terms of in-stent restenosis prediction 
(Figure 6A). The main predictors of this event were DBC, 
number of stents, position of stents, β-blockers, aspirin 
and ticagrelor, DES and others (Figure 6B). From a certain 
prediction outcome, the promoting features that affected 
in-stent restenosis were application of DCB, number of  
stents (3), history of smoking, alanine aminotransferase 

(ALT; 268 U/L), therapy of aspirin and ticagrelor, and 
diastolic blood pressure (56 mmHg). This patient exhibited 
a great probability (0.84) of in-stent restenosis (Figure 6C).

Discussion

The prognosis prediction is difficult yet of significant 
importance. Traditional LR is not always efficient (19-24). We 
have built a model to predict hemorrhea and MACE (cardiac 
death and in-stent restenosis) after PCI. Satisfactorily, the 
model showed good performance. 

The XGBoost is a recently developed advanced machine 
learning algorithm, which integrates a series of decision 
trees into a more powerful classifier (25). Particularly, 
XGBoost integrates a sparse sensing algorithm for 
accurately handling missing values. All our case data came 
from the structured data of the medical system including the 
past history, vital signs, laboratory data, operation-related 
data, and postoperative treatment. The prediction can be 
carried out right after the postoperative treatment decision 
is completed, which provides evidence for subsequent 
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Figure 5 Cardiac death. (A) ROC curve of cardiac death; (B) feature importance of cardiac death; (C) model verification of cardiac death. 
ROC, receiver operating characteristic; LR, logistic regression; AUC, area under the curve; DCB, drug-coated balloon; INR, international 
normalized ratio; PT, prothrombin time; PPI, proton pump inhibitor; ALB, albumin; BMI, body mass index; ACEI or ARB, angiotensin-
converting enzyme inhibitor or angiotensin receptor blocker; Cr, creatinine; CCr, creatinine clearance rate; AST, aspartate aminotransferase; 
WBC, white blood cell; Hgb, hemoglobin; XGBoost, eXtreme Gradient Boost.
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intervention.
When dealing with medical problems using the SHAP 

method, it is important to understand that the explanations 
are not causal. For example, a large contribution of a 
feature does not mean that this feature is a risk factor of the 
outcome. This relationship can only indicate to what extent 
the performance of the model can be improved due to the 
contribution of the features.

Using the current features, we constructed an online 
calculator (https://prediction-model-for-mace.streamlit.
app/). The calculator enables patients to make predictions 
of their own prognosis. Also, doctors are able to understand 
the weight of different features in the prediction result, 
then further evaluate and adjust the treatment strategy in 
combination with the clinical situation. There is no clear 
limit to how many features a well-performing model should 
involve, or the minimum number of features a model should 
contain for the sake of simplicity of the model and calculator. 
Therefore, in order to better predict multiple adverse events, 
we retained the features as much as possible to reduce the 
information loss. But even if we had bedside calculators, due 

to the large number of features our models contain, this may 
limit their practical application in clinical settings where 
simpler models may be preferred for ease of use.

The number and position of stents and DCB reflected 
the location and severity of lesions, and contributed the 
most to prediction. DAPT was also of high importance. 
Jeger et al. (26) found that the rate of major bleeding 
[Kaplan-Meier estimate 2% versus 4%, hazard ratio (HR) 
0.43, 95% CI: 0.17–1.13; P=0.088] was lower in DCB 
versus DES. However, the different combined effects of 
number of stents, position of stents (or culprit vessels), and 
DCB need to be further evaluated. The choice of DAPT in 
patients also requires caution, as ticagrelor is associated with 
a higher risk of bleeding (27) and fatal bleeding unrelated to 
coronary artery bypass grafting (28).

Cardiac death is a serious adverse event, and the feature 
importance suggested that the most significant predictor 
was age. Older patients have an increased burden of 
cardiovascular risk factors and ischemic disease, which 
requires more individualized treatment or care decisions (29). 
The following important features were the reflection of 

https://prediction-model-for-mace.streamlit.app/
https://prediction-model-for-mace.streamlit.app/
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Figure 6 In-stent restenosis. (A) ROC curve of in-stent restenosis; (B) feature importance of in-stent restenosis; (C) model verification 
of in-stent restenosis. ROC, receiver operating characteristic; LR, logistic regression; AUC, area under the curve; DCB, drug-coated 
balloon; PLT, platelet; Hgb, hemoglobin; WBC, white blood cell; CCr, creatinine clearance rate; INR, international normalized ratio; PT, 
prothrombin time; Cr, creatinine; APTT, activated partial thromboplastin time; XGBoost, eXtreme Gradient Boost.

hepatic, renal, and coagulation function. Body weight was 
not as direct a reflection of a patient’s obesity as BMI, but 
it may also affect the medicine dosage. The link between 
weight and cardiac death was not direct. Correlation 
matrix (Figure 3) showed the strongest correlation between 
weight and Cr clearance (Ccr), thus suggesting that body 
weight may be related to renal function. It has been shown 
that weight loss significantly improved renal function in 
overweight individuals (30).

Despite many improvements in stent design and polymer 
coatings over the past 2 decades, in-stent restenosis remains 
a common clinical problem. In the prediction of in-stent 
restenosis, the model suggested that DCB, the number and 
position of stents, DES, and DAPT therapy were important 
influencing factors. The selection of aspirin and ticagrelor 
had greater influence on in-stent restenosis than that of 
aspirin and clopidogrel. Ullrich found that DES, small 
target vessels, complex lesions, length of the lesion stenosis, 
and other implantation-related factors were predictors (31). 
The use of DCB is often associated with small CAD and 
stent dilation after implantation. The number and position 
of stents may also be related to the length of the lesion 

stenosis and the severity of overall coronary disease. This 
study lacks more direct data, and this information needs to 
be supplemented in the future.

The two centers we selected were two affiliated hospitals 
of Nanjing Medical University. The populations were all 
from Jiangsu Province, with similar diets and lifestyles, 
the same testing methods, diagnostic criteria, diagnostic, 
inclusion and exclusion criteria, so we merged the data of 
the two centers, and every data was independent and non-
repetitive. We randomly allocated the merged data to the 
training set and validation set in proportion. Although the 
performance and generalization ability were weakened, the 
sample size during training and validation was guaranteed. 
Dong et al. also trained the data with a larger sample size 
by merging the data of the entire cohort in their study (32). 
It is worth noting that they applied the predictive model to 
clinical early warning rather than focusing on provisional 
prediction, strengthening the collaboration between nursing 
staffs and clinicians. This becomes another way in which 
machine learning may be applied in clinical settings.

With the development of computer technology, a single 
model can not always take into account different data types 
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and usage scenarios, ensemble learning shows a new way 
to solve problems. Ensemble learning is used in machine 
learning and data science, especially for tasks such as 
classification and regression. It can use multiple models 
and take advantage of the diversity and complementarity 
of different models to make more robust and accurate 
predictions. Several studies have focused on the application 
of ensemble learning to medical prediction (33-35). For this 
study, the effect of ensemble learning was not evaluated, 
which will be further validated in the future.

Limitations

There are various studies that have clearly predicted the 
prognosis in different time periods within and outside the 
hospital, and obtained better prediction results (19,36). Due 
to the poor compliance of patients and the memory decline 
of elderly patients, the occurrence time of adverse events 
during the follow-up period was not recorded completely 
in this study. We could not draw time-to-event curves to 
effectively predict adverse events in different time periods. 
In the future, we need to strengthen in-hospital health 
education improve patients’ compliance. In addition, for 
time data, the phased analysis is also important.

Our approach to managing missing data, including 
the deletion of features with high levels of missingness 
and imputation for others, might have introduced biases 
or inaccuracies in the models. The extent to which these 
methods influenced model performance and predictions 
remains an area for further investigation.

The clinical data so far still contain a number of other 
questions: (I) the selection of 53 clinical features for model 
training was based on availability and presumed relevance to 
the outcomes of interest. However, this approach may have 
overlooked potentially influential predictors not included 
in our dataset. (II) Past history did not include current 
status assessment of patients, for example current smoking 
status was not assessed (such as frequency and quantity of 
cigarettes) or smoking cessation status (such as duration 
and method of smoking cessation). (III) Vital signs did not 
accurately contain dynamic information, only the specific 
value was identified at the time of admission. Also lacking 
in dynamic information was laboratory data. (IV) In the 
perioperative period, changes in vital signs and laboratory 
data were not recorded. Although the type and number 
of stents and balloons were included, lack of specific 
information such as the size of stents and balloons could 
not be ignored. (V) Treatment data did not involve other 

diseases. (VI) Human factors were not considered, such as 
the patient evaluation of the education experience, cognitive 
level, and treatment compliance, and an evaluation of the 
doctor’s professional title, years of practice, and experience. 
(VII) The predictive models were developed using data from 
two different centers, which may limit their applicability 
to different healthcare settings or populations with varied 
demographic characteristics. Future work should focus 
on validating and potentially adjusting these models with 
data from a broader range of settings. (VIII) The span of 
our dataset across fifteen years incorporates a period of 
significant evolution in medical practices and technologies 
related to PCI and AMI treatment. As such, the predictive 
performance of our models may vary when applied to more 
recent patient cohorts or future cases, necessitating periodic 
reevaluation and updating of the models to maintain their 
accuracy and relevance.

Conclusions

In this study, XGBoost in machine learning performed best 
in predicting post-PCI hemorrhea and MACE (including 
cardiac death and in-stent restenosis). Through the SHAP 
method, we increased the interpretability of the model so 
that clinicians can better understand the results. Clinicians 
can personalize patient management and adjust treatment 
decisions through bedside calculations. In future studies, 
we will conduct multi-center prospective cohort studies 
in conjunction with other centers to verify and adjust our 
model.
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