Skip to main content
. 2024 Sep 26;16(9):6216–6228. doi: 10.21037/jtd-24-1362

Table 2. Comparison of different models by outcome.

Outcome Model AUC (95% CI) Accuracy Sensitivity Specificity NRI
Hemorrhea LR 0.781 (0.733–0.829) 0.715 0.671 0.759 0
RF 0.852 (0.817–0.887) 0.752 0.750 0.754 0.710
DNN 0.882 (0.810–0.954) 0.803 0.773 0.833 0.101
XGBoost 0.921 (0.864–0.978) 0.845 0.851 0.837 0.140
Cardiac death LR 0.791 (0.722–0.860) 0.806 0.878 0.538 0
RF 0.884 (0.874–0.894) 0.783 0.808 0.684 0.093
DNN 0.906 (0.855–0.957) 0.913 0.945 0.789 0.115
XGBoost 0.939 (0.903–0.975) 0.914 0.950 0.800 0.148
In-stent restenosis LR 0.838 (0.792–0.884) 0.750 0.699 0.814 0
RF 0.863 (0.804–0.922) 0.779 0.646 0.939 0.025
DNN 0.887 (0.829–0.945) 0.801 0.778 0.829 0.049
XGBoost 0.915 (0.863–0.967) 0.834 0.778 0.902 0.077

AUC, area under the curve; CI, confidence interval; NRI, net reclassification index; LR, logistic regression; RF, random forest, DNN, deep learning neural network; XGBoost, eXtreme Gradient Boost.