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ABSTRACT: Energy and its dissipation are fundamental to all
living systems, including cells. Insufficient abundance of energy
carriers�as caused by the additional burden of artificial genetic
circuits�shifts a cell’s priority to survival, also impairing the
functionality of the genetic circuit. Moreover, recent works have
shown the importance of energy expenditure in information
transmission. Despite living organisms being non-equilibrium
systems, non-equilibrium models capable of accounting for energy
dissipation and non-equilibrium response curves are not yet
employed in genetic design automation (GDA) software. To this
end, we introduce Energy Aware Technology Mapping, the
automated design of genetic logic circuits with respect to energy
efficiency and functionality. The basis for this is an energy aware
non-equilibrium steady state model of gene expression, capturing characteristics like energy dissipation�which we link to the
entropy production rate�and transcriptional bursting, relevant to eukaryotes as well as prokaryotes. Our evaluation shows that a
genetic logic circuit’s functional performance and energy efficiency are disjoint optimization goals. For our benchmark, energy
efficiency improves by 37.2% on average when comparing to functionally optimized variants. We discover a linear increase in energy
expenditure and overall protein expression with the circuit size, where Energy Aware Technology Mapping allows for designing
genetic logic circuits with the energetic costs of circuits that are one to two gates smaller. Structural variants improve this further,
while results show the Pareto dominance among structures of a single Boolean function. By incorporating energy demand into the
design, Energy Aware Technology Mapping enables energy efficiency by design. This extends current GDA tools and complements
approaches coping with burden in vivo.
KEYWORDS: genetic design automation, energy, non-equilibrium, thermodynamics, synthetic biology, gene-expression,
technology mapping, metabolic burden, computer aided design, entropy production rate

1. INTRODUCTION
Life is non-equilibrium,1 and so energy and its dissipation is
essential for life and the function of biological organisms and
systems.2,3 While the absence of energy is incompatible with
life,1,2 a decrease in its availability has detrimental effects on a
cell’s metabolism, and consequently, on its growth, fitness, and
gene expression.4−10 Such a decrease can be caused by
insufficient nutrition4 of cells, but also by the burden imposed
by the insertion of engineered genetic circuits8,10 and the
expression of heterologous proteins.5 Metabolic burden, also
observed in Saccharomyces cerevisiae and Escherichia coli, refers
to the diversion of resources from the host to synthetic
constructs, affecting the availability of energy, nutrients,
ribosomes, and RNA polymerase, as well as reducing cellular
fitness.5,6 This allocation away from maintenance and growth
compromises the host organism’s physiological functions. As
the functionality of synthetic constructs such as engineered
genetic circuits depends on sufficient dynamics of proteins and

other molecules,11 reliable and well-functioning host organisms
are essential.7,10 Consequently, a trade-off between function
and energy efficiency emerges, affecting reaction levels even at
the promoter scale.12−14

The described importance of energy did not hinder the wide
application of equilibrium gene expression models.15−18

Developed in the context of bacterial transcription, these
models assume that regulatory mechanisms, such as tran-
scription factor binding to DNA, operate at thermodynamic
equilibrium.15−17,19 While this is reasonable from a modeling
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perspective for prokaryotes, non-equilibrium processes and the
inherent energy dissipation are essential for gene regula-
tion.1,3,19−23 In particular, the sharpness and sensitivity of non-
equilibrium gene expression models surpasses the so-called
Hopfield barriers,3,12,21 which set an upper limit in the
equilibrium case and were first described by J. Hopfield in the
context of kinetic proofreading.24 This indicates, that energy
expenditure can be key to the sharpness and sensitivity of the
eukaryotic gene response.12,25 Besides, transcriptional bursting
is characteristic of eukaryotic gene expression,12,26−29 but also
occurs in prokaryotes.23,30 These bursts are characterized by
durations of transcriptional activity significantly longer than
the binding of single transcription factors, which lasts a few
seconds.21,2729 Mechanisms for this may include multistep
activation, where transcription factor abundance modulates
transcriptional activity, or cooperative exchange, where the
burst period is determined by transcription factors rapidly
swapping positions due to cooperative binding.26,27,29

Despite these challenges, the targeted engineering of
biological systems advances rapidly, with standards and tools
aiding in or automating their design being created,11,32−38

while the awareness with respect to resources such as energy
increases.8−10,39−41 One branch of tools is Genetic Design
Automation (GDA) software.11,18,31,37,42,43 These tools solve
the task of creating genetic logic circuits realizing Boolean
functions with modules characterized in a gate li-
brary,11,18,31,42,43 the so-called technology mapping. The term
originates from the synthesis of electronic circuits, with Figure
1 presenting an exemplary pipeline for GDA. Compared to
electronics, technology mapping in GDA needs to solve
additional, more complex tasks for typically smaller circuits.
Particularly, it may not draw gates from the library multiple
times, since it needs to consider crosstalk among genetic
components. GDA tools optimize the characteristics of genetic
logic circuits by evaluating them with the use of models on the
basis of in silico experiments. The primary objective is
functionality, which expresses the circuit’s ability to implement
the Boolean function in terms of a distance related to the
minimum fold change between the two Boolean states.11,31 To
be meaningful, the employed models have to capture the
characteristics inherent to the cells and constructs under
consideration, such as the input-output characteristics of gene

expression cascades, non-equilibrium attributes like energy
dissipation, and transcriptional bursting.

Otero-Muras and Banga44 present a tool for automating the
engineering of synthetic metabolic pathways on the basis of
Pareto optimal designs. These metabolic pathways are defined
by the user, with genetic logic circuits being a possible branch.
iBioSim37,45 is a tool for the automatized construction of
genetic circuits, their simulation and model representation.
The absence of an automatized flow from Boolean
specifications to a DNA sequence highlights that this tool
does not primarily target the automated design of genetic logic
circuits. Cello11,42,43 implements a complete user interface for
engineering genetic logic circuits. The user can specify the
desired Boolean function using a traditional hardware design
language. The given function is then transformed to a
functionally equivalent circuit which only uses elements of
the provided libraries for S. cerevisiae and E. coli. The gate
assignment is optimized to maximize the smallest fold change
between circuit output values corresponding to the distinct
Boolean states ON and OFF, the Cello-score. ARCTIC18,31

extends the focus on the robustness of the resulting genetic
logic circuits. By introducing particle based simulation, the E-
score, and structural variants, this tool accounts for the
stochastic nature of genetic gates and extends GDA’s design
space by circuit topologies. The 2023 version of this tool
introduced context-awareness and accounts for effects such as
crosstalk between transcription factors and noncognate
promoters, or titration of transcription factors to noncognate
binding sites.

While the awareness of energy, in particular, and resources,
in general, increases,8−10,39−41 it is not yet part of GDA. The
same holds for non-equilibrium models of gene expression,
accounting for energy expenditure and sharpness beyond the
Hopfield barriers.12 To this end, we introduce Energy Aware
Technology Mapping, the design of genetic logic circuits with
respect to functionality and energy efficiency (see Figure 1).
Our method is based on a probabilistic non-equilibrium steady
state (NESS) model of gene expression, accounting for non-
equilibrium characteristics like energy dissipation2,3 and
promoter architectures varying in the number of binding
sites, activation steps, and cognate transcription factors. To
characterize gene expression, we derive the functional and

Figure 1. Energy Aware Technology Mapping. We here present the technology mapping pipeline at the example of the proposed Energy Aware
Technology Mapping. With the specification of the Boolean function to realize as input, the technology mapping first enumerates structural
variants.31 For each circuit structure obtained, we perform in silico an energy aware gate assignment. This takes into account the genetic logic
circuit’s performance with respect to both, energy efficiency and functionality. After successful completion of the process, the user receives the
automatically designed genetic logic circuit.
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energetic response curve as a function of transcription factor
abundance. In particular, we relate the entropy production rate
of our model to its thermodynamic energy dissipation rate.

Energy Aware Technology Mapping uses this model for the
in silico simulation of genetic logic circuits. This allows us to
explore the trade-off between functionality and energy
efficiency for genetic logic circuits, where we introduce energy
efficiency as the reciprocal of a circuit’s energy demand. To
this end, we first consider the Boolean circuits presented by
Nielsen et al.11 and continue with the evaluation of the impact
of structural variants and the associated Pareto fronts. The
Pareto fronts give rise to the performance of the structure
independent of the optimization objective considered. By
discussing means for multi-objective optimization, we allow to
trade-off the objectives function and energy efficiency in a joint
optimization.

The results and methods we present here are implemented
in the technology mapping framework ARCTIC. ARCTIC is
available at https://www.rs.tu-darmstadt.de/ARCTIC.

2. RESULTS AND DISCUSSION
2.1. Energy Aware Gene Expression Model. Gene

expression is an inherently non-equilibrium process,1,46

depending on the presence of energy carriers and building
blocks like ATP and charged tRNA. While gene expression is
subject to regulation at various levels,3,47,48 we focus on
transcriptional regulation through the binding of activating or
inhibiting transcription factors. In this section, we present the
response characteristics of a single protein-coding gene whose

promoter has one or more binding sites for cognate
transcription factors. To this end, we describe the dynamics
of the promoter and of the abundances of its associated mRNA
and protein via a stochastic chemical reaction network (CRN).
In contrast to combinatorial (equilibrium) promoter models,
the use of a kinetic model enables the description of energy-
dissipating (non-equilibrium) promoters. In particular, we
obtain the mean energy dissipation rate and the non-
equilibrium steady state (NESS) mean and variance of protein
abundance as a function of the transcription factor
concentration. These non-equilibrium response curves are
used to characterize the genes realizing the gates for the
technology mapping and possess attributes like increased
sharpness in comparison to their equilibrium counterparts.12

We will first elucidate the kinetic model and then introduce the
thermodynamic concepts necessary to relate the kinetic model
to its energy dissipation rate.

2.1.1. Model Description as a CRN. A CRN is composed of
the chemical species X1,...,XN, and elementary reactions

,..., M1 with stoichiometric balance equations
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1

( )m
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where the backward reaction microscopically reverses the
forward reaction. Here, ui and wi are the substrate and product
coefficients respectively, which define the stoichiometric
change vector νm

X = [wi
(m) − ui

(m)]i for species X. Assuming
the stochastic law of mass action,49 we assign state-dependent

Figure 2. Energy aware gene expression model. (A,B) Schematic description of the proposed model consisting of the promoter model (A) and
the reactions describing the RNA and protein dynamics (B). (A) The promoter model is instantiated with two levels of transcriptional activity and
allows for binding up to three transcription factors. The transcription factor concentration enters via the variable c, with the transcriptional active
states (zi with i = 5, 6, 7, 8) featuring transcription rate a2μ1 and the inactive states (zi with i = 1, 2, 3, 4) the basal rate a1 μ1 (a2 > a1). (B) Besides
transcription, the dynamics include translation (μ2) and the respective degradation reactions (δ1 and δ2). (C−E) Exemplary response characteristic
of the model as a function of the transcription factor abundance c. We here showcase inhibitory behavior of the transcription factor, while the
model can also capture activatory behavior. (D) Visualization of the steady state probabilities of each state. As c increases, the probability mass
shifts from state z5 to z2 and z3 before concentrating in z4. The corresponding protein distribution is shown in (E) by its mean and three quantile
intervals. (C) Presents the expected energy dissipation rate of the overall model. Comparing (C) and (E), one notices the proportionality between
energy dissipation rate and protein abundance.
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reaction rates (propensity functions) =+ +
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to each reaction m, where >+k 0m and

k 0m are the rate constants. A reaction is called microscopi-
cally reversible if >k 0m . The concept of microscopic
reversibility is important for the later thermodynamic treat-
ment. For brevity, we simply write reversible instead of
microscopically reversible in the following.

We partition the vector X of random variables into the
promoter state Z, and the RNA and protein abundances R and
P. The promoter can switch reversibly between a finite number
of states zi, and in each state RNA synthesis events occur
according to the state’s transcriptional activity ai ≥ 0. In this
work, we define the transcriptional activity ai in terms of
relative promoter units (RPU), a unitless quantity character-
izing the promoter activity in relation to a reference
promoter.11,42 For the promoter state representation, we
make use of a one-hot encoding by different species, so that at
any time Z(t) is a standard unit vector (ei) with a single one at
position i. One can extend this naturally to represent multiple
promoters in different states. RNA synthesis, protein synthesis,
and degradation are modeled as single reactions, neglecting
their multistep construction.2 Although each of the elementary
steps of these synthesis and degradation reactions is reversible,
we assume that the rate constants of the microscopically
reversed composite reactions are negligibly small, leading to
microscopic irreversibility. In Figure 2A and B, we represent an
exemplary instantiation of the gene expression model, where
the promoter (A) has three binding sites for a single cognate
transcription factor and two distinct levels of transcriptional
activity. Since our model allows for multiple distinct tran-
scription factors, their concentrations are given by the vector c.
Depending on this vector, the transition rates of the promoter
(as in Figure 2A) relate to eq 1 as = ck f k( )m ij ij, where ρ = +
for j > i and ρ = − otherwise. The functions f ij describe the
dependence of the transition rate from promoter state zi to zj
on the transcription factor concentrations with associated
stoichiometric change vector νZ

m = ej−ei.
The CRN representation of a promoter model generally is

more versatile, as it may describe not only the number of
bound transcription factors but also different DNA con-
formations in a possible multistep transcriptional activation.12

Such conformations can be, for example, open and closed loop
complexes or different chromatin states.12,20,50 Since transcrip-
tional activity in our model is independent of the binding states
of the transcription factors, this model can represent
transcriptional bursts in both the multistep activation model
and the exchange model.12,26−30 By turning the reaction rate
constants themselves into random variables, one can extend
our model to include extrinsic noise caused by external context
factors as described by refs 51−53. It should be noted that
reversible ATP-dependent reactions ATP ⇌ ADP + Pi always
produce ATP in the reverse direction. Consequently, if any
promoter state change is predominantly ATP-consuming in
one direction, but not ATP-producing in the reverse direction,
then there are at least two distinct reactions involved.

2.1.2. Kinetic Response Curve of a Single Gene. The
evolution of the distribution of the state of the gene expression
system p(X(t) = x) is described by the chemical master
equation given in Supporting Information Section S1.3. Using
the Chapman-Kolmogorov backward equation, we derive the

mean and variance of the non-equilibrium steady state RNA
and protein distributions in Supporting Information Section
S2, and derive the promoter’s steady state distribution πi(c) =
limt→∞p(Z(t) = ei) by applying the methods in Section 4.2 to
the propensity matrix Λ = Λ(c) of the promoter, with Λij(c) =
f ij(c)kij. Together with the transcriptional activity ai associated
with each promoter state zi, the average transcriptional activity
of the promoter is

=
=

c ca( ) ( )
i

n

i i
1 (2)

The protein’s mean and variance and the RNA’s mean are
given by
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where μ = μ1μ2, δ = δ1δ2, a = [a1,...,an], ⊙ is the Hadamard
product, and Mi = (δiIn − ΛT) with In the n times n identity
matrix. The quantities in eqs 3 and 4 are the characteristic
response curves of a gene depending on the transcription
factor concentrations c. By decomposing the transcription rate
into μ1 and the state dependent factors ai, the ai are relative
quantities that can be interpreted and estimated in the context
of RPU, while the quantities μ1, μ2, δ1, δ2 have to be identified
only once and can be reused for other models in the same
organism. Later on, we use the response curves for the NESS
simulation of the in silico gene circuit realizing the genetic logic
circuit within the technology mapping. To allow for energy
awareness in the technology mapping, we proceed by
establishing a link between the kinetic model and its energy
dissipation rate in order to derive an energetic response curve
as a function of transcription factor abundance c.

2.1.3. Stochastic Thermodynamics of Open CRNs. In
stochastic thermodynamics, each state x of the system is
associated with its Gibbs free energy g(x). Upon reaction m
in the forward direction, the Gibbs free energy change is
Δg(m)(x) = g(x + νm

X) − g(x), where = [ ]w um i
m

i
m

i
X ( ) ( ) .

Further, the system is assumed to be in contact with a heat
bath of temperature T. A system consisting of a CRN and a
heat bath is called a closed CRN, which�following the zeroth
law of thermodynamics�relaxes to equilibrium.54 In equili-
brium, the mean energy dissipation rate is zero.49 A system
that exhibits a zero net change in Gibbs free energy along any
closed cycle in its state space can be considered a closed
system. For instance, this is the case in the promoter in Figure
2A, if none of the transitions require additional energy carriers.
Otherwise these energy carrying species need to be accounted
for in the stoichiometric equations. Furthermore, for the
dynamics of RNA and protein, it is necessary to take into
account the building blocks whose recycling after degradation
requires the expenditure of energy.

We thus assume that the reactions m actually include
species Y1,...,YL, which are controlled by the cell to always have
constant concentrations. Usually, these are energy carriers like
ATP and its hydrolysis products like ADP and phosphate (Pi).
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By coupling our CRN to these species, we obtain an open
CRN described by the stoichiometric balance equations
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where the species Y1,...,YL act as chemostats and υj and ωj are
the respective substrate and product coefficients. Figure 3

illustrates the composition of closed and open CRNs. The
Gibbs free energy change of the chemostat species associated
with reaction m is Δμ(m) = ∑j=1

L μj
Y(ωl

(m) − υj
(m)), where μj

Y is
the chemical potential of species Yj. Identifying Wchem

(±m) =
∓Δμ(m) as the chemical work done on the core system by the
chemostat upon reaction m in the forward and backward
direction, respectively, we introduce the energy dissipated into
the environment per reaction as the difference of chemical
work and Gibbs free energy change

=± ± ±x xQ W g( ) ( )m m m( )
chem
( ) ( ) (6)

The expected energy dissipation rate Q̇ is then given by
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as we show in Supporting Information Section S3.2. For open
CRNs the propensity functions of any reversible reaction m
(i.e., km

+ > 0 implies km
− > 0) are related to the energy changes

by the thermodynamic consistency relation54
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which associates the rates of the reactions with the
corresponding energy dissipation and = k T( )B

1 para-
metrizing the heat bath with temperature T and Boltzmann
constant kB. If all reactions of an open CRN { }, ..., M1 are
reversible, then we may use eq 8 to identify the energy
dissipation rate with the entropy flow into the environment
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where Jm
+(x,t) = p(X(t) = x)λm

+(x) and Jm
−(x,t) = p(X(t) = x +

νm
X)λm

−(x + νm
X) represent the forward and backward probability

fluxes of reaction m with net flux Jm(x,t) = Jm
+(x,t) − Jm

−(x,t).
2.1.4. Relation between Energy Dissipation and Entropy

Production Rate of the NESS. The entropy production
rate49,55,56 is the sum of the entropy change rate of the system
and the entropy flow into the environment, that is,

= [ ] +Xe t H t H t( ) ( ) ( )p t t
d
d

d
d

env , where H[X(t)] is the Shan-
non entropy (H[X(t)] = −∑x p(X(t) = x) ln(p(X(t) = x))).
At steady state (or in the limit t → ∞) we have [ ] =XH t( ) 0

t
d
d

and hence the mean energy dissipation rate (in units of kBT) of
the NESS is given by the entropy production rate, i.e.,

=Q k TepB (10)

Due to the central relevance of this relationship, we
recommend Supporting Information Section S3 and in
particular Section S3.3 to the reader, where we derive and
discuss the relationship between entropy production rate and
energy dissipation rate in depth.

2.1.5. Energetic Response Curve of a Single Gene.
Following the above, we express the energetic response curve
to the transcription factor concentrations c in terms of ϵg(c),
the overall mean energy dissipation rate of the NESS. This rate
is given as the sum

= + +c c c c( ) ( ) ( ) ( )g p tx tl (11)

of the contributions of the promoter ϵp(c), the RNA dynamics
ϵtx(c), and the protein dynamics ϵtl(c).

In particular, we use the relationship between energy
dissipation and entropy production to quantify the energy
dissipation rate of the promoter as ϵp(c) = kBTep, since it is
assumed to satisfy the microscopic reversibility requirement.
Note that since the entropy production rate is calculated
without the knowledge of chemical potentials μj

Y or the Gibbs
free energy changes Δg(m), the expression is valid for a variety
of different promoter topologies, provided the promoter
topology is accurate. To derive the NESS entropy production
rate of the finite state promoter, we make use of
Schnakenberg’s method,55 which we outline in Supporting
Information Section S4. Using this method gives

= + +e J J Jp o o o o o o1 1 2 2 3 3 (12)

as derived in Supporting Information Section S4.1 and
consequently the promoter’s energy dissipation rate is ϵp(c)
= ep/β. Here, Jodi

denotes the probability flux along the cycle oi

as presented in Figure 2A and oi
is the change in chemical

potential�also known as thermodynamic force�associated
with a single run through cycle oi. The products of each flux
(Jodi

) and force ( )oi
pair resemble the well-known expression for

Figure 3. Schematic description of an open CRN. Contrasting open
and closed chemical reaction networks, the difference originating in
adding chemostat species Yi with associated chemical potential μj

Y can
be easily observed. The core CRN itself is characterized by the Gibbs
free energy g(x), while both, the closed and open CRN, are in contact
to the heat bath with parameter β. The abundance of the chemostat
species is kept constant, in our case by the cellular environment, and
results in a chemical potential that drives the core CRN. In this work,
the chemostat species refer to cellular energy carriers like ATP and
the products of corresponding hydrolysis reactions.
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electrical power, i.e., the product of a voltage (force) and the
induced electrical current (flux). We remark that in the steady
state the entropy production rate and hence the energy
dissipation rate do not depend on the Gibbs free energy of the
states (see Supporting Information Section S4.1). As a
consequence, the rate of energy dissipation (e.g. heat
dissipation) and the rate of energy expenditure (e.g. energy
intake) are equivalent.

Since our transcription and translation model lacks micro-
scopic reversibility, the thermodynamic consistency relation
(eq 8) is not well-defined. However, under the assumptions
given in Supporting Information Section S3.4, we only need to
provide the chemical work per reaction in addition to the rate
constants to obtain the energy dissipation of these reactions via
eq 7. Here we derive these quantities from an intuitive
heuristic perspective, while the corresponding considerations
involving eq 7 are presented in Supporting Information Section
S3.4.

Considering the energy required per RNA molecule first, we
subsume all length dependent energy requirements for RNA
synthesis and degradation in er and the length independent
ones in er . Taking the RNA length lr in nucleotides into
account, the energy per RNA molecule is +e l er r r . For the
protein synthesis and degradation, we define the energies ep
and ep analogously and define lp as the protein length in amino
acids. To obtain the actual energy expenditure, we have to
account for the synthesis and degradation rates. In particular,
these rates are given by δ1E[R|c] and δ2E[P|c] for RNA and
protein, respectively. Multiplying the rate of molecule synthesis
and degradation with the associated energy yields

= + [ | ] = + [ | ]c c c ce l e R e l e P( ) ( ) E ( ) ( ) Etx r r r 1 tl p p p 2

(13)

as the expected energy expenditure rates of the RNA and
protein dynamics.

2.2. Energy Aware Technology Mapping. With the
energy aware NESS model of gene expression at hand, we now
present the steps for incorporating it into the technology
mapping process. This gives rise to Energy Aware Technology
Mapping.

2.2.1. From Genetic Logic Circuits to Genes and Back. The
efficient technology mapping of genetic logic circuits gets
enabled by large scale in silico experiments. Depending on the

focus, in silico evaluations can target different levels of
abstraction as exemplified in Figure 4A. These abstractions
not only differ with respect to the modules they are composed
of, but also in the signals considered. While Boolean logic
circuits make use of Boolean signals, the genetic logic circuits
we consider here use the promoter activity in relative promoter
units (RPU), with protein abundance serving as signal carrier
in the underlying gene circuits. With the model we present in
this work, we target the gene expression level, where genes
express proteins that act as transcription factors and repress the
expression level of the genes associated with their cognate
promoter. As such, this approach can resemble in silico the in
vivo implementation of a genetic logic circuit inside cells as
described by Chen et al.42.

To make use of our NESS gene expression model within the
genetic logic circuit centered technology mapping, we first
obtain the corresponding gene circuit. In the next step, the
Boolean input values are translated to the respective promoter
activities, from which we then derive the corresponding
inducer concentrations. The gene circuit is evaluated by
applying our model in topological order to the genes. By
deriving the promoter activity associated with the abundance
of the reporter protein, we finally obtain the output
representation at the genetic logic circuit level.

2.2.2. Functional Performance of Genetic Logic Circuits.
In order to complete the loop, we could apply a thresholding
to the promoter activity values and obtain the associated
Boolean value. Within the technology mapping, the perform-
ance of this thresholding approach is subsumed in the score S,
effectively measuring the distance between activity levels
representing ON and OFF states. Formally, we define the
genetic logic circuit as the tuple (γ, q), where γ is the circuit’s
structure and q the corresponding assignment of genetic gates.
We derive the score S = S(γ, q) by evaluating the genetic logic
circuit in silico for all Boolean input conditions (with
| | = 2n for n inputs). The obtained circuit output values in
terms of promoter activities are subsumed in =Y Y q( , ) in
case they shall represent an OFF state and =Y Y q( , )
otherwise. Identifying the elementary scoring function with s,
the score S(γ, q) is given by

=S q s y y( , ) min ( , )
y Y y Y,

Figure 4. From genes to logic circuits. (A) Visualization of the abstraction levels encountered in GDA. The gene circuit at the bottom realizes the
behavior within the cell and is the circuit our model is applied to. It relies on protein concentrations as signal carriers. Defined on top, the genetic
logic circuit provides a convenient interpretation in terms of gates, familiar to engineering disciplines and the basis for GDA. The Boolean logic
circuit shadows all implementational details and presents the function to realize. (B) Overview on the energy demands of a genetic NOR gate
following the implementation of ref 42. The gate consists of the genes a, b, and c, with the preceding and succeeding gates greyed out. ϵtx denotes
the energy dissipation rate of the RNA dynamics, ϵtl of the protein dynamics, and ϵp is the energy dissipation rate of the promoter.
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where y y, can be scalar values, as in the case of the Cello-
score11, or empirical distributions, as for the E-score.31 Within
Section 4.4.1, we extend on the definition of the E-score and its
application to empirical distributions.

2.2.3. Energy Expenditure of Genetic Logic Circuits.
Besides the functional characterization, our gene expression
model allows for insights into the energetics of the genetic
logic circuit. For this, we define q( , ) as the set of genetic
logic gates included in the circuit (γ, q). Furthermore, we
identify the genes expressing the transcription factor associated
with gate l q( , ) with the index set l( )C and the genes
with cognate promoters with the index set l( )P . The energy
expenditure rate of gate l is the aggregation of the single parts
contributions, given by

= + +c c ci( ) ( ) ( ( ) ( ))l
g l

p
g

g
i

g l
tx

g
g

i
tl

g
g

i

( )

( ) ( )

( )

( ) ( ) ( ) ( )

P C

(14)

where i identifies the Boolean input condition and
cg

i n( )
0 denotes the concentrations of the cognate tran-

scription factors of gene g for the respective input condition.

Within Figure 4B, we present this using the example of a
genetic NOR gate following the implementation of Chen et
al.42. Taking all gates q( , ) of the genetic logic circuit into
account, the energy dissipation rate of the whole circuit for the
ith input assignment is

=E q i( , ) ( )i
l q

l
( , ) (15)

We define the average and maximum expected energy
expenditure rates E(γ, q) and Emax(γ, q) of the genetic logic
circuit (γ, q) as

=
| |

=E q E q E q E q( , )
1

( , ) ( , ) max ( , )
i

i
i

imax

(16)

Depending on the type of application and the constraints
enforced, both, E and Emax, are valid objective functions for the
energetic optimization. In the case of stochastic evaluation, the
aggregation functions in eq 16 extend naturally.

2.2.4. Technology Mapping of Genetic Logic Circuits. The
previous two sections have introduced different metrics for the
evaluation of genetic logic circuits. It is the task of the

Figure 5. Function and energy as disjoint optimization targets. (A) Circuit 0x2F (3 gates) is optimized for function (top) and energy efficiency
(bottom). The bar plots on the right present the performance of the genetic logic circuits depicted on the left for both evaluation criteria. Clearly,
the optima are disjoint. (B) Visualization of the mean energy expenditure rate per gate (lower is better) for 0x2F over all Boolean input conditions,
optimized for functionality (top) and energy efficiency (bottom) and normalized to the largest value. The energy expenditure of the NOR and OR
gate differ significantly between the two implementations, impacting the overall energy efficiency significantly [see (A)]. (C) Boolean activity as an
heuristic for the energy expenditure of a genetic logic circuit. Here compared to the energy of circuits with the objective energy efficiency. (D) The
optimization results of circuits 0xDF (4 gates), 0x20 (5 gates), and 0x81 (7 gates), normalized to the maximum functional score and energy
efficiency observed in the benchmark. Again, optimizing for either of the two objectives decreases the performance of the genetic logic circuits with
respect to the other. (E) Analysis of the cost of energy efficiency increase on the benchmark. While the optimization for energy improves energy
efficiency up to 58.9%, the functionality score is often decreased significantly. (F) Relationship between expected energy dissipation rate of the
circuit and its gate count. The bold line is the mean and the shaded areas present the minimum and maximum intervals, with the colors indicating
the optimization objective. This figure reveals a near linear relationship between energy dissipation rate and gate count. However, the optimization
objective sets the offset. Comparing the objectives, optimization for energy efficiency allows to implement genetic logic circuits of six gates with the
energetic requirements of functionally optimized four gate circuits.
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technology mapping to design a topology from the available
gate types that realizes the desired Boolean function. To this
end, our tool systematically enumerates all possible variants of
logic gate types and topologies. Each of these possible
solutions requires the assignment of genetic gates, which is
determined by heuristic optimization. To incorporate the
functionality and energy efficiency into the scoring of the
resulting circuits, either multiobjective or constrained opti-
mization can be applied.

2.3. The Energy and Function Trade-Off of Genetic
Logic Circuits. With the energy aware gene expression model
included into the technology mapping framework ARC-
TIC,18,31 we can explore the design space of genetic logic
circuits with respect to both, functionality and energy
efficiency. For this purpose, we consider the genetic logic
gates introduced with Chen et al.42. In particular, we calibrate
the parameters of our model to capture the response
characteristics encoded in the cytometry data provided by ref
42 as described in Methods Section 4.3. We then use the
obtained parametrizations to derive a genetic gate library for S.
cerevisiae, consisting of 12 genetic logic gates utilizing nine
independent transcription factors.

We start our evaluation by investigating the energy
expenditure rates encountered in mapping genetic logic circuits
and consider their relation to circuit functionality. Based on
the insights gained, a systematic evaluation of the circuit
structure’s effect on the energy efficiency of genetic logic
circuits follows up. In this context, we also consider the Pareto
fronts and the application of multiobjective optimization. To
emphasize comparability among genetic logic circuits as well as
function and energy, we introduce the notion of energy
efficiency, or briefly efficiency, E̅ as the inverse of the energy
m e a s u r e ( i . e . , =E q E q( , ) ( , ) 1 o r

=E q E q( , ) ( , )max max
1) and apply normalization to the

best scores encountered in the considered benchmark set.
2.3.1. Function and Energy Optima are Disjoint. To assess

the energy landscape of genetic logic circuits, we evaluate the
technology mapping results of 33 logic circuits, each realizing a
different Boolean function. The choice of circuits follows
Nielsen et al.11 and encompasses circuits ranging from two to
seven gates. For the purpose of this evaluation, we optimize
each circuit for the two objectives function and energy and
constrain the other in the respective case. While the minimum
functional score to achieve is identical for all circuits, the upper
limit on the energy dissipation rate during functional
optimization is chosen in dependence to the gate count (see
Methods Section 4.4).

Starting with a small circuit first, Figure 5A presents the
function and energy optimized genetic logic circuits for 0x2F
(3 gates). Despite the same structure, the different gate
assignments feature significant differences in function and
energy. In particular, the energy optimized version decreases
the functionality by 70.7% to improve energy efficiency by
44.4% in comparison to the version optimized for function.
This is a decrease in fold change by a factor of 3.4 and a
decrease in energy resource consumption by 30.8%. In
addition, the disjoint optimality of function and energy
indicates a trade-off between the two optimization goals
considered. Increasing the number of gates does not change
this, as we observe by considering the results for circuits 0xDF
(4 gates), 0x20 (5 gates), and 0x81 (7 gates) in Figure 5D.
However, the absolute level of energy expenditure changes in

both, the functionally and efficiency optimized circuits. While
we estimate an energy expenditure rate of 29,401kBT s−1 for
circuit 0x2F, this increases to 38,251kBT s−1 for circuit 0xDF,
40,901kBT s−1 for circuit 0x20, and 64,865kBT s−1 for 0x81 in
the energy optimized case. With an average contribution of
98.8%, our model predicts protein synthesis and degradation to
account for the largest portion of energy expenditure.

Figure 5B provides information on the differences of energy
dissipation for the respective optimization goals. Presenting the
energy per gate averaged over all input assignments, we
observe that the two NOT gates differ only slightly between
the functionally (top) and energetically (bottom) optimized
variants. With 61.8%, the OR gate conduces the majority of
energy saving. However, this is a direct result from the change
in gate assignment of the respective preceding gates, as in
comparison to the functionally optimized version their
maximum expression levels are roughly halved. In conse-
quence, the circuit’s score�which assesses the fold change�
drops proportionally. For functions 0xDF, 0x20, and 0x81, we
observe the same behavior, with most energy savings resulting
from gates closer to the output and only minor improvements
and sometimes even worsening from gates close to the input of
the circuit. Thereby, the largest energy savings are achieved by
significantly reducing the expression levels of Boolean ON
states.

Shifting the perspective to the set of all circuits, the
optimization for energy increases energy efficiency up to 58.9%
and on average by 37.2% (see Figure 5E). However, this comes
at a cost, as there is often only a small gap between the
functionality constraint and the actual functionality score, as
observable in the average remaining score of 28.5%. Figure 5E
highlights this by visualizing the relationship between function
and energy efficiency for the two cases of optimization.
Reconsidering the relation between circuit size and energy,
Figure 5F indicates the linear relationship between these
quantities for the circuits taken into account for both
optimization objectives. Comparing the results for efficiency
and functionally optimized circuits among different circuit
sizes, we see that a fixed energy budget allows for larger circuits
when optimized for energy efficiency. On the other side,
circuits designed by Energy Aware Technology Mapping
feature an energetic advantage of at least one gate.

These results indicate an inherent trade-off between the two
objectives energy efficiency and functionality for genetic logic
circuits. Considering the in vivo realization of circuits, the
expression level based signaling requires sufficient fold change
to differentiate between distinct logic levels. In the presence of
basal expression, fold change is achieved by sufficiently high
levels of protein abundance, with the energy expenditure
increasing proportionally. As part of the optimization for
energy efficiency, the expression levels are reduced to a
minimum viable level. However, the lower limit on the score
ensures that despite the drop in functionality, the circuit’s
function is preserved (see Methods Section 4.4). The
observation of highest energy savings at the circuit outputs
can result from level separation as a requirement for the
function of gate cascades11,18 and minor optimization potential
at the circuit inputs. However, Engelmann et al.18 point out
that these last gates are critical for the functional performance
of a circuit. Again, this indicates the exclusiveness of the
objectives considered.

An aspect not explicitly targeted yet but relevant for the
overall energy expenditure is the gate technology. The gate
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library42 used provides transcription factor based gates,
requiring the expression of heterologous proteins. Since our
model and other studies5,9,57−59 consider heterologous protein
expression rate to be proportional to energy expenditure and
protein dynamics to dominate the energy consumed by gene
expression, RNA-based gates could significantly reduce the
overall energy consumed.

Driven by the relation between circuit size and energy
dissipation, we present a precise heuristic for the energy
expenditure rate of a genetic logic circuit. This heuristic is
given by the Boolean activity of a structure, which reduces the
estimation to counting the states which require protein
expression. More formally, we consider the truth tables of
the gates constituting the circuit structure. For each NOT and
NOR gate, the number of Boolean ON states the respective
input gates feature is counted. To the circuit’s inputs and
outputs, special treatment applies. The inputs are counted as if
they were always ON, as their in vivo implementation makes
use of constitutive promoters. For the outputs (simple buffer
or implicit OR), the number of ON states is counted, as this
refers to the protein level ideally representing this state. The
overall Boolean activity is then obtained by summing up all the
individual contributions for all possible Boolean input
conditions. Figure 5C presents the relationship between the
Boolean activity and the energy dissipation rate of genetic logic
circuits optimized with respect to energy efficiency. With a
Pearson correlation coefficient of 0.989 (0.940 for functional
optimization), this easy-to-use heuristic is highly predictive.

2.3.2. Promoter’s Energy Expenditure Peaks in Transition
Region. The circuit level trade-off is dominated by the protein
expression level. In order to gain insight into the gate and
promoter level, we focus here on the promoter energy, the
entropy production rate. Figure 6 presents the entropy

production rate and average promoter activity as a function
of transcription factor abundance for two exemplary genetic
gates. All gates (see Supporting Information Figure S7) feature
a peaked entropy production rate, with the energy dissipation
mostly concentrated in the transition region of the gate’s
response curve, and becoming more peaked as the transition
becomes sharper. In addition, the entropy production rate is
often highest (dashed line) close to the steepest descend
(marker) of promoter activity (see Figure 6A) in the linear
domain, with Figure 6B presenting a counterexample to this.

Considering the saturated regions for low and high input
transcription factor levels, promoter energy dissipation rates
decrease significantly. In the context of genetic logic circuits,
these regions represent the Boolean states one wants the gates
to attain, giving rise to only minor contributions of the
promoters to the overall energy dissipation of well functioning
genetic logic circuits. Despite this, 21 of 33 efficiency
optimized circuits feature a lower promoter energy dissipation
rate in comparison to their functionally optimized pendants.

2.3.3. Circuit Structure Shapes Energy Expenditure. The
previous results indicate a strong connection between the size
of a circuit and its energy expenditure rate. However, not all
circuits of a certain size perform equally well, which brings the
structure of a genetic logic circuit into focus. The structural
variants approach implemented in ARCTIC18,31 allows for
optimizing the structure in addition to the gate assignment. In
doing so, Schladt et al.31 demonstrate the benefits of including
the structure of the circuit into the optimization process for
functionality. Guided by these insights, we employ the
structural variants approach to evaluate the structure’s impact
on circuit performance with respect to functionality and energy
efficiency.

For the evaluation of the structural variants, we consider
exemplary the three Boolean functions 0xEC (3 gates), 0x02 (4
gates), and 0xE7 (5 gates), and allow for a single excess gate
compared to the minimal structure. We apply the same
constrained optimization as in the previous section, but
optimize only for energy efficiency. Figure 7A provides a first
intuition of the effect of structural variants by presenting the
results of function 0xEC. The 16 different structures differ
significantly in their functional but also energetic character-
istics. The worst structure has a 54.3% higher energy
expenditure rate than the best, and on average, the structural
variants improve energy efficiency by 30.7%. Among the
presented variants also the functionality varies, with an
observed maximum improvement of 52.4%. Even more
important is, that some structures (i.e., 11, 13, and 15) are
significantly better than others in terms of both, energy
efficiency and functionality.

Figure 7B provides a detailed insight into the Boolean
activity of the least (structure 7) and most (structure 15)
energy efficient structures. For each gate, its accumulated
Boolean activity over all Boolean circuit input assignments is
depicted. The difference of 10 active states between the two
circuits manifests itself in a significantly differing energy
efficiency. Examining the structures in detail, there are two
causes for this difference. First, structure 15 features one gate
less compared to structure 7. Second, the way in which the
Boolean function is computed leads to a lower average activity
of the gates in structure 15 (6.2 for structure 7 vs 5.25 for
structure 15). This is partly caused by the usage of NOT gates
over NOR gates in structure 15. In the given gate architecture,
NOR gates feature an independently expressed transcription

Figure 6. Peaked entropy production rate in transition region. The
average promoter activity and the corresponding entropy production
rates of two exemplary promoter models as a function of transcription
factor abundance c. These promoter models vary in the instantiation
of the promoter architecture in Figure 2A. We highlight the transition
region, which connects the two saturated regions of promoter activity.
In most cases, entropy (ϵp(c) = ep(c) β−1) is highest (dashed line)
within this transition region. Besides, this entropy production peak is
often close to the steepest descend (marker) of promoter activity [see
(A)] in the linear domain, but not in all cases [see (B)].
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factor for each input, leading to a potential doubling of energy
expenditure in one of four output states.

To emphasize our understanding of the relationship between
energy efficiency, functionality and structure, Figure 7C
showcases for each of the considered functions the perform-
ance of the structures in terms of energy efficiency and
functionality. Structures with less gates are more energy
efficient than their larger counterparts. However, with the
exception of 0xEC, the larger circuits have better functional
performance, although the smaller ones are quite close.
Considering the energy efficiency improvements possible,
these decrease with increasing circuit size as the average
improvement of 0x02 is 21.4% and of 0xE7 16.1%. Besides,
some structures lead to superior designs with respect to both
objectives.

Reconsidering the Boolean activity, we here investigate
whether this heuristic is expressive for structures with the same
Boolean function. Presented in Figure 7D, Boolean activity and
energy expenditure again correlate significantly, with a
correlation coefficient of 0.982. However, when considering
single functions, the correlation reduces to 0.927 in the worst
case.

The predictive power of Boolean activity and the depend-
ence on the Boolean function indicate the relevance of the
circuit structure to energy efficiency. We confirm this here by
pointing out the improvements that can be made by
considering structural variants in the context of energy

efficiency. As the structures differ in the number of states
requiring protein expression, they allow for increasing energy
efficiency and can also be beneficial for functional perform-
ance.

2.3.4. Pareto Dominance Among Structures. Until now,
we only considered the extremes of being either energetically
or functional optimal. In a design approach, one would trade-
off these objectives to achieve the best performance in relation
to the energy spent. To this end, we analyze the Pareto front of
10 structures for Boolean function 0xF7. In particular, we
perform a parameter sweep over the energy constraint for each
of the 10 structures. This gives rise to the functional best
genetic circuit adhering to the energy constraint. The
constraint is chosen so that the range of energy levels
identified by an initial sampling is equally divided into 20
intervals.

The Pareto fronts obtained show the exclusivity of energetic
and functional optimality by giving rise to an anti-proportional
characteristic. Considering exemplary the Pareto front of
structure 4 (Figure 8A), which we present in Figure 8C, we
observe that an increase in efficiency leads to a decrease of
functionality and vice versa. In addition, we observe character-
istic clustering at different levels of functional performance,
likely being caused by different genetic gates at the later
positions of the circuit.18 Despite this, the Pareto area presents
a near convex shape and allows for a smooth trade-off between
function and energy. Our evaluations of exemplary structures

Figure 7. Impact of the logic circuit structure on energy efficiency. (A) We here present the functionality and energy efficiency of the structural
variants of function 0xEC optimized with respect to energy efficiency. The structures feature different characteristics in both, the energy efficiency
and functionality, with an average improvement of energy efficiency by 30.7% when considering the best structure. Normalization refers in both
cases to the best value encountered. (B) The Boolean activity per gate for structures 7 and 15 of function 0xEC, which exhibit the worst and best
energy efficiency. In comparison to structure 7, structure 15 features 10 active states less. This manifests in a significantly higher energy efficiency of
structure 15 [see (A)]. (C) Overview on the distribution of energy optimized variants for the three functions 0xEC (3 gates), 0x02 (4 gates), and
0xE7 (5 gates), where the gate counts refer to the smallest structure obtained. Within the figures, the colors code for the number of excess gates,
showing that smaller structures are beneficial for energy efficiency. However, for larger circuits the consideration of excess gates proves beneficial for
functionality. The values are normalized with respect to the best values obtained for each function, while the clustering results from the discrete
nature of gate assignment. (D) Also for the structural variants, the correlation between Boolean activity and the energy dissipation is significant
albeit varies among the different functions (0.927 for 0xEC, 0.960 for 0x02, and 0.934 for 0xE7).
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for the Boolean function 0x26 featuring six genetic gates each
also presents the antiproportionality but does not exhibit the
observed smoothness.

Continuing with the Pareto fronts of structures 8 and 9 as
visualized in Figure 8E and F, we observe that the general
relationship persists while the exact form changes. Specifically,
the front in Figure (E) appears to be inferior to that in (D), as
the circuits based on structure 4 in most cases have a higher
functional performance than those of structure 8 when a fixed
constraint is imposed. The reason for this is structure 4
requiring less energy to achieve high functional performance.
However, when approaching the limits of energy efficiency,
structure 8 (Figure 8E) is more robust in terms of the

functional score achieved. Structure 9 (Figure 8F) has an
almost linear transition region, but is inferior to both of the
previous with respect to any optimization objective as well as
the joint optimization.

Inspired by the inferior performance of structure 9 along the
whole Pareto front, we compare the Pareto fronts of all
structural variants of Boolean function 0xF7 in Figure 8G. The
Pareto fronts are even more diverse than the ones already
considered (highlighted by bold lines). Structures 4 and 8
dominate almost all trade-offs of energy efficiency and
functionality. In contrast, seven out of ten structures do not
allow the optimization to reach the best solution for any
considered trade-off. Figure 8H visualizes this quantitatively by

Figure 8. Pareto front of the boolean function 0xF7. (A−C) Three exemplary structures of the Boolean function 0xF7. In particular, structure 4
in (A), structure 8 in (B) and structure 9 in (C). (D−F) The Pareto fronts of the structures presented in (A−C), where (D) presents the one of
structure 4, (E) the one of structure 8, and (F) corresponds to structure 9, respectively. Normalized with respect to the optimum in each
dimension, the Pareto fronts (D−F) exhibit different characteristics with the discontinuities and nonmonotonicity resulting from discrete gate
assignment and stochastic optimization. (D) Combines high functional performance with moderate energy requirements while (E) allows the
highest energy efficiency still preserving a moderate functional performance. The Pareto front of structure 9 [see Figure (F)] exhibits a near linear
relationship between functionality and energy efficiency, with an inferior overall performance. (G) We here illustrate the Pareto fronts of all the
structures of 0xF7 jointly to emphasize comparability among them. Highlighting the Pareto fronts presented in (D−F) by bold lines, their
relationship to one another gets obvious. In addition, one observes that the Pareto front of structure 9 is inferior to others for any configuration.
Figure (H) visualizes this quantitatively by presenting the dominance among Pareto fronts. In detail, the rows indicate the structure corresponding
to the Pareto front dominating the respective Pareto front denoted in the column. This comparison emphasizes the dominating behavior of
structures 4, 8, and 10 over the others with respect to both optimization goals.
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presenting the level of dominance between the structures. We
refer to the level of dominance as the portion of configurations
in which a structure outperforms another in terms of efficiency
and functionality. Most prominent are the four rows featuring a
large number of dark squares. These are the rows of structures
4, 7, 8, and 10, which dominate the Pareto fronts of the inferior
structures either completely or almost completely.

Constrained optimization allows the exploration of the
Pareto front of genetic logic circuits in terms of energy
efficiency and functionality on the basis of multiple
optimizations. However, if a desired trade-off is defined in
advance, multiobjective optimization is an alternative that
allows circuits to be designed with respect to both objectives in
a single joint optimization.60 Dealing with the two objectives
functionality and energy efficiency as represented by the
quantities S and E̅, one approach to realize multiobjective
optimization is scalarization. In the case of scalarization, the
objective functions are aggregated into a single objective, to
which one can apply conventional optimization methods as the
simulated annealing presented by Schladt et al.31.

Due to the well behaving shape of the Pareto fronts
examined, we here suggest a linear scalarization, which is also
known as the weighting method.60,61 For its efficient
application ahead of identifying the whole Pareto front, the
scores need to be normalized.60 To this end, we introduce Sr
and Er as reference maxima of the respective scores, which one
obtains by an initial evaluation. In dependence to the weight
parameter ϕ ∈ [0, 1], we express the scalarized performance of
the genetic logic circuit (γ, q) by V(γ, q), which we define as

= +V q
S q

S
E q

E
( , )

( , )
(1 )

( , )

r r

By the choice of the parameter ϕ, one implements the trade-
off between the two objectives energy efficiency and
functionality.

3. CONCLUSION AND OUTLOOK
In this work, we present an energy aware gene expression
model characterizing the non-equilibrium steady state (NESS)
in terms of the first and second order moments and the
associated energy requirements, which we relate to the model’s
entropy production rate. This model can account for promoter
architectures varying in the number of binding sites, activation
steps, and cognate transcription factors. In contrast to the
widely employed equilibrium models, the presented model
captures non-equilibrium characteristics like increased sensi-
tivity and sharpness, which are especially relevant in the
context of eukaryotes. This includes the dissipation of energy,
which is essential to life. In combination with the probabilistic
NESS description and the presented relation between energy
and entropy production rate, this allows for further evaluation
of the trade-off between function and energy, beyond the scope
of genetic logic circuits.

With this model at hand, we establish Energy Aware
Technology Mapping, the design of genetic logic circuits with
respect to function and energy efficiency. The in silico
evaluation based on 33 Boolean circuits improves energy
efficiency by 37.2% on average, but reduces the functionality to
28.5% compared to the functionally optimized variants. These
improvements result from decreases in expression levels
representing Boolean ON states, simultaneously decreasing
the circuit’s functional performance. With respect to structural

variants, we show that different structures of a single Boolean
function vary in their energetic characteristic and can be
beneficial for energy efficiency (up to 22.7% on average) and
functionality. This also extends to the case of multiobjective
optimization, as shown in the Pareto evaluation.

Based on the findings in this study, one can further improve
the design of genetic logic circuits with respect to energy by
creating energy aware genetic gate libraries. This can include
protein based gates focusing on robust functioning despite
lower expression levels, the use of shorter transcription factors
as signaling molecules, gates omitting translation by employing
RNA based signals or any combination thereof. Due to its
parameterized design, it is possible to adapt our approach
directly to these cases.

To validate the theoretical framework of our proposed
Energy Aware Technology Mapping for genetic logic circuits,
we outline potential experimental evaluations. The simplest
method to evaluate energy efficiency involves observing cell
growth and viability by measuring optical density at 600 nm
(OD600) and cell count.62 An alternative is the direct
measurement of metabolites related to the energetic state of
the cell in vivo, for which ATP sensors could be employed.63,64

A more complex, yet powerful, method is RNA sequencing
(RNA-seq). Sequencing the transcriptome of cells harboring
synthetic circuits would not only reveal the transcripts
associated with the circuits but also allows to check for
upregulation and downregulation of genes linked to overall cell
fitness.65 As our approach addresses the increased metabolic
burden that larger circuits impose, incorporating energy
expenditure while maintaining circuit functionality could
enable the development of larger circuits that operate
effectively in vivo.

In conclusion, our results provide strong evidence for a tug
of war between functionality and energy efficiency in the
context of genetic logic circuits. This matches previous results
on the relation between energy expenditure and precision and
sharpness. Additionally, the consideration of structural variants
proves relevant also in the case of energy efficiency. Since it is
beneficial to consider structural variants regardless of the
optimization goal, disregarding them is likely to lead to
suboptimal solutions in terms of both, energy efficiency and
functionality. Given the proportionality between energy
consumption and the rate of heterologous protein expression,
optimization of energy can effectively reduce the expression of
heterologous proteins, thereby allowing for energy efficiency
by design. This is particularly relevant in the context of
metabolic burden, as it allows cellular fitness to be maintained
by reducing the amount of resources diverted from the host by
synthetic constructs. In that sense, the well being of the host
organism ensures the desired functionality of the genetic logic
circuit. The energetic advantage of one to two gates provided
by Energy Aware Technology Mapping can be crucial for
implementing the circuit in vivo in a resource constrained host
organism.

4. METHODS
We here present the methods most relevant to our work. This
is complemented by the Supporting Information.

4.1. Gene Circuit Simulation. The input to the gene
circuit are the concentrations of the inducer molecules. While
in vivo the inducer binds to constitutively expressed repressive
transcription factors, we realize the dependency on the inducer
levels by a lookup table based approach, matching a degenerate
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promoter model with the desired promoter activity to the
provided inducer concentration. For the simulation of the gene
circuit, we apply our energy aware gene expression model one
after another to the genes within the circuit. Thereby, one has
to preserve topological order, meaning that a gene can only be
evaluated when all genes expressing the cognate transcription
factor have already been evaluated. To obtain the concen-
tration of the protein encoded by a gene, we apply a log−
normal closure to the moments provided by eqs 3 and 4 and
draw a sample. In case multiple genes express the same protein,
the protein’s final concentration is the superposition of the
single genes’ contributions. By performing this approach many
times in parallel, one obtains an empirical distribution
predicting the population dynamics of cells implementing the
particular genetic logic circuit. While this is a sampling based
approach, one can instead propagate the mean or the median
as the protein abundance to yield a point estimate. For a more
formal treatment of probabilistic genetic logic circuit
simulation, we refer the interested reader to the work of
Schladt et al.31.

4.2. Steady State Distribution of CTMCs and Kirchh-
off’s Theorem. The unique steady state distribution of an
ergodic CTMC with n states can be derived by using its
propensity matrix Λ, defined in row sum zero form. The first
step is to identify the null-space, respectively solving for the left
eigenvector v = [v1,...,vn] corresponding to the eigenvalue 0 of
Λ.

=v 0

The steady state distribution π is then defined as

= =
=

v
v

v vi
i

i

n

i
1

Schnakenberg55 and later Andrieux and Gaspard66 describe
an alternative approach, called Kirchhoff’s theorem, which was
originally described by G. Kirchhoff and is based on the
enumeration of spanning trees. The subsequent contains a
rather informal description, wherefore we refer the interested
reader to refs 55 and 66.

Before we start with the method itself, let us first recall the
definition of a spanning tree. A spanning tree of an undirected
graph is a tree and a subgraph containing all the vertices of the
graph. We derive the undirected graph by identifying the
vertices of the graph with the states in the state space of our
CTMC. Next, the forward and backward reactions between
two states are aggregated into a single undirected edge,
connecting the vertices associated with the states.

We continue with enumerating all possible spanning trees of
the graph. In total, there are nt trees and we refer to the jth
with Tj. Next, we introduce the function Πi(Tj), which maps
the spanning tree Tj to the subgraph of the CTMC’s state
space that includes the reactions being part of the spanning
tree and directed to state zi. In particular, this is done by
setting zi as the root node and successively traversing the edges
in the spanning tree Tj. Each edge corresponds to two
reactions, where the one pointing in the direction of the root
node is preserved and the other is dropped. The result is a
directed tree, consisting of the reactions that lead from any
initial state to the root state zi. With the previous, we assign the
value

=
=

vi
j

n
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t
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to each state zi, where the product runs over the propensities of
the reactions in Πi(Tj). As before the steady state distribution
is given by
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While in theory this method is not limited by the size of the
CTMC’s state space, the practical applicability depends on the
complexity of the obtained graph’s topology.55 However, this
approach provides an appealing way to derive the steady state
distribution analytically. As such, our implementation makes
use of the steady state distribution derived from Kirchhoff’s
theorem for the promoter architectures considered, while it
also provides the simpler eigenvector approach for other
architectures.

4.3. Parameter Estimation. The estimation of a
parameter set matching the characteristics of the part to
capture is essential for the expressiveness of the model within a
technology mapping application. As our model captures mean
and variance of the response characteristic, data sources giving
rise to both are ideal. One possible source is cytometry data
obtained for different inducer concentrations. As the histo-
grams provide rich information on the distribution, the mean
and variance can be derived by evaluating

= =
= =

b b( )
i

M

i i
i

M

i i
1

2

1

2

where (b1,...,bM) are the bin centers and (ω1,...,ωM) are the
frequencies in a histogram with M bins.

As model instantiation, we use a promoter architecture
featuring three binding sites for a single cognate transcription
factor and having only two activation steps with respect to
transcriptional activity as depicted in Figure 2AB. Since we
collapse states with equal number of transcription factors
bound into a single state, we obtain a CTMC of eight states
and 20 reactions transitioning between these states. In
addition, we constrain all the states corresponding to the
same transcriptional activation level to have the same promoter
activity ai. Since the reaction rate constants for RNA and
protein dynamics are fixed in dependence to the organism (see
Supporting Information Section S7), our model instantiation
features 22 parameters. 20 for the reaction rate constants of the
promoter CTMC and two for the two levels of promoter
activity. From an intuitive perspective, the rate constants
between two states of differing promoter activity levels balance
the output dynamic maximally achievable. The reactions
depending on the transcription factor abundance and their
reverse reactions then determine the location of the transition.
In foregoing evaluations, the chosen instantiation features well
balance between the complexity of the model and the
capabilities of modeling response characteristics of interest,
especially the sharpness encountered. However, the variance in
the data is not completely explained by this, likely caused by
extrinsic noise51−53 not accounted for in this model.

For parameter estimation, we apply gradient based
optimization and minimize the logarithmic difference between
the prediction of the model and the reference data from Chen
et al.42. We constrain the reaction rate constants to the range
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[10−5, 105], penalize non monotonic response characteristics,
and by weighting the error we prioritize model quality in the
saturated regions. In this context, it is important to note that
the parameter estimation considers mean and variance. The
mean dynamics itself are insufficient to uniquely identify a set
of reaction rate constants as outlined at the end of Supporting
Information Section S2.2. Please refer to Supporting
Information Section S5.2 for a detailed description of the
parameter estimation process.

4.4. ARCTIC. ARCTIC18,31 is the technology mapping
framework for genetic logic circuits used in this work. It takes a
combinational Boolean specification as input and constructs all
possible structural variants for this specification based on a
given library of gates. It then uses different scoring methods to
optimize the assignment of library gates to the elements of the
topologies. In this way, it can search for the best performing
genetic circuit for a given Boolean specification.

ARCTIC offers different circuit models and scores that focus
on robust genetic circuits. It implements different optimization
methods to leverage these models and to explore the design
space. In this work, the Simulated Annealing heuristic has been
used. It applies a neighborhood structure leveraging functional
proximity of gates and is flexible in terms of the used design
objective.31

We employed deterministic and sampling based simulations.
The evaluation on the benchmark set as well as the structural
variants made use of the deterministic approach taking the
average into account. The constraint optimization used a
Cello-score11 or E-score31 of 200 as lower bound on the
functionality, which corresponds to a 200 fold change of the
median values. This bound is sufficient for circuit functionality
and, in combination with a sampling based approach and the
E-score, still allows for robust circuit designs. During
optimization for circuit function, the upper bound on the
energy expenditure was set in dependence to the circuits size,
allowing for 20,000kBT s−1 per gate. In the Pareto evaluation,
we employ the sampling based approach with the E-score and
consider 1000 samples for each output distribution.

4.4.1. E-Score. The E-score31 is a generalization of Cello’s
circuit score11 to the case where circuit outputs are random
variables. This takes stochastic effects in populations of cellular
hosts into account. Intuitively, the more “distance” lies
between distributions that represent ON states and those
that represent OFF states, the higher a circuit is scored. The E-
score is calculated as the exponential of a modified 1-
Wasserstein distance between empirical distributions of the
logarithms of the concentrations or copy-numbers of the
output chemical species. Consider first two sets of N samples

{ }y y y y, , ..., N(1) (2) ( ) and { }y y y y, , ..., N(1) (2) ( ) that
represent two empirical circuit output distributions. The set y̲
consists of those samples corresponding to an anticipated
circuit output of Boolean OFF and y̅ consists of those samples
corresponding to an anticipated circuit output of Boolean ON.
We then calculate the modified 1-Wasserstein distance
D y y( , ) on the samples’ logarithms by
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where m̲ and m̅ are the medians of y̲ and y̅ respectively.
C o n s i d e r n o w h a v i n g s e v e r a l s a m p l e s e t s

= { }Y Y q y y y( , ) , , ...,
K1 2

representing logical OFF

states and = { }Y Y q y y y( , ) , , ..., K1 2 logical ON states,
where each individual sample set corresponds to one of
| | = +K K different Boolean input conditions of a circuit
with structure γ and assignment q. The circuit’s E-score is then
obtained by

= =S q s y y D y y( , ) min ( , ) min exp( ( , ))
y Y y Y y Y y Y, , (17)

It is shown in ref 31 that S(γ,q) simplifies to Cello’s circuit
score for γ and q if N = 1 and the single samples correspond to
Cello’s approximations for the median. Note that the
exponentiation in eq 17 can be applied after taking the
minimum to obtain the score S.
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