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Abstract
By applying nonlinear mixed-effect (NLME) models, model-integrated evidence 
(MIE) approaches are able to analyze bioequivalence (BE) data with pharma-
cokinetic end points that have sparse sampling, which is problematic for non-
compartmental analysis (NCA). However, MIE approaches may suffer from 
inflation of type I error due to underestimation of parameter uncertainty and to 
the assumption of asymptotic normality. In this study, we developed a MIE BE 
analysis method that is based on a pre-defined model and consists of several steps 
including model fitting, uncertainty assessment, simulation, and BE determina-
tion. The presented MIE approach has several improvements compared with the 
previously reported model-integrated methods: (1) treatment, sequence, and pe-
riod effects are only added to absorption parameters (such as relative bioavail-
ability and rate of absorption) instead of all PK parameters; (2) a simulation step 
is performed to generate confidence intervals of the pharmacokinetic metrics for 
BE assessment; and (3) in an effort to maintain type I error, two more advanced 
parameter uncertainty evaluation approaches are explored, a nonparametric 
(case resampling) bootstrap, and sampling importance resampling (SIR). To eval-
uate the developed method and compare the uncertainty assessment methods, 
simulation experiments were performed for BE studies using a two-way crossover 
design with different amounts of information (sparse to rich designs) and levels of 
variability. Based on the simulation results, the method using SIR for parameter 
uncertainty quantification controls type I error at the nominal level of 0.05 (i.e., 
the significance level set for BE evaluation) even for studies with small sample 
size and/or sparse sampling. As expected, our MIE approach for BE assessment 
exhibited higher power than the NCA-based method, especially as the data be-
comes sparser and/or more variable.
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INTRODUCTION

In vivo bioequivalence (BE) studies typically compare 
the pharmacokinetics (PK) of two drug products or for-
mulations. Such studies are required for most abbrevi-
ated new drug applications (ANDAs) when a biowaiver 
is not applicable, as well as new drug applications 
(NDAs) in the case of formulation changes during devel-
opment or post-approval. To evaluate the equivalence 
regarding the extent and rate of absorption of active 
ingredient or active moiety, PK metrics including area 
under the plasma concentration–time curve (AUC) and 
peak concentration (Cmax) are compared between a ref-
erence product and a test product.1 In a conventional 
nonreplicated design (i.e., two-treatment, two-period, 
two-sequence crossover study, also referred to as a two-
way crossover study), the 90% confidence interval (CI) 
of the test-to-reference geometric mean ratio (GMR) of 
a relevant PK metric should be within the regulatory cri-
terion range of 0.8–1.25 to claim BE based on the two 
one-sided tests (TOST) recommended by regulatory 
agencies.2,3 Common relevant PK metrics are AUC from 
0 to the last sampling time (AUClast), AUC from 0 to in-
finity (AUCinf), and Cmax.1

Non-compartmental analysis (NCA) is widely used to 
analyze PK data for the calculation of individual PK met-
rics during BE analysis. However, NCA requires dense 

sampling times to achieve high accuracy, which may be 
problematic in special populations, such as oncology pa-
tients, or when sampling is collected from a biological 
matrix other than blood. On the other hand, nonlinear 
mixed-effect (NLME) modeling applies a hierarchical 
model involving fixed effects for typical PK parameters 
and random effects accounting for individual variation 
from the typical values. In this approach, information 
is shared across subjects, and it is thus able to handle 
sparser data. In the literature, a series of methods that 
apply NLME for BE analysis have been proposed and eval-
uated.4–7 Generally, the methods involve fitting an NLME 
model to the measured blood plasma drug concentrations 
in the BE study data, then using the model, parameter es-
timates, and uncertainty of those estimates to derive the 
ratios of model-based PK metrics (AUC and Cmax) and 
their uncertainty, which are used to assess BE based on 
the TOST.

However, the proposed methods have either failed to 
assess type I error7 or have suffered from inflated type I 
error, likely due to either shrinkage for empirical Bayes 
estimates-based BE analysis5,6 or the application of an 
asymptotic approximation4 that led to parameter uncer-
tainty underestimation in the case of small sample sizes 
and/or sparse data. Recently, Loingeville et al.8 explored 
three alternative methods to evaluate uncertainty of model 
parameters, based on which the standard error of related 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Non-compartmental analysis (NCA) is a standard method used in bioequivalence 
(BE) analysis. However, NCA typically requires rich pharmacokinetic (PK) sam-
pling, which may not be feasible or practical in some situations. Model-integrated 
evidence (MIE) approaches, based on nonlinear mixed-effect modeling, may be 
useful for BE studies with sparse PK data, but may suffer from inflated type I 
errors.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can MIE approaches for BE analysis be improved to control type I errors, achieve 
high power, and have the ability to handle complicated PK models?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Sampling importance resampling (SIR), a posterior distribution uncertainty as-
sessment method that relaxes distributional assumption, is used in our novel MIE 
approach for BE assessment and shows maintained type I error in addition to 
high power. A simulation step in the method is able to handle models without 
analytical solutions for PK metrics, as well as use geometric mean ratio for BE 
inference.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Our novel MIE approach may provide an alternative to traditional BE approaches, 
especially in studies which require sparse PK sampling.
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PK metrics is derived for BE tests. All three uncertainty 
methods proposed by Loingeville et al.8 suggested a well-
controlled type I error. However, although the desired type 
I error was achieved, their developed methods depend on 
analytical solutions of AUC and Cmax, which may not be 
available for complicated PK models, and furthermore, 
their proposed methods apply assumptions of normality 
to the uncertainty of parameters to construct the 90% CI 
of the metrics, which may cause type I problems in more 
complicated models.

In this work, we present a novel model-integrated 
evidence (MIE) approach for BE assessment with im-
provements compared with the previous methods. 
Firstly, effects for treatment, sequence and period are 
only specifically added to absorption parameters, in-
cluding bioavailability (to assess relative changes), be-
cause BE studies aim to test for the difference in drug 
absorption between two formulations and generally as-
sume that the drug molecule behavior is the same after 
being absorbed into the system. Secondly, a simulation 
step to compute PK summary metrics is added in the 
analysis procedure as opposed to a dependence on dis-
tributional assumptions about the population and pa-
rameter uncertainty to calculate the 90% CI. In addition, 
the simulation step allows the method to handle com-
plex PK models defined by ordinary differential equa-
tions (ODE) in addition to simple models with available 
analytical solutions. Lastly, two additional advanced pa-
rameter uncertainty methods are implemented to better 
control type I error. The first method is the nonparamet-
ric (case resampling) bootstrap method. Although the 
nonparametric bootstrap approach was first explored by 
Hu et al.7 on PK BE data, there has not been any study 
reported to systematically evaluate its performance. The 
second method we investigate is sampling importance 
resampling (SIR), originally developed by Rubin,9 and 
extended to NLME models by Dosne et  al.10,11 These 
methods for uncertainty are compared with a variance–
covariance matrix estimate of parameter uncertainty 
based on the sandwich estimator,12 a robust variance 
estimator that is widely used in population pharmaco-
kinetic/pharmacodynamic (PK/PD) modeling but re-
quires distributional assumptions when computing CIs 
of the required PK metrics for BE evaluation. An advan-
tage of both bootstrap and SIR is that they generate a 
nonparametric, potentially asymmetric, uncertainty 
distributions11 unlike the covariance method. Moreover, 
SIR is often significantly faster than bootstrap.11

In this study, we also evaluated the presented MIE 
approach with three parameter uncertainty assessment 
methods, and compared this approach to the NCA-based 
BE analysis in terms of type I error and power through 
simulation experiments with different levels of data 

sparsity and population variation. An ideal method is ex-
pected to achieve high power while maintaining type I 
error at a pre-set significance level.

METHODS

Standard BE method

In the standard BE method, for a two-way crosso-
ver study, a linear mixed-effect model is fit on log-
transformed individual PK metrics measured using 
NCA.2

where �mik is the measured value of the mth PK metric (i.e., 
AUClast, AUCinf, or Cmax) of the ith subject at the kth period. 
The covariates related to the BE study design include treat-
ment (TRTik), sequence (SEQi), and period (PERk) with 0 for 
reference and 1 for the alternative. The corresponding coef-
ficients are indicated by �m,TRT, �m,SEQ and �m,PER. The in-
tercept term of the regression level is indicated with �m. �mi 
is the random effect corresponding to between-subject varia-
tion (BSV) and �mik is the residual error accounting residual 
unexplained variation for single observations per occasion 
(AUClast, AUCinf, or Cmax), including between-occasion 
variation (BOV). Since the comparison of PK between the 
two treatments is of interest, the BE conclusion is based on 
the 90% CI of �m,TRT that is built on its point estimate and 
standard error as well as a t-distribution. The resultant CIs 
for all PK metrics should be completely within log(0.8) and 
log(1.25) to claim BE.

Model-integrated evidence method

Herein, we present an MIE approach for BE evaluation, 
which is different from the standard BE method in several 
aspects (Table  1). The method consists of several steps 
including (1) model fitting, (2) parameter uncertainty 
assessment, (3) using the model and uncertainty to 
enumerate the differences in summary PK metrics between 
treatment and reference through population simulations, 
and (4) drawing a BE determination (Figure 1).

Step 1: Model fitting

The pre-defined NLME model for reference drug
In this work, we assume that there is a pre-defined NLME 
model to describe the PK of the reference drug, which can 
be formulated as:

(1)
log

(

�mik

)

=�m+�m,TRTTRTik+�m,SEQSEQi

+�m,PERPERk+�mi+�mik
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The observed drug concentrations are indicated by yijk 
for the ith subject at the jth sampling of the kth period. 
The PK model consists of a structural model defined by 
a vector of PK parameters, (�ik). The individual param-
eters of �ik are denoted as �lik which is specifically for 
the lth parameter. �lik is defined in Equation 3 by typical 
values of the parameter (TVl), and potentially, random 
effects for BSV (�li) and BOV (�lik) through the func-
tion g. The residual error is indicated by the function of 
h
(

f
(

�ik , tijk
)

, �ijk
)

, and is assumed to be zero when �ijk is 
zero. �li, �lik, and �ijk are assumed to follow multivariate 
normal distributions with the mean of zero and variance 

matrices (Ω, K , and Σ , respectively), the off-diagonal 
elements of which represent variance (denoted by �2

l
, �2

l
,  

and �2, respectively).

The model used in the model fitting step
The general purpose of a BE study is to compare the rate 
and extent of absorption of the active ingredient or moiety 
from two drug products or formulations. Therefore, extra 
parameters are added to the absorption parameters of the 
pre-defined NLME model to generate a model to fit the BE 
data. Specifically, parameters defining treatment effect 
(� l,TRT) are added to each absorption parameter in the 
model, such as the rate of absorption and bioavailability 
between test and reference compound (bioavailability is 
added to the reference model and fixed to 1 if not present 
in the pre-defined model, thus �F ,TRT represents the 
relative change in bioavailability across treatments). In 

(2)yijk = f
(

�ik , tijk
)

+ h
(

f
(

�ik , tijk
)

, �ijk
)

(3)�lik = g
(

TVl, �li, �lik
)

T A B L E  1   Comparison between the standard NCA-based method and the model-integrated evidence (MIE) approaches presented in this 
paper for BE evaluation.

Step Standard BE method Developed MIE approach

Model fitting Linear mixed-effect model on log-transformed 
individual PK metrics measured using NCA

Nonlinear mixed-effect model on 
observed concentrations

Random-effect levels BSV (per PK metric) BSV (per parameter), BOV (per 
parameter)

Parameter uncertainty distribution 
assessment

Standard error (SE) for fixed effects calculated 
from the least square method, assuming 
t-distribution

Parameter uncertainty is calculated by 
one of:
1.	Covariance matrix, assuming a normal 

distribution
2.	Sampling importance resampling (SIR)
3.	Case-resampling bootstrap

Construction of a 90% confidence 
interval

From the estimate of the coefficient of treatment 
effect (�m,TRT) and the parameter uncertainty 
distribution

Population simulation of summary PK 
metrics from population PK model, 
parameters, and uncertainty distributions

F I G U R E  1   Overview of our developed model-integrated evidence approaches for bioequivalence (BE) analysis. The method consists 
of four steps: (1) model fitting using a pre-defined model for the reference product with additional treatment effect (TRT), sequence effect 
(SEQ), and period effect (PER) on absorption parameters including bioavailability (F, F is assumed to be 1 for the reference product); (2) 
uncertainty assessment using covariance matrix (Cov), sampling importance resampling (SIR), or nonparametric bootstrap (boot); (3) 
simulation for population (i.e., with a large subject number), which can be changed to simulation for a typical subject; and (4) conclusion 
based on the 90% confidence interval (CI) of the geometric mean ratio obtained from the simulation step.
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the case of crossover BE studies, additional parameters 
for sequence effect (� l,SEQ) and period effect (� l,PER) are 
added to each absorption parameter, in the following 
form:

It should be noted that in certain design situations, a 
model with both BSV and BOV on all the parameters may 
not be identifiable. Therefore, the model used in the MIE 
approach for BE assessment may not include BSV and 
BOV on each parameter.

Estimation of model parameters is performed using 
NONMEM 7.4 (Icon Development Solutions, Hanover, 
MD)13 facilitated by Perl-speaks-NONMEM (PsN)14 with 
the first-order conditional estimation method with inter-
action (FOCEI). Supplementary Material S1 provides ex-
amples of NONMEM model codes. To ensure the quality 
of the resultant model, the NONMEM fitting process is 
required to be free of warnings, such as rounding errors or 
estimates near boundaries. In addition, the method pro-
vides an option for testing the identifiability of models by 
detecting saddle points using the saddle-reset15 setting in 
NONMEM. Briefly, the estimation result is acceptable if 
changes are small in objective functions value (absolute 
change <1) and in parameter estimates (<10%) comparing 
before and after saddle-reset.

Step 2: Uncertainty assessment

In order to build 90% CIs of PK metrics, parameter un-
certainty (including the distribution of that uncertainty) 
needs to be assessed. There are three methods in our MIE 
approach to select for uncertainty assessment, all of which 
are implemented in NONMEM.

Covariance matrix
A covariance matrix for all model parameters is obtained 
using the sandwich estimator12 (the default “$COV” 
method in NONMEM). Based on the resultant covariance 
matrix as well as parameter estimates, a series of param-
eter vectors are sampled assuming a multivariate normal 
distribution for further model simulations.

Bootstrap
Nonparametric (case resampling) bootstrap is carried out. 
In this procedure, sampling with replacement for individ-
ual data is performed stratifying on sequence. Thereafter, 
each bootstrap dataset is analyzed through model fitting 
and the resultant parameter estimates from all the data-
sets describe the uncertainty of the model parameters.

Sampling importance resampling (SIR)
The SIR method consists of the steps of sampling, im-
portance weighting, and resampling.10,11 It is possible to 
iterate the SIR steps multiple times. For the first itera-
tion, the proposal distribution is a normal distribution or 
a t-distribution with the parameter estimates as a mean 
vector and the covariance matrix estimated from the 
sandwich estimator. For the following iterations, the pro-
posal distribution is the resultant distribution from the 
last iteration. The final result of SIR is parameter vectors 
resampled from the last iteration. To avoid uncertainty 
underestimation, options are provided to sample param-
eters in a wider range than the proposal distribution by 
setting the acceptance ratio less than 1 and/or sampling 
from a t-distribution.

Step 3: Simulation

The purpose of the simulation step is to create a density 
distribution for the geometric mean of PK metrics (i.e., 
AUC and Cmax) derived from the model, parameter esti-
mates, and parameter uncertainty. Unlike clinical trial 
simulation (CTS), the simulation in this step aims to ob-
tain Cmax and AUC and their uncertainties informed by the 
fitted model. For example, the Cmax based on the model is 
obtained either from available analytical solutions or from 
the maximal concentration of a simulated continuous PK 
curve but not the maximum observation in a CTS, which 
would also account for residual errors. For each simula-
tion, one set of the model parameter vector obtained from 
the uncertainty distribution (Step 2) is used. The number 
of simulations should be large (e.g., 1000 simulations) to 
ensure the accuracy of the resultant distributions, from 
which the BE conclusions are drawn. In the methods pre-
sented here, there are two types of simulations available 
to choose from:

(1) �Simulation of a typical subject. In this type of sim-
ulation, only parameters of fixed effects are used to 
simulate a rich PK study for a single typical subject. 
As a result, the mean ratio is the metric ratio on 
the typical subject. In this type of simulation, it is 
assumed that the typical subject represents the geo-
metric mean of the population.

(2) �Population simulation, where a PK study in a popula-
tion is simulated including a large number of individu-
als (e.g., 1000 subjects). The individual PK parameters 
are randomly sampled from the random effect model.

Certain design aspects of the BE study during the sim-
ulation step are consistent with that of original BE study 
such as dosing and sampling duration. To specifically 

(4)

�lik = g
(

TVl, �li, �lik
)

⋅

(

� l,TRT
)TRTik

⋅

(

� l,SEQ
)SEQi

⋅

(

� l,PER
)PERk
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evaluate the estimate of treatment effect, other covariates 
are not included in the simulations, that is, no sequence or 
period effects in the case of crossover studies.

From each simulation, there are two ways to obtain 
metrics:

(1) �For models where analytical solutions are available for 
AUC and Cmax, metric values are directly calculated 
based on PK parameters, either through typical value 
calculations (when simulating the typical subject), or 
individual predictions (when simulating populations).

(2)  �For complicated models where analytical solutions 
for AUC and Cmax are not available (e.g., a model with 
Michaelis–Menten elimination for nonlinear PK), PK 
profiles for a typical subject or individuals in a popu-
lation are simulated using NONMEM based on ODE 
without considering residual errors, and the PK metrics 
are then calculated based on these simulated curves. 
We evaluated this calculation method for PK metric 
and it showed relative accuracies of above 99.9% with 
the default time step for the models investigated in this 
article, where both analytical and ODE solutions could 
be generated. Accuracy can be improved by adjusting 
the integration time step using MTIME in NONMEM. 
An example NONMEM simulation code (without 
MTIME) is provided in Supplementary Material S1.

After simulating PK profiles and computing PK met-
rics, the geometric mean of the ratio (either typical ratio 
or GMR for population simulation) is calculated for each 
simulation. Across all simulations, density distributions 
of mean ratios are obtained.

Step 4: BE determination

Based on the resultant density distributions of mean ra-
tios, a conclusion is reached whether the two products 
are considered BE. Briefly, for each related PK metric, the 
nonparametric 5th and 95th percentiles are calculated 
from the distributions and form the 90% CI of the mean 
ratio. If the entire CI is within the regulatory limits of 
80–125%, BE is concluded. Typically, for BE to be claimed, 
all metrics must show BE, otherwise, the tested product 
fails the BE test.

Simulation experiment

Simulation experiments were carried out using R to evalu-
ate the performance of the presented MIE approach com-
pared with the standard NCA-based BE method. The 
simulation settings were similar to the previous studies,4–6 

which were based on PK data of the anti-asthmatic drug 
theophylline.

Study design

A standard two-treatment, two-period, two-sequence cross-
over design was applied for the simulation experiment with 
an oral dose of 4 mg. To evaluate BE analysis methods for 
different levels of data sparsity, datasets were simulated 
under four study designs, with different combinations of 
number of subjects (N) and number of samples (n):

(1) �N = 40, n = 10, sampling times at 0.25, 0.5, 1, 2, 3.5, 
5, 7, 9, 12, 24;

(2) �N = 24, n = 10, sampling times at 0.25, 0.5, 1, 2, 3.5, 5, 
7, 9, 12, 24;

(3) N = 24, n = 5, sampling times at 0.25, 1.5, 3.35, 12, 24;
(4) N = 40, n = 3, sampling times at 0.25, 3.35, 24;

Pharmacokinetic model

The model that was used to generate all the datasets for the 
simulation experiment was a one-compartment PK model 
with first-order absorption and first-order elimination. The 
typical values of pharmacokinetic parameters for refer-
ence product were 40.36 mL/h for clearance (CL), 480 mL 
for volume of distribution (V), 1.48 h−1 for rate of absorp-
tion (ka), and 1 for bioavailability (F). In order to guarantee 
the identifiability of model parameters in a non-replicate 
crossover study, the following log-normally distributed ran-
dom effects were used: (1) low variance: �2

CL
 = �2

ka
 = 0.04; 

�2
V

 = 0.01, �2
F
 = 0.01; (2) high variance: �2

CL
 = �2

ka
 = �2

V
 = 0.25, 

�2
F
 = 0.0225. A proportional error model was used for residual 

variability with a variance σ2 = 0.01. No effect was included 
for sequence or period covariates (i.e., � l,SEQ = � l,PER = 1 
for all individuals), while the treatment effect was only in-
cluded in relative bioavailability (�F ,TRT) but not on the rate 
of absorption. In that case, �F ,TRT directly corresponds to 
the test-to-reference ratio of metrics. Therefore, �F ,TRT was 
set to 0.8 or 1.25 to test for type I error, and �F ,TRT was set to 
0.9 to test for power. On the other hand, a treatment effect 
on the rate of absorption does not have such a simple re-
lationship with metric ratios (Supplementary Material S2), 
and thus it was not included in the true model for the con-
venience of type I error and power evaluation.

Analysis

The simulated BE datasets were analyzed using the fol-
lowing methods for BE assessment:
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MIE approach
The PK model used during the MIE approach for BE as-
sessment was similar to the simulation model described 
above except that all covariate effects were estimated, 
that is, treatment, sequence, and period effects for ab-
sorption parameters (bioavailability and rate of absorp-
tion). All the three uncertainty methods (covariate 
matrix, SIR, and bootstrap) were evaluated. For SIR, 
the proposal distribution was set as a t-distribution and 
IACCEPT was set as 0.4 to ensure that an initial sam-
pling distribution was wide enough to encompass the 
potential parameter uncertainty distribution. SIR was 
performed for six iterations with 2000 samples gener-
ated for each iteration. From each of the three uncer-
tainty methods, 1000 sets of population parameter 
vectors were generated from the parameter uncertainty 
distribution for the simulation step, and mean ratios of 
metrics were computed for the typical subject.

NCA-based BE method
The NCA analysis of the simulated datasets was per-
formed using the ncappc16 package in R. AUC was calcu-
lated based on the linear-up, log-down trapezoidal rule. A 
linear mixed-effect model was fit to the logarithm of met-
rics using the nlme R package17 to estimate treatment, se-
quence, and period effects. The 90% CIs of the coefficient 
for treatment effect were obtained from the regression and 
used for hypothesis testing for BE based on TOST.

Evaluation

BE datasets were generated for each of the four investi-
gated study designs in this simulation experiment and for 
three different values of the simulated treatment effect, 
with both high and low variation in the data (24 total sce-
narios, each with 500 simulations). For each scenario, the 
percentage of cases concluding BE was calculated for each 
analysis method and PK metric, respectively. The resultant 
percentage is the PK metric-specific type I error (when the 
simulated treatment effect is 0.8 or 1.25) or study power 
(when the treatment effect is set to 0.9). For the design 
with only three sampling points, the result for AUCinf with 
the NCA method was not included due to the difficulty 
of estimating extrapolated AUC. Lastly, the overall type I 
error or power was obtained by calculating the percentage 
of cases concluding BE for all the relevant PK metrics.

RESULTS

Figure  2a shows that the type I errors for the three PK 
metrics with the simulated treatment effect set to 0.8 

were within the target range (computed as a 95% predic-
tion interval based on the binomial distribution, that is, 
3.2–7.0%), indicating that the observed type I error was 
not significantly different from 5% in an exact binomial 
test given a significance level of 5% and 500 simulations. 
However, the overall type I errors for the final BE determi-
nation (Figure 2b), based on all three PK metrics meeting 
the BE acceptance criteria, were deflated for the stand-
ard NCA method in 6 out of the 8 scenarios (1.8–2.6%). 
In other words, the overall type I errors were significantly 
lower than the target 5%, indicating the conventional 
NCA method was overly conservative in terms of the final 
BE determination. The MIE approach, on the other hand, 
maintained the overall type I errors around 5% for most 
scenarios.

For the simulation experiment with the treatment ef-
fect equal to 1.25 (Figure 2c,d), the standard NCA method 
exhibited deflated overall type I errors (1.2–2.8%) in 5 out 
of the 8 scenarios, while the type I errors for each metric 
were around 5%. The MIE approach using the SIR uncer-
tainty method had maintained type I errors in all simula-
tion experiments (4.0–6.5% for all individual PK metrics 
and 3.8–6.1% for overall BE). On the other hand, the MIE 
approach with the covariance matrix and bootstrap meth-
ods for uncertainty assessment had inflated type I error 
in 4 out of 8 scenarios for the individual PK metrics (7.2–
9.2%) and in 2 of 8 scenarios for the overall type I errors 
(8.2–8.8%). More investigation was performed by repeat-
ing the simulation experiment for one scenario (N = 24, 
n = 10 with high variation), the results of which are listed 
in Supplementary Material S3. The additional simulation 
experiment showed a type I error of around 7% for the 
MIE approach with the covariance matrix (Figures  S3-1 
and S3-2). The magnitude of difference among repeated 
simulation experiments is closely related to the simulation 
size. A simulation experiment with 500 simulations had 
a lower power to detect a deviation from the target of 5% 
compared with larger simulation numbers (Figure S3-3). 
The MIE approach with SIR maintained the type I errors 
in all simulation scenarios, which is strong evidence for 
that SIR adequately estimated the parameter uncertainty 
distributions.

The power of the standard NCA method was lower 
than that of the MIE approaches for all scenarios 
(Figure 3). Larger differences between the standard NCA 
method and the MIE approaches are seen with high data 
variation and with lower numbers of subjects. It should 
be noted that the sampling times for the 3-and 5-sample 
scenarios were optimized for population parameter esti-
mation based on optimal design theory in the previous 
study,6 and this could be the reason that the number of 
individuals was more influential on the power than the 
number of observations. The overall powers (Figure 3b) 
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of the MIE approaches were all above 80%, similar to 
its power for individual metrics. However, for the high 
variation case, the overall power for the standard NCA 
method was reduced to ~60% for the two scenarios with 
24 subjects.

Figure 4a shows that the medians of the estimated means 
of the log(ratio) in each scenario from the 500 simulations 

were around the true value, log(1.25), indicating unbiased 
estimation for all the analysis methods. However, Figure 4b 
shows different uncertainty, indicated by the standard error 
(SE) for PK metrics, for different methods. Among the MIE 
approaches for BE assessment, the covariance matrix and 
bootstrap uncertainty methods exhibited lower uncertainty 
than the SIR uncertainty method, and may explain the 

F I G U R E  2   Comparison in type I error between the standard NCA-based BE method and model-integrated evidence approaches using 
different uncertainty assessment methods including covariance matrix (Cov matrix), SIR, and nonparametric bootstrap for true treatment 
effect set at 0.8 (a and b) and 1.25 (c and d). Left plots (a and c) show type I error of BE tests from individual PK metric. Right plots  
(b and d) show overall type I error of final results that concludes BE only when all related metrics pass BE. It is noted that the overall type I 
error is based on Cmax, AUClast, AUCinf except for the scenario (N = 40, n = 3), where only Cmax and AUClast are involved since AUCinf could 
not be correctly estimated using the standard NCA method. For the sake of comparison among methods, AUCinf is not considered for any of 
the methods in this scenario. The horizontal dashed lines indicate nominal level (5%), as well as its 95% prediction interval (3.2%, 7%) for 500 
simulations. N represents subject number and n represents the number of samples per person in each simulated dataset.
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inflated type I errors in certain scenarios due to underesti-
mation of the uncertainty in the CIs of the PK metric GMRs. 
It is seen that the estimated uncertainty of the standard 
NCA approach was right-skewed for AUCinf, with some 
cases having relatively large uncertainty, suggesting that an 

extrapolation problem of AUCinf estimation existed even 
for rich sampling in the case of high variation. This result 
may explain the low power of the standard NCA method in 
these situations (the corresponding plot is not shown here 
but is similar to Figure 4b).

F I G U R E  3   Comparison in power between standard NCA-based BE method and model-integrated evidence approaches using different 
uncertainty assessment methods including covariance matrix (Cov matrix), SIR, and nonparametric bootstrap with true treatment effect 
set at 0.9 for individual metrics (a) and final BE conclusion (b). It is noted that the overall power is based on Cmax, AUClast, AUCinf except 
for the scenario (N = 40, n = 3), where only Cmax and AUClast are involved since AUCinf could not be correctly estimated using the standard 
NCA method. For the sake of comparison among methods, AUCinf is not considered for any of the methods in this scenario. The horizontal 
dashed lines indicate power at 100%. The error bar is 95% confidence interval for power based on the binomial distribution for 500 
simulations. N represents the subject number and n represents the number of samples per person in each simulated dataset.
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To further compare the two simulation approaches 
(i.e., simulation for a typical subject and population 
simulation) of the MIE approach, additional simulations 
were performed with detailed methods and resulted in 
Supplementary Material S2. The results showed that the 
typical values of AUClast and Cmax were different from 
their geometric means (Figures  S2-1A, S2-2A, S2-3A). 

As for ratios, GMR and typical ratio were consistent  
if the two products differed in only bioavailability 
(Figure  S2-1B). While they exhibited discrepancy for 
AUClast and Cmax if the treatment effect was on the rate of 
absorption (Figures S2-2B, S2-3B, S2-4).

The evaluation of the MIE approach was mainly per-
formed for scenarios of different bioavailability between 

F I G U R E  4   Boxplots for the mean of the natural logarithm of metric ratio for a typical subject (a) and its standard error (SE) (b) from 
the simulation experiment with the true treatment effect at 1.25. The comparison is between standard NCA-based BE method and the 
model-integrated evidence approaches using different uncertainty assessment methods including covariance matrix (Cov matrix), SIR, 
and nonparametric bootstrap. The natural logarithm of 1.25 (0.223) is indicated by the dashed horizontal line (a). N represents the subject 
number and n represents the number of samples per person in each simulated dataset.
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two products, implemented in the simulations via a treat-
ment effect by changing the relative bioavailability. That 
treatment effect is equal to the true GMR for all PK met-
rics. In the scenario of different absorption rates, a treat-
ment effect on KA will not be proportional to the GMR of 
Cmax (Figure S2-4). For example, to achieve a Cmax GMR 
of 0.8 for type I error evaluation, the simulated treatment 
effect on KA would need to be set to 0.3, a large difference 
that is not common in real examples. Nevertheless, we 
investigated this scenario in the case with high variation, 
and simulations showed controlled type I error and high 
power (results not shown).

DISCUSSION

In the present work, we developed a MIE approach for 
evaluating BE that is capable of analyzing sparse PK 
data. Our study showed that our novel MIE approaches 
for BE assessment had higher power than the standard 
NCA method (Figure  3) while controlling type I errors 
(Figure 2) in a series of diverse scenarios. Larger differ-
ences in power between the MIE approach and the NCA-
based method were seen with high data variation and 
with lower numbers of individuals. These results should 
not be surprising as the MIE approach applies NLME 
modeling that shares information among all subjects 
(i.e., borrowing strength over subjects) and therefore 
achieves higher power,18 especially with sparse sampling. 
On the other hand, NCA analyzes individual PK profiles 
separately and may present challenges with accurately 
estimating PK metrics in the case of sparse sampling. 
For example, the accuracy of Cmax estimates tends to de-
cline with sparse sampling. Furthermore, in the simula-
tion experiment with only three samples, AUCinf could 
not be calculated using the NCA approach because of 
the difficulty in AUC extrapolation to infinity. In addi-
tion, the NCA approach needs a long sampling duration. 
Otherwise, the AUCinf measurement is sensitive to high 
variation PK, suggested by the high variation of AUCinf 
shown in Figure 4b, which led to lower power compared 
with AUClast and Cmax when using the NCA approach 
(Figure 3a). It should be noted that it is recommended to 
collect 12–18 samples per subject per dose for BE studies. 
While the sampling times used in the presented experi-
ment study were set the same as in previous publications 
to compare between different MIE approaches in differ-
ent levels of sparsity.4

In the case of BE tests, a BE conclusion is claimed only 
if the null hypotheses (bioinequivalence) are rejected 
for tests on all metrics,2 that is, accepting all alternative 
hypotheses (bioequivalence). Such multiple compari-
sons are one of the reasons that the overall type I error 

of the NCA-based method was deflated for some sce-
narios. Similarly, the overall powers of the NCA-based 
method were lower than the power for individual metrics 
(Figure 3b). However, this effect was not as pronounced 
with the MIE approaches. One explanation may be that 
the MIE approaches integrate the information over all 
samples for all tests by adding treatment effects on related 
absorption parameters so that the conclusion for each 
metric is based on all data instead of heavily depending 
on the information of certain sampling points. Although 
treatment effect is expected only for absorption param-
eters, it is possible that there exists period or sequence 
effects on other PK parameters. However, adding these 
effects on all parameters may lead to an unidentifiable 
model. As a result, we propose only adding these effects 
to absorption parameters for parsimony. Note that period 
and sequence effects on relative bioavailability will also 
affect other parameters, such as apparent clearance and 
apparent volume of distribution.

In an effort to control type I error of the presented 
MIE approaches for BE determination, we investigated 
a series of methods for uncertainty assessment. A good 
method of assessing parameter uncertainty is expected to 
control type I errors at a pre-defined significance level. 
The covariance matrix method estimates uncertainty 
based on an asymptotic approximation to the inverse 
of the fisher information matrix (FIM) in combination 
with an assumption of a multivariate normal distribu-
tion. However, the asymptotic condition is not achieved 
when analyzing small sample size and/or sparse BE data, 
which may lead to underestimation of uncertainty and 
thus inflation of type I error. Loingeville et al.8 have re-
cently suggested that scaling the FIM-based on the num-
ber of subjects and the number of parameters in a model 
may correct the inflated type I error due to this asymp-
totic assumption.

A second uncertainty assessment approach used in this 
work is a nonparametric (case resampling) bootstrap. The 
nonparametric bootstrap uses observed data as a guess 
of the population and assesses uncertainty by sampling 
from the “population” multiple times. Nevertheless, boot-
strap methods may underestimate the coverage of the CI 
for a small sample that is not large enough to represent 
the population.19 Furthermore, the bootstrap approach 
is more computationally intensive compared with other 
methods.11

The third approach to uncertainty estimation investi-
gated was using the SIR procedure, which obtains a pos-
terior distribution of parameter uncertainty based on the 
performance of sampled parameters in describing the data. 
It has been demonstrated in this work that SIR maintains 
type I error around the nominal level (Figure 2). Similarly, 
Loingeville et  al.8 also showed that another method for 
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generating a posterior distribution, Hamiltonian Monte-
Carlo (HMC), controlled type I error in evaluating BE. 
Considering their performance in controlling type I errors 
and the relatively low computational burden compared 
with bootstrap, uncertainty methods based on a posterior 
distribution such as SIR and HMC are a promising strat-
egy for controlling type I error in the MIE approaches.

The MIE approaches for BE determination investigated 
here include a simulation step, where each simulation is 
based on a sample drawn from the parameter uncertainty 
distribution, allowing for simulations based on non-
normal uncertainty distributions. This is in contrast to the 
approach suggested by Loingeville et al.8 where different 
methods of uncertainty calculation are only used to more 
accurately assess the variance of an assumed normal dis-
tribution for parameter uncertainty when performing a 
Wald test. Although this normality assumption may be 
supported by the central limit theorem, it may not hold for 
small sample sizes.

In addition to handling models without explicit analyt-
ical solutions, the simulation step in the presented method 
allows for direct calculation of the GMR through popula-
tion simulations instead of ratios calculated based on the 
typical subject. Supplementary Material S2 shows that the 
geometric means (for metrics and test-to-reference ratio of 
metrics) may be different from typical values depending 
on the difference between the products (i.e., the difference 
in the aspects of absorption, rate, or extent). To be in accor-
dance with regulatory criteria,2 GMR is the better option 
for BE evaluation considering that the impact of formu-
lation differences on the rate of absorption is unknown. 
The simulations also showed that the values of geometric 
means and GMR also depended on BSV and BOV, as well 
as their variation magnitudes (Figures S2-1, S2-2, and S2-
3). Thus, the PK model used in the MIE approach should 
contain random effects present in the data, especially BOV 
if possible. BOV can be added not only to bioavailability 
(as in the simulation experiments), but also to other PK 
parameters. It is also noted that in the presented simula-
tion experiment the treatment effect was set on relative 
bioavailability, in which case the typical ratio and GMR 
are consistent (Figure S2-1). As a result, we used a typical 
ratio for BE conclusion that was expected to give similar 
results to GMR for the purpose of shortening the running 
time of the simulation experiments.

In the current study, the MIE approaches with SIR for 
uncertainty estimation-controlled type I error and had a 
high power for BE evaluation for sparse BE data. By using 
NLME, the MIE approaches for BE assessment may be a 
promising tool for other situations for generic drug eval-
uation, such as highly variable drugs and drug products 
with long half-life. Möllenhoff et al.20 explored a different 
statistical approach, the bioequivalence optimal test, as 

an alternative to the TOST to improve the power for BE 
analysis in highly variable drugs. In future work, incor-
porating this approach into our method may give further 
improvements.

Previous and presented MIE approaches for BE assess-
ment were evaluated under the situation that the anal-
ysis model was the data-generating model. That may be 
approximately the case when there is a well-developed 
population PK model available for reference products. 
However, there may not exist a well-developed population 
PK model for certain products, in which case a model-
building procedure may be necessary. However, complex 
model exploration may impair the type I error of confir-
mative analyses.7 One recommendation is to make a pre-
specified analysis plan or to prespecify model(s).7 In this 
aspect, more efforts are needed to evaluate the impact of 
model misspecification on method performance.

In the current work, the simulation experiment was 
performed for oral drug examples. However, the devel-
oped MIE approaches can be used for drugs with other 
types of extravascular administration. It should be noted 
that some other extravascular administrations may lead to 
extremely sparse data (e.g., ophthalmic drugs) or require 
complicated absorption models (e.g., long-acting inject-
ables). In both scenarios, PK models may not be identi-
fiable in a BE study design despite being available in the 
literature. One promising strategy for the above concerns 
is through model averaging, which performs analyses 
based on a series of pre-defined models.21,22 In addition, 
averaging over several models avoids the model-building 
process and may help with the problem of model mis-
specification without assuming only one model. Current 
investigations are extending the proposed MIE approach 
by utilizing the model averaging approach. To ensure easy 
access to these proposed methods, an open-access R pack-
age is also being developed that features an interactive 
web app using shiny.23

In summary, our MIE approach for BE assessment 
using SIR shows controlled type I error and higher power 
compared with NCA-based method. Our study demon-
strates that the presented method serves as a promising 
tool to analyze BE with sparse data.
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