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Global analysis of gene expression by using DNA microarrays is
employed increasingly to search for differences in biological prop-
erties between normal and diseased tissue. In such studies, ex-
pression that deviates from defined thresholds commonly is used
for creating genetic signatures that characterize disease vs. nor-
mality. Although it is axiomatic that the threshold parameters
applied to microarray analysis will alter the contents of such
genetic signatures, the extent to which threshold choice can affect
the fundamental conclusions made from microarray-based studies
has not been elucidated. We used GABRIEL (Genetic Analysis By Rules
Incorporating Expert Logic), a platform of knowledge-based algo-
rithms for the global analysis of gene expression, together with
conventional statistical approaches, to examine the sensitivity of
conclusions to threshold choice in recently published microarray-
based studies. An analysis of the effects of threshold decisions in
one of these studies [Ramaswamy, S., Ross, K. N., Lander, E. S. &
Golub, T. R. (2003) Nat. Genet. 33, 49–54], which arrived at the
important conclusion that the metastatic potential of primary
tumors is encoded by the bulk of cells in the tumor, is the focus of
this article. We discovered that support for this conclusion highly
depends on the threshold used to create gene expression signa-
tures. We also found that threshold choice dramatically affected
the gene function categories represented nonrandomly in signa-
tures. Our results suggest that the robustness of biological con-
clusions made by using microarray analysis should be routinely
assessed by examining the validity of the conclusions by using a
range of threshold parameters.

GABRIEL � genetic signature � tumor metastasis

DNA microarrays, which enable the expression of thousands
of genes to be assessed simultaneously at the transcriptional

level, have become an important tool for research in the
biological and biomedical sciences to produce genetic ‘‘signa-
tures’’ for human disease (1–9). Whereas it is axiomatic that the
threshold used to determine whether gene expression is altered
will affect the list of genes comprising the genetic signature, and
the effects of parameter choice have been examined in other
fields of study (10), the consequences of threshold decisions on
the interpretation of data obtained during microarray studies has
not been elucidated. Genetic Analysis By Rules Incorporating
Expert Logic (GABRIEL), a platform of knowledge-based algo-
rithms that apply domain-specific and procedural knowledge
systematically for the assessment of data from DNA microarrays,
has the ability to make the consequences of changes in analytical
parameters readily apparent (11–15). We used GABRIEL together
with other analytical tools to investigate the effects of threshold
choice on microarray-based conclusions.

The principal data set used for our investigation of the effects
of threshold decisions was collected by Ramaswamy et al. (16) in
an important study of the origin of cancer metastases, which
underlie the lethality of almost all cancers (17). Whether the
genetic alterations that lead to metastasis occur in a small
fraction of cells in primary tumors or are present more generally

has been controversial (16, 18, 19). The format of the Ra-
maswamy et al. analysis (16) was to define a collection of genes
showing the greatest differential expression in metastatic tumors
vs. primary tumors as a ‘‘metastasis signature’’ and then to use
the occurrence of this signature to classify, by hierarchical
clustering, separate groups of patients having primary lung
adenocarcinoma, prostate adenocarcinoma, medulloblastoma,
or large B cell lymphoma according to whether the metastasis
signature was present or absent in a sample of the primary tumor.
They then determined that the primary tumor patients having a
metastasis signature showed a statistically significant decrease in
survival. Their discovery of such a decrease in patients having
tumors with a metastasis signature led them to conclude that the
bulk of cells in primary tumors have the genetic potential for
metastasis. Others have reached similar conclusions indepen-
dently from examination of data sets comparing gene expression
in normal and tumor tissues (20).

We found that the ability to classify tumors according to the
data of Ramaswamy et al. data set is profoundly inf luenced by
the threshold used to compile the metastasis signature and that
the effects of threshold choice on microarray-based classifi-
cation apply similarly to other published data sets that we have
analyzed. During our investigations, we additionally observed
that threshold choice, and, consequently, the number of genes
in genetic signatures, also dramatically affects the gene func-
tion categories represented nonrandomly in signatures. Our
results suggest a need for routine assessment of the robustness
of microarray-based biological conclusions by evaluation of the
conclusion’s statistical validity under a range of threshold
parameters.

Methods
Design and Validation of FDR and FNR Algorithms. Because experi-
mental variability commonly differs among microarray data sets,
estimates of false discovery rate (FDR; the rate of false inclusion
of genes whose expression is not truly altered) and false negative
rate (FNR; the rate of false exclusion of genes whose expression
is truly altered) during microarray-based analysis of gene ex-
pression require data set-specific assessment of random fluctu-
ation (11, 21–25). In addition, the frequencies of true positives
and true negatives usually are not known during microarray-
based studies, requiring estimation of FDR and FNR by a
strategy that is independent of such prior knowledge. To esti-
mate FDR for output resulting from the application of GABRIEL
rules, we adopted and incorporated into GABRIEL a computa-
tional approach [Significance Analysis of Microarray (SAM); refs.
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11 and 21–25] that randomized the original data and then
determined the frequency at which the conditions used for gene
selection were satisfied by the random data sets (see Fig. 2 and
Supporting Text, which are published as supporting information
on the PNAS web site). To generate FNR values, we designed a
computational approach that estimates both experimental vari-
ability (noise) and the true expression level (signal) in the data
set being analyzed; the extent of experimental variability is then
estimated by randomizing the data, for example, by randomly
flipping the numerical signs of data points. The signal was
estimated by averaging values for the expression of genes that
satisfy t score thresholds. FNR was then defined as the frequency
at which the observed level of expression would be overlooked
as a consequence of adding the estimated experimental variabil-
ity to the estimated signal.

Because the signal-to-noise ratio and probability distribu-
tions of signals and noise are unknown in real biological data
sets, we tested FDR and FNR algorithms by applying them to
data sets in which the identities of positive genes and negative
genes were defined by simulation and, therefore, were known.
By applying different levels of noise and signal, we found that
FDR and FNR estimates deviated from actual values and that
the deviation increased as the signal-to-noise ratio or number
of experimental repeats decreased. In general, deviation of
FNR estimates from actual values approximated the deviation
of FDR estimates from actual values reported in previous
studies (26) (Table 4, which is published as supporting infor-
mation on the PNAS web site).

Analytical Procedures. We used exactly the same procedures
reported by Ramaswamy et al. (16) to preprocess data, choose
metastasis signatures, and carry out two-way hierarchical clus-
tering and Kaplan–Meier analysis. We also compiled additional
signatures by using a range of threshold values not included in the
Ramaswamy et al. report. The full data set was further analyzed

by using the K-means clustering function of the CLUSTER pro-
gram (4) at K � 2 and a randomized iteration process of 100,000
iterations that identifies similarly expressed genes based on
correlation coefficient.

Gene Ontology Category Analysis. We used the Gene Ontology
GO:TERMFINDER program to classify genes by biological pro-
cess, molecular function, or cellular component and to calcu-
late the statistical significance of the resulting groupings (27,
28). This program estimates the FDR for GO categorization by
using computer generated random simulations to calculate the
likelihood that the frequency of genes in a category exceeds
randomness (27) as compared with the distribution frequency
of all of the genes on the microarray. The human gene
annotation association file was downloaded from European
Bioinformatics Institute (www.ebi.ac.uk�GOA). We deter-
mined nonrandom representation in a category by using a
range of FDR cutoffs.

Results and Discussion
Threshold-Dependent Relationship of Metastasis Signature and Clin-
ical Outcome. Our analysis used the 128 gene and 17 gene
metastasis signatures compiled by Ramaswamy et al. and also
metastasis signatures of 256, 512, and 1,024 genes that we
compiled by using the same procedure with different thresholds
to define altered expression (Table 1, top section).

The conclusion by Ramaswamy et al. that metastatic poten-
tial resides in the bulk of cells in primary tumors depended on
their finding that the list of genes they defined as a metastasis
signature was statistically predictive of poor survival by
Kaplan–Meier analysis (17). A 128-gene metastasis signature
in their lung adenocarcinoma data set was used to arrive at this
conclusion. However, using identical procedures but different
thresholds to compile signatures of different sizes from the
same data set, we found that the statistical significance (P

Table 1. P values of the differences between survival curves of the two clusters of patient samples for lung adenocarcinoma,
prostate adenocarcinoma, medulloblastoma, and large B cell lymphoma data sets

No. of signature
genes*

SNR threshold
overexpressed�underexpressed

P value in lung
adenocarcinoma

P value in prostate
adenocarcinoma

P value in
medullo blastoma

P value in large
B cell lymphoma

Equal number of underexpressed and overexpressed genes
128 0.483��0.403 0.000966 0.275 0.382 0.409
256 0.442��0.369 0.598 0.269 0.498 0.388
512 0.400��0.314 0.0657 0.118 0.88 0.197

1,024 0.347��0.258 0.00243 0.242 0.941 0.119
17 N�A† 0.136 0.0413 0.0868 0.303

Signatures compiled with equal SNR thresholds for overexpressed and underexpressed genes
21�3* 0.55��0.55 0.0512 0.77 0.198 0.869
51�14* 0.5��0.5 0.997 0.473 0.173 0.556

109�30* 0.45��0.45 0.885 0.473 0.134 0.245
250�80* 0.4��0.4 0.00279 0.275 0.403 0.206
474�168* 0.35��0.35 0.069 0.275 0.941 0.245

P values by using clusters derived by K-means clustering (K � 2)
128 0.483��0.403 0.469 1 0.798 0.938
256 0.442��0.369 0.74 0.487 0.969 0.969
512 0.400��0.314 0.138 0.487 0.969 0.969

1,024 0.347��0.258 0.0007 0.487 0.711 0.119
17 N�A† 0.044 0.0017 0.217 0.479

The data sets (16) were downloaded from Ramaswamy’s supplemental information web site. We did not analyze the breast cancer data set because of
unavailability of gene identifiers. In the top section, the 128, 256, 512, and 1,024 gene signatures are chosen based on the SNR in the Global Map data set of
64 primary tumors and 12 metastasis tumors. Each of them contains an equal number of overexpressed and underexpressed genes. The two signal to-noise
thresholds in each row define the threshold for selecting overexpressed and underexpressed genes, respectively. The 17-gene signature is from Ramaswamy
et al. (16) which is a subset of the 128-gene signature selected based on the SNR in the lung adenocarcinoma data set. The calculation of P values is described
in Methods. When the hierarchical clustering dendrogram could be divided in different ways, we show here the division that yields the lowest P value.
*Signature genes are listed by number of overexpressed�underexpressed genes.
†N�A, not applicable.
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value) of the conclusion that the two groups of patients they
delineated by hierarchical clustering showed differences in
survival was inf luenced strongly by the number of genes
included in the signature and, thus, depended largely on
threshold choice (Table 1 and Fig. 1). For example, whereas
the 128-gene metastasis signature yielded statistically different
survival rates between lung adenocarcinoma patients that did
or did not have the signature (P � 0.01), the 256-gene signature
yielded a P value of 0.598 for these same patients. The loss of
statistical significance and predictive ability for the 256-gene
signature vs. the 128-gene signature does not result from
inclusion of a larger fraction of uninformative genes as sig-
nature size increases, because the P value decreased to 0.0657
for a 512-gene signature. Thus, the relationship between
threshold choice and significance of the biological conclusion
reached is not linear.

By using their 17-gene metastasis signature to classify cancer
patients, Ramaswamy et al. concluded that the presence or
absence of this signature in primary tumor samples has general
value in predicting patient outcome. We used their procedures
to examine the same prostate adenocarcinoma, medulloblas-
toma, and B cell lymphoma data sets by employing a range of
thresholds to define ‘‘overexpression’’ and ‘‘underexpression
(Table 1, top section); whereas the 17-gene signature yielded a
low P value for the distinction between poor survival and good
survival curves for prostate adenocarcinoma and medulloblas-
toma patients whose tumors have or lack metastasis signatures
(P � 0.0413 and 0.0868, respectively), as reported by Ra-
maswamy et al., signatures of other sizes failed to statistically
support this distinction for the same data sets (P � 0.1). No
evidence of the ability of the 17-gene signature to predict clinical
outcome for B cell lymphomas was observed by either us or

Ramaswamy et al. For the lung adenocarcinoma data set, the P
value we obtained for the 17-gene signature was different from
the one reported by Ramaswamy et al., possibly due to the
nonunique ordering of hierarchical clustering output (4).

Ramaswamy et al. included equal numbers of overexpressed
and underexpressed genes in each metastasis signature, and we
initially followed this practice in compiling signatures. To de-
termine whether the observation that threshold choice influ-
ences the biological conclusion applies also to signatures that are
not constrained in this way, we additionally compiled signatures
consisting of overexpressed and underexpressed genes selected
at equal threshold values and contained unequal numbers of
overexpressed and underexpressed genes. We found that when
these ‘‘metastasis signatures’’ were used to predict patient
survival (Table 1, middle section), the P value of the difference
between the survival data also varied nonlinearly with the
threshold. We also determined whether the effects we observed
depended on the method of clustering we used, namely, hierar-
chical clustering. We applied K-means clustering to the same
data set (Table 1, bottom section) and again found that the P
value of the difference between the survival data of the patients
varied nonpredictably with the signature size.

The effects of parameter choice on microarray investigations
were, as expected, not restricted to the Ramaswamy et al. cancer
metastasis data set. We found (unpublished data) that changes
in the parameters used to analyze microarrays also had impor-
tant effects on gene lists obtained in our own studies of gene
expression during the Streptomyces coelicolor life cycle (13) and
the replicative senescence in human fibroblasts and mammary
epithelial cells (14).

Estimates of FDR and FNR for Metastasis Signatures. To assess
statistical confidence in the signatures compiled at various
thresholds, we used GABRIEL to estimate the FDR and FNR
(see Methods) for overexpressed and underexpressed genes in
signatures by applying a range of signal-to-noise ratio (SNR)
thresholds to define ‘‘over’’ and ‘‘under’’-expression (Table 1).
FNR, which bears a largely reciprocal relationship to FDR,
commonly is increased when thresholds for defining perturbed
expression are increased in stringency, leading to a corre-
spondingly greater chance of not identifying genes whose
expression is genuinely affected by the event being studied.
The results of this analysis (Table 2; see also Fig. 3, which is
published as supporting information on the PNAS web site)
indicated that genes overexpressed in these tumors show
estimated FDR and FNR values (in the range of 0.144�0.191
and 0.245�0.295, respectively) for all signatures compiled
within the range of SNR thresholds we examined, but that
signatures for underexpressed genes were associated with an

Fig. 1. Kaplan–Meier survival analysis of the clusters of lung adenocarci-
noma individuals defined by the gene signature of different sizes. The dashed
line represents the individuals without the metastasis signature delineated by
hierarchical clustering, and the solid line represents the individuals with the
metastasis signature. The plots are generated by the WINSTAT software (R. Fitch
Software, Staufen, Germany). Shown are the clusters for the following gene
signatures: 128 (a), 256 (b), 512 (c), 1,024 (d), and 17 (e).

Table 2. FDR and FNR estimates associated with metastasis
signatures containing different numbers of genes

No. genes (SNR threshold) FDR FNR

Overexpressed genes
64 (0.483) 0.144 0.295

128 (0.442) 0.161 0.287
256 (0.400) 0.171 0.262
512 (0.347) 0.191 0.245

Underexpressed genes
64 (�0.408) 0.577 0.638

128 (�0.369) 0.546 0.626
256 (�0.314) 0.62 0.612
512 (�0.258) 0.641 0.564

Analysis was done by using GABRIEL and the Ramaswamy et al. data set (16).
We calculated the SNR thresholds corresponding to each size signature and
showed them in the parentheses.
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FDR value �0.5 over a range of thresholds, indicating a high
likelihood of false discovery among this gene group. When
equal SNR threshold values were applied for identification of
overexpressed and underexpressed genes, a much larger num-
ber of overexpressed genes was observed. For example, as
shown in Table 1, at an SNR threshold of 0.35, 474 overex-
pressed genes but only 168 underexpressed genes were se-
lected. We also observed an excess of overexpressed genes vs.
underexpressed genes in metastatic tumors in another pub-
lished metastasis data set (29).

We extensively tested our FDR algorithm on simulated data
sets and as well as on other published data sets (e.g., a replicative
senescence data set; ref. 14) and found that the overexpressed
and underexpressed genes in these data sets had similar FDRs,
indicating that the calculated difference between the FDRs of
overexpressed and underexpressed genes in the Ramaswamy et
al. data set is not a result of a methodological artifact. The
surprising difference between FDR estimates for overexpressed
and underexpressed genes in the Ramaswamy et al. data set
found by GABRIEL analysis was also observed when we used SAM
(21) (data not shown).

Analysis of Biological Categories Represented Nonrandomly in Me-
tastasis Signatures. During our investigations, we observed that
signature size, as determined by threshold choice, also had
surprising effects on the identification of functional categories
considered to be represented nonrandomly during classifica-
tion of genes by their annotated biological role or cellular
function. Nonrandom representation, or enrichment, of a
particular class of genes was determined by comparison with
the expected random incidence of genes in that category by
using computer simulated data (see Methods). Some nonran-
domly enriched categories detected at an FDR cutoff of 5% for
the 128-, 256-, 512-, or 1,024-gene metastasis signatures are

shown in Table 3; analogous results but different categories of
nonrandom enrichment were obtained at FDR cutoff values of
1% and 10% (data not shown). Whereas in general, larger size
signatures resulted in nonrandom enrichment of more cate-
gories (e.g., genes related to transcription were enriched in
1,024-gene signature but not in the 128-gene signature), some
categories (e.g., macromolecule biosynthesis) showed greater
enrichment for a smaller size signature showed than for a
larger one. Additionally, genes annotated as encoding a cel-
lular component of fibrillar collagen were represented non-
randomly in metastasis signatures that contain 256 and 512
genes (FDR � 5%) but not in signatures of other sizes.
Collectively, our findings indicate that conclusions about
nonrandom representation of certain biological processes and
cellular components in gene signatures identified by microar-
ray analysis can depend significantly on the SNR threshold
used to select these genes, and the relationship between
category representation and threshold choice is neither linear
nor predicable. This effect may result from possible nonlin-
earity of the ratio between the total number of genes identified
and the number of genes in a particular category.

Collectively, the results reported here argue strongly that
microarray-based gene classifications be carried out routinely by
using a range of threshold conditions to assess the sensitivity of
biological conclusions to threshold choice and the overall ro-
bustness of the conclusions.
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