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ased Fe-catalyzed ethene
oligomerization machine learning model provides
highly accurate prediction of propagation/
termination selectivity†

Bo Yang, *a Anthony J. Schaefer,a Brooke L. Small,b Julie A. Leseberg,b

Steven M. Bischof,b Michael S. Webster-Gardiner*b and Daniel H. Ess *a

Linear a-olefins (1-alkenes) are critical comonomers for ethene copolymerization. A major impediment in

the development of new homogeneous Fe catalysts for ethene oligomerization to produce comonomers

and other important commercial products is the prediction of propagation versus termination rates that

control the a-olefin distribution (e.g., 1-butene through 1-decene), which is often referred to as a K-

value. Because the transition states for propagation versus termination are generally separated by less

than a one kcal mol−1 difference in energy, this selectivity cannot be accurately predicted by either DFT

or wavefunction methods (even DLPNO-CCSD(T)). Therefore, we developed a sub-kcal mol−1 accuracy

machine learning model based on several hundred experimental selectivity values and straightforward

2D chemical and physical features that enables the prediction of a-olefin distribution K-values. As part of

our model, we developed a new ad hoc feature that boosted the model performance. This machine

learning model captures the effects of a broad range of ligand architectures and chemically nonintuitive

trends in oligomerization selectivity. Our machine learning model was experimentally validated by

prediction of a K-value for a new Fe phosphaneyl–pyridinyl–quinoline catalyst followed by experimental

measurement that showed precise agreement. In addition to quantitative predictions, we demonstrate

how this machine learning model can provide qualitative catalyst design using proximity of pairs type

analysis.
Introduction

Linear a-olens (i.e., 1-alkenes), specically C4 to C18, are
important chemical precursors used in the production of
several relevant commodities such as polyethylene, plasticizers,
lubricants, surfactants, and other materials.1,2 The Shell Higher
Olen Process (SHOP) generates these a-olens with a Ni cata-
lyst, and Idemitsu and SABIC-Linde use Zr-based catalysts.3–5

Chevron Phillips Chemical and INEOS operate processes based
on triethylaluminum catalysts under high pressure and
temperature (>175 °C).6 Fe-based catalysts are highly desirable
due to the abundant, low-cost, and non-toxic nature of iron.
Iron oligomerization catalysts generally display high reactivity,
and enable signicant diversity of ligand architectures that can
be used to control reaction selectivity.7–13 Perhaps the most
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prominent example of a molecular Fe catalyst for a-olen
production is the tridentate pyridine bisimine (PBI) Fe complex
(I in Fig. 1a) reported by both Gibson8 and Small and Broo-
khart.9,14 A major impediment in the design of novel Fe-based
tridentate ethene oligomerization catalysts is the prediction of
the a-olen selectivity distribution. The chelating ligand
framework has a major impact on the distribution ranging from
C4 to longer oligomers that are waxes (C20+).15–20

The distribution of a-olens produced is typically described
as the K-value that is a measure of the selectivity for the rate of
propagation versus the rate of termination during oligomeriza-
tion (Scheme 1) and is dened as the oligomer fraction that
propagates versus the total propagation and termination for
a single ethene insertion step.21–23 This value, which is mathe-
matically described as a constant that is between 0 and 1, oen
shows small amounts of dri over the total product range, and
is therefore generally reported for C12/C10 or C14/C12.20 It has
generally been established that propagation-termination selec-
tivity is controlled by the energy difference between transition
states for Fe-alkyl ethene insertion for propagation and termi-
nation by b-hydrogen transfer.20,24–26 Importantly, based on
experimentally reported K-values and statistical rate theory, the
Chem. Sci., 2024, 15, 18355–18363 | 18355
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Fig. 1 The general workflow involves combining 2D descriptors for
Fe-imine type catalysts with experimental K-values to develop an
accurate machine learning model (e.g. Random Forest type shown) to
predict ethene oligomerization a-olefin selectivity. (a) Small and
Brookhart's (PBI) Fe type catalysts and 2D descriptors to describe the
aryl groups. (b) Overview of ethene oligomerization generating
a distribution of a-olefins, which is quantitatively described by
experimentally measured K-values.

Scheme 1 General catalytic cycle for tridentate Fe-catalyzed ethene
oligomerization.

Chemical Science Edge Article
energy difference between these transition states is oen less
than 1 kcal mol−1. Thus, predicting the K-values for ethene
oligomerization is outside the reach of density functional theory
(DFT) and generally outside the reach of CCSD(T) or DLPNO-
CCSD(T) that can be applied to moderate to large size cata-
lysts.27,28 While energy scaling to magnify the energy differences
between transition states can be applied, this approach gener-
ally cannot be applied to a large variety of catalysts in
a predictable manner.28 Therefore, we postulated that
a machine learning based model built using experimental data
and molecular structure features may provide the necessary
sub-kcal mol−1 accuracy to enable the prediction of K-values
across a variety of ligand families. In addition to the model
being based on experiments rather than DFT computed data,
this type of approach has the advantage of no signicant
computational cost to predict the K-values of new possible
ligands. Additionally, as we have previously shown for Cr ethene
trimerization, machine learning models can provide key quali-
tative insights for further catalyst design.29
18356 | Chem. Sci., 2024, 15, 18355–18363
Here, we disclose the development and use of a machine
learning model that enables prediction of a K-value within
a mean absolute error of only 0.05, which is equivalent to an
energy error of less than 0.15 kcal mol−1 for transition-state/
statistical-theory-based selectivity. This experimentally based
machine learning model was developed using straightforward
2-dimensional (2D) molecular features as well as a newly
created feature that describes the ligand arms (Fig. 1a). This
machine learning model captures the effects of a broad range of
ligand architectures and replicates and predicts chemically
nonintuitive trends in oligomerization a-olen selectivity.
Validation of the machine learning model was then achieved by
prediction and experimental measurement of a K-value for
a new Fe phosphaneyl–pyridinyl–quinoline (PPQ) catalyst. In
addition to quantitative prediction of K-values, we illustrate how
this machine learning model can provide qualitative catalyst
design using proximity of pairs analysis. Overall, this model
provides a lynchpin for choosing new Fe ethene oligomerization
catalysts to develop.

Machine learning model

Machine learning has become a highly popular and useful tool
for predicting catalyst properties, especially for heterogeneous
systems and solid-state materials.30–33 Compared to heteroge-
neous catalysts and materials, there has been signicantly less
direct use and success of machine learning to design molecular,
homogeneous transition metal catalysts, especially with post-
prediction experimental realization. In most machine learning
efforts, there is oen a reliance on DFT calculated energies and
properties.34–37 Unfortunately, the use of DFT calculated ener-
gies can be severely problematic for selectivity that requires very
high accuracy.

To aid in the design of new molecular Fe-based catalysts for
ethene oligomerization, we targeted the development of
a machine learning model built with experimental selectivity
values and straightforward molecular descriptors (features) that
do not rely on information generated from quantum-chemical
calculations, such as atomic charges or vibrational frequen-
cies. Sigman and others have previously demonstrated the
power of using molecular descriptors to predict reactivity and
selectivity in organic reactions.38,39 Physical features such as
reaction temperature and reagent loading are considered in our
model. The selection of experimental data set, features, and
machine learning algorithms are disclosed in detail below.

We constructed the experimental K(C12/C10) value data set
using 116 unique polydentate (mostly tridentate) Fe catalysts,
(see ESI Fig. S1† for a comprehensive list of catalyst
structures).14,18,40–53 Fig. 2a shows a representative set examples
of tridentate Fe catalysts bearing various ligand backbones
featuring a diverse set of substituents on the ligand arms near
the Fe center. This dataset includes N, O, and P direct coordi-
nation with the Fe metal center, and pyridine-bisimine, a-dii-
mine, phenanthroline, iminopyridine, and other derivative
ligands.

All 116 catalysts have at least one associated K-value, and
several catalysts have more than one K-value corresponding to
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 (a) Representative Fe ethene oligomerization catalysts used in
our machine learning data set. (b) K(C12/C10) value distribution of the
data set used in machine learning.
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different reaction conditions (e.g., catalyst loading, cocatalyst
identity, and reaction temperature). Our data set encompasses
a total of 257 K-values for these 116 different catalysts. A few
values were reported as K(C14/C12). These K(C14/C12) values were
converted to K(C12/C10) values through the linear scaling:

K(C12/C10) = K(C14/C12) × 0.953 (1)

This scaling is justied based on experimental K-values for
different carbon fractions (C4–C20) measured using a Fe
pendant donor diimine (Fe(PDD)) catalyst.20 Although this
Table 1 Descriptions of seven 2D molecular features as used in the ma

Description

AMID_N54 � Averaged molecular ID on N atoms; co
Xc-5dv55 � Valence 5th order cluster Chi index; co
SlogP-VSA1, SlogP-VSA2
(ref. 56)

� Subdivided surface area descriptor base
accessible van der Waals surface area; Sl
those of SlogP-VSA2

SMR-VSA7 (ref. 56) � Subdivided surface area descriptor base
the ligand and estimated accessible van

SdssC, SaaaC57 � Sum of E-state indexes for all C atoms in
atoms with three aromatic bonds; the E-s
chemical environment

© 2024 The Author(s). Published by the Royal Society of Chemistry
assumptionmight be less accurate for different catalyst ligands,
the difference is expected to be within the error of the model.
Fig. 2b plots the distribution of K(C12/C10) values. The values
range from 0.25 to 0.89, and there is generally a smooth and
continuous distribution of values between these endpoints.

Fourteen features were used to build the initial K-value
machine learning model. We decided to include both chemical
and physical features because, while we assumed the chemical
features would be more important, we did not know if a quan-
titative machine learning model was possible to develop
without physical features. Therefore, we began by using six
physical features and eight molecular features. The six physical
features correspond to reaction conditions including catalyst
loading, co-catalyst loading, co-catalyst type, ethene pressure,
reaction temperature, and time.

Seven of the eight molecular features are 2D features
generated using the MordRed58 and the RDkit59 program based
on structures represented in the simplied molecular-input
line-entry system (SMILES) format (Table 1). These seven
features can be categorized into two groups. Group I, including
AMID_N and Xc-5dv, serves to identify ligand structures.
Information regarding atomic connectivity and the sterics of the
ligand are embedded within group A features (see the ESI† for
more information). Group B features take into consideration
ligand electronic properties in addition to topologies, hydro-
philicity (SlogP-VSA1 and SlogP-VSA2), polarizability (SMR-
VSA7), and electronegativities (SdssC and SaaaC).

The seven features in Table 1 were selected from more than
1500 2D features that were extracted for the 116 structures using
programs MordRed and RDKit. The number of used 2D features
was limited to only seven because redundant and unrelated
features in the machine learning model will introduce noise
and decrease its performance. A feature was removed from the
model if it (1) had a normalized feature importance lower than
0.005; or (2) correlated well with other more important features.
More details about the selection of 2D features and the corre-
lation heatmaps are provided in the ESI.†

In addition to reaction conditions and 2D features from
Table 1 generated using the MordRed and RDkit program, we
also designed a new set of features specically for Fe oligo-
merization catalysts that we refer to as the connective steric
factors (CSF). The CSF feature set includes een individual
chine learning model for K(C12/C10) value predictions

nsiders general structure near nitrogen atoms
nsiders bonding and valence electrons
d on atomic log P (i.e., octanol/water partition coefficient) and estimated
ogP-VSA1 considers atoms with higher estimated hydrophilicity than

d on atomic contribution to total polarizability (i.e., molar refractivity) of
der Waals surface area
the ligand with one double bond and two single bonds, and that for all C
tate index considers the electronegativity of an atom and its surrounding

Chem. Sci., 2024, 15, 18355–18363 | 18357



Fig. 3 Illustration of features length_C6, width_C6, and depth_C6 for
complex II (L2 =Me, L3 = Br, see Fig. 2a). C atoms are shown in gray, H
in white, N in blue, Br in red, and Fe in purple.

Fig. 4 Root mean squared error (RMSE) with 95% confidence intervals
(bars) for machine learning regression algorithms to quantitatively
predict K(C12/C10) values. All models except GNN used the 14 physical
and chemical features. RF = random forest, MLP = multi-layer per-
ceptron, LASSO = least absolute shrinkage and selection operator,
GPR = Gaussian process regression with the rational quadratic kernel,
GBR= gradient-boosting regression, SVR= support vector regression,
GNN = graph neural network.
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features that quantify and describe the steric size of groups that
extend beyond the base ligand framework. For example, Fig. 3
illustrates the CSF ligand features of the extended aryl portion
of the ligand for catalyst II that was shown in Fig. 2a. These new
features are called length_Cn, width_Cn, depth_Cn (n = 2, 3, 4,
5, or 6; see ESI† for details). Aer testing, only the length_C6
feature provided signicant accuracy in our machine learning
model. Thus, length_C6 along with the seven features in Table 1
were used to construct the machine learning model.

The Scikit-learn60 Python library was used to set up and train
regressors based on the aforementioned experimental dataset
and features. Nine regression algorithms were tested, including
random forest, least absolute shrinkage, and selection operator
(LASSO), elastic-net, Gaussian process, ridge, Bayesian ridge,
gradient-boosting, support vector regression with either a linear
and radial basis function kernel, and a multi-layer perception
(MLP). To avoid overtting the machine learning model, we
performed random sampling 100 times with the data set
randomly split into 80% training and 20% testing sets each
time. The RMSE of each model determined using random
sampling averaged across 100 iterations is shown in Fig. 4.
Additional data can be found in the ESI.† Results are also
veried using 30-fold cross-validation averaged across ten
iterations.

Additionally, a graph neural network (GNN) model was built
using the Spektral Python library.61 GNNs use a graph repre-
sentation of the molecule, where atoms are graph nodes and
bonds are edges between nodes. Instead of the molecular
features, one-hot encoded elements and bond orders were used
as the properties for the nodes and edges. Through successive
convolutions of adjacent nodes, information about the struc-
ture is shared to produce a set of weights. The weights are
summed to give the predicted K-value. Our GNN model utilized
six edge-conditioned convolution layers with 32 channels, as
well as a global attention sum pool, which learns which node
weights to sum during the training process. We did not include
18358 | Chem. Sci., 2024, 15, 18355–18363
reaction conditions in the GNN model. The GNN model was
subjected to the same cross validation methods as the other
models.

The RMSE of all the regression algorithms ranged from 0.06
to 0.5 for the K-values. The best performing model was random
forest (RMSE = 0.06). The random forest regressor is an
ensemble (forest) of decision trees. Each tree is trained on
a subset of the full training data set and, therefore, generates
a slightly different prediction model. The nal random forest
model is the averaged results of all the decision trees. Random
forest regressor is useful because it can generally handle
outliers and unbalanced training data, and it is resistant to data
overtting. Other tested regressors showed similar perfor-
mance, but they are slightly worse than the random forest
(RMSE of ∼0.1). For Gaussian process regression, several
kernels were tested. The rational quadratic kernel out-
performed the Matérn (with n= 3/2 and n= 5/2) and radial basis
function kernels, which tended to overt during hyper-
parameter optimization. The performance of support vector
regression improved signicantly when changing from a linear
(RMSE = 0.50) to a radial basis function kernel (RMSE = 0.12).
The GNN model performed well with an RMSE of 0.07.
Results and discussion

Fig. 5a shows the K(C12/C10) values calculated using the opti-
mized random forest model are plotted versus the experimen-
tally determined K-values. The optimized random forest K-value
model agrees with experimental values very well (R2 = 0.80,
mean absolute error (MAE)= 0.05). Importantly, the accuracy of
this machine learning model with an MAE for the K-value of
0.05 translates to this model having sub-kcal mol−1 accuracy for
selectivity within a statistical framework. This accuracy is
signicantly better than what is possible with either DFT or
wavefunction type quantum-chemical calculations.27,28

Indeed, propagation (migratory insertion) and termination
(b-hydrogen transfer) transition-state energy calculations at the
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 (a) K(C12/C10) values predicted using random forest model with
fourteen features, compared to experimental values. The training set is
shown in black; testing set is shown in red. (b) Normalized feature
importance determined from random forest model with 95% confi-
dence intervals.
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M06-L/def2-TZVP//M06-L/6-31G**[LANL2DZ for Fe]62–69 level
give K(C12/C10) values of 0 for all three complexes I (L1 =Me, Et,
iPr), predicting the absence of C-chain propagation during
catalysis. In comparison, the experimentally measured K-values
for complexes I (Fig. 2a; L1 =Me, Et, iPr) range between 0.6 and
0.8 under varying reaction conditions. Initially, we hypothesized
that DLPNO-CCSD(T) would be accurate enough, but single
point DLPNO-CCSD(T) using DFT-optimized geometries with
the RIJCOSX approximation70 at both the def2-TZVP//def2-
TZVP/C//def2/J level71–75 also give K-values very close to 0,
which is incompatible with experiment. Therefore, both DFT
and DLPNO-CCSD(T) are not accurate enough to model this
oligomerization selectivity.

Fig. 5b displays the feature importance for the random forest
model. The AMID_N is statistically the most important feature
for predicting Fe catalyst K-values, followed by SlogP_VSA2 and
length_C6. The AMID_N is the average molecular ID of nitrogen
atoms and characterizes molecular branching around the
nitrogens.54 It represents the number of paths around the
molecule, weighted by bond orders and proximity to nitrogen
atoms. SlogP_VSA2 pertains to the estimated surface area of
relatively hydrophilic atoms.56 As described above, the
© 2024 The Author(s). Published by the Royal Society of Chemistry
length_C6 parameter describes the size of ligand arm branch-
ing from the main ligand core surrounding the Fe metal center,
which we have called a CSF feature. The relative importance of
AMID_N and length_C6 suggests that the K-value of catalysts is
heavily inuenced by the steric impact of a ligand arms, as well
as the general structure of the backbone. Although this inter-
pretation is not overwhelmingly surprising, it demonstrates
that chemical properties that control selectivity can be quali-
tatively identied through machine learning analysis.

Although the other molecular features are statistically less
important, they are still very useful for the model and survived
the feature selection process. These features either directly or
indirectly describe the electronic nature of the ligand scaffold.
The SdssC parameter, which sums the E-states of carbons with
a double bond and two single bonds, is indicative of the family
the ligand belongs to.57 For ligands with two imines or an imine
and a carbonyl, the value of SdssC is typically around 2–3. If
there is just one imine (e.g., phenanthroline-imine ligands), the
value is typically around 1–1.5. The closely related SaaaC
parameter (i.e., sum of E-states on carbons with three aromatic
bonds) can also be useful for differentiating ligands based on
their backbone, since carbons with three aromatic bonds are
only present in phenanthroline and a-diimine ligands in our
training set. The SlogP-VSA1 parameter is the estimated surface
area of very hydrophilic atoms.56 This parameter provides an
indirect measure of aromatic heteroatoms. Similarly, SMR-VSA7
estimates the surface area of relatively polarizable atoms.56 For
our training set, these are primarily aryl halides, atoms coor-
dinated to the iron (which have a positive formal charge in our
input structures), and aromatic carbons bonded to aliphatic
carbons.

Even though the physical features (reaction conditions) have
lower importance than molecular features, we note that the
machine learning model can predict the changes in K-value
with respect to different reaction conditions. To demonstrate
this, we considered complex I (L1 = methyl; Fig. 2a) under
various reaction conditions. With changes in catalyst loading,
co-catalyst loading (reported as molar Al/Fe ratio in literature),
ethene pressure, reaction temperature, and time, the experi-
mentally measured K-values for complex I (L1 = Me) vary
between 0.59 and 0.81 (Table 2). The K-values in Table 2 were
removed from the training data set and then a new random
forest model generated followed by prediction for these 11
structures. The random forest machine learning predicted K-
values for complex I (L1 = Me) are in good agreement with the
experimental values. Fig. 6 plots the experimental K-values and
the difference with the random forest predicted values.

We also determined the efficacy of the random forest model
where either only physical or only molecular features were used.
When only the six physical features were used, the random
forest model was only able to predict K(C12/C10) values with
moderate to poor accuracy (test set gave an averaged R2 = 0.42
over 100 random samplings (see ESI†)). Despite the poor model
performance, feature importance did reveal that the most
important physical features for predicting K-value are the
ethene pressure and then catalyst loading. However, both
Chem. Sci., 2024, 15, 18355–18363 | 18359



Table 2 Experimental andmachine learning predicted K(C12/C10) values of complex I (L1=Me) under various reaction conditions (taken from ref.
14). ML = random forest machine learning model

Cat. loadinga (mmol) Al/Fe molar ratio Reaction length (min) P (bar) T (°C) K (exp.) K (ML)

1 0.064 17656 60 48 120 0.59 0.62
2 0.06 18833 60 48 120 0.59 0.62
3 0.43 300 30 68 50 0.68 0.71
4 0.13 2000 30 203 90 0.70 0.70
5 0.13 2000 30 405 90 0.70 0.71
6 0.09 2000 30 608 90 0.70 0.70
7 0.24 2000 15 304 80 0.71 0.69
8 0.1 2000 30 203 60 0.73 0.73
9 0.1 2000 30 405 60 0.73 0.73
10 0.13 2000 120 203 35 0.74 0.74
11 5.7 700 180 1 25 0.81 0.76

a All pre-catalysts were activated with MMAO.

Fig. 6 Experimental K(C12/C10) values of complex I (L1 = Me) (black
dots) vary between 0.59 and 0.81 under different reaction conditions
(Table 2).14 Red arrows indicate differences between the experimental
K-values and the predicted K-values from a model utilizing the 6
physical and 8 molecular features.

Fig. 7 (a) Results from random forest model for K-value prediction
using eight molecular features. The plot of predicted K(C12/C10) values
versus experimental values. The training set is shown in black; the
testing set is shown in red. (b) Normalized feature importance.

Chemical Science Edge Article
physical features show little importance in the random forest
model when physical and molecular features are included.

In contrast to the random forest model with only physical
features, a random forest model with only molecular features
provides almost the same accuracy as the model with all 14
features. Fig. 7 shows that the random forest model predicted
K(C12/C10) values with an averaged R2 = 0.74, which is close to
the R2 value of 0.8 for themodel shown in Fig. 5a. Analysis of the
feature importance suggests that, like the physical and chem-
ical model, the AMID_N, SlogP_VSA2, and length_C6 features
are most important. Overall, the comparison of these models
with only physical and only chemical features indicates that the
selectivity for Fe ethene oligomerization catalysis is governed
and dominated by the ligand impacting the steric and elec-
tronics of the Fe metal center and the transition states for
propagation versus termination. Therefore, further examination
of ligand steric and electronic effects was conducted using the
optimizedmachine learning model with only chemical features.

To demonstrate that this random forest model provides
prediction of key steric effects, we used the model to examine
the effect of methyl (–Me) versus ethyl (–Et) versus isopropyl (–
iPr) groups in the aryl ortho position of ligand arms. This is
important because it is extremely difficult, if not impossible, for
DFT calculations to predict (quantitatively or qualitatively) this
18360 | Chem. Sci., 2024, 15, 18355–18363
ligand effect. Within our experimental data set, een sets of K-
values, corresponding to eleven groups of catalysts, were
considered. Each group of catalyst consists of three catalysts
that have the same ligand backbone but have different substi-
tutions on the phenyl-imine arm. Fig. 8 plots the experimental
andmachine learning predicted K-values for four representative
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 8 Machine learning predicted K(C12/C10) values (orange)
compared with experimental values (blue). R = methyl (Me), ethyl (Et),
or isopropyl (iPr) group.

Fig. 9 (a) Use of the random forest machine learning model to predict
the K-value for an Fe pyridylquinolinylphosphine catalyst. The
measured K(C12/C10) value was within the machine learning model
error. (b) Proximity analysis for the (PPQ)Fe catalyst. This shows the
catalysts in the training data that provide strong proximity for the
prediction.

Edge Article Chemical Science
catalysts, and the remainder are shown in ESI.† Importantly,
this revealed that the machine learning model can capture
relationships where the K-value increases with increasing group
bulkiness, where the K-value has an inverse relationship group
bulkiness, and where there is no specic pattern.

To begin to validate our machine learning model, we made
a prediction for an Fe complex that had not previously been
tested for olen oligomerization selectivity. This new catalyst is
shown in Fig. 9a and features a phosphaneyl–pyridinyl–quino-
line (PPQ) type ligand structure.76,77 The random forest machine
learning predicted K-value for this (PPQ)Fe catalyst is 0.54. We
subsequently synthesized the (PPQ)FeCl2 and experimental
measured the K(C12/C10) value under conditions similar to the
harvested data used to create the machine learning model. The
measured experimental value was 0.55. This validation
demonstrates the potential quantitative utility of this machine
learning model. However, like any machine learning model
caution should be used when designing and predicting new
catalysts, especially if they might be outside of the training data.
This (PPQ)Fe catalyst ts within our training data because it has
both a phosphine and pyridine type direct ligation to the Fe
metal center. This experimental validation shows the utility of
developing a specic machine learning to enable catalyst
development. However, subtle chemical features are complex to
accurately predict. Our machine learning model also predicts
the same K-value for the (PPQ)Fe catalyst where the ortho-
methyl group of the pyridyl ring is changed to a hydrogen. We
also tested this catalyst, and the experimental K(C12/C10) value
was 0.35, which is lower than the prediction and slightly outside
the general error of the model. Therefore, again, while this
machine learning model can be quantitative within the range of
its training data, it is perhaps useful to qualitatively identify
new potential catalysts with low, medium, or high K-values.

In addition to generating K-value predictions for a new
possible catalyst, this random forest model can also be used to
report which catalysts from the training data provide the stron-
gest descriptor information for prediction. Viewing structures
that provide strong inuence for the prediction can provide
general condence in the prediction as well as inspiration for
© 2024 The Author(s). Published by the Royal Society of Chemistry
new possible catalyst designs. Examining the most similar
training data points for a given input provides inspiration for
how the input could reasonably be modied to alter selectivity.
Therefore, we have carried a so-called proximity analysis for the
(PPQ)Fe catalyst (Fig. 9b). The proximity is the fraction of deci-
sion trees in the forest where that pair of inputs ends up on the
same leaf node. A higher proximity generally indicates that those
inputs are more similar. This gives a qualitative insight into the
model prediction and a general evaluation of whether the
prediction can be made with the current training data. In other
words, if several training catalysts that have a high proximity
value have similar partial ligand scaffolds to the catalyst under
prediction, then there can be reasonable condence that the
prediction is within the capability of themodel. In contrast, if the
highest proximity training data have ligand substructures that
are dramatically different than the predicted catalyst, then this
should induce caution about the interpretation of the predicted
value. Fig. 9b shows the four highest proximity catalysts for the
(PPQ)Fe catalyst. Looking at these highest-proximity training
points shows phenanthrolinyl-imine and type phosphanyl-
acenaphthene-1,2-diimine (PNN) ligands provide a high degree
of similar features to the PPQ ligand.

Conclusions

Machine learning models that enable the prediction of chem-
ical properties hold the potential to signicantly impact
homogeneous catalyst design. However, machine learning
Chem. Sci., 2024, 15, 18355–18363 | 18361
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models for homogeneous, molecular organometallic catalyst
systems that use experimental selectivity data without incor-
porating quantum-mechanical calculations are rare.78 In this
work, we developed a sub-kcal mol−1 accurate machine learning
model for predicting linear a-olen distributions K-values for
Fe-catalyzed ethene oligomerization. This experiment-based
machine learning model was developed using straightforward
2D molecular features and newly created ad hoc features.
Importantly, this machine learning model captures the effects
of a broad range of ligand architectures and replicates and
predicts chemically nonintuitive trends in oligomerization a-
olen selectivity, especially for small ligand changes that cannot
likely be capture even by extremely accurate quantum-chemistry
methods. Our machine learning model was validated by the
prediction and then experimental realization of a new (PPQ)Fe
catalyst tested for olen oligomerization. We also showed how
a proximity analysis can be used for inspiration of additional
designs. Due to the nature of random forest regressor, caution
needs to be taken when the model is used for structures that are
outside the chemical space of the experimental training data.
Overall, this model provides the ability to predict oligomeriza-
tion selectivity that will enable catalyst design and priority for
testing. As with all machine learning models there is the need
for continual experimental feedback and improvement of the
model parameters. For example, in the future model parameter
improvement might be possible with inclusion of 3D-type
descriptors.
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