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Abstract

The audiological features of hearing loss (HL) in patients with autosomal recessive deafness

type 1A (DFNB1A) caused by splice site variants of the GJB2 gene are less studied than

those of patients with other variants of this gene. In this study, we present the audiological

features of DFNB1A in a large cohort of 134 patients with the homozygous splice site variant

c.-23+1G>A and 34 patients with other biallelic GJB2 genotypes (n = 168 patients with

DFNB1A). We found that the preservation of hearing thresholds in the speech frequency

range (PTA0.5,1.0,2.0,4.0 kHz) in patients with the c.[-23+1G>A];[-23+1G>A] genotype is signifi-

cantly better than in patients with the “severe” c.[35delG];[35delG] genotype (p = 0.005) and

significantly worse than in patients with the “mild” c.[109G>A];[109G>A] genotype (p =

0.041). This finding indicates a “medium” pathological effect of this splice site variant on

hearing function. A detailed clinical and audiological analysis showed that in patients with

the c.[-23+1G>A];[-23+1G>A] genotype, HL is characterized as congenital or early onset

(57.5% onset before 12 months), sensorineural (97.8%), bilateral, symmetrical (82.8%), var-

iable in severity (from mild to profound HL, median hearing threshold in PTA0.5,1.0,2.0,4.0 kHz

is 86.73±21.98 dB), with an extremely “flat” audioprofile, and with a tendency toward slow

progression (a positive correlation of hearing thresholds with age, r = 0.144, p = 0.041). In

addition, we found that the hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz were significantly better

preserved in females (82.34 dB) than in males (90.62 dB) (p = 0.001). We can conclude that

in patients with DFNB1A caused by the c.-23+1G>A variant, male sex is associated with

deteriorating auditory function; in contrast, female sex is a protective factor.

Introduction

Currently, one in 500–1000 children is born with significant hearing loss (HL), and up to 50%

of these cases have a hereditary etiology [1–3]. However, the genetic causes of most congenital

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0309439 October 22, 2024 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Teryutin FM, Pshennikova VG, Solovyev

AV, Romanov GP, Fedorova SA, Barashkov NA

(2024) Genotype–phenotype analysis of hearing

function in patients with DFNB1A caused by the c.-

23+1G>A splice site variant of the GJB2 gene

(Cx26). PLoS ONE 19(10): e0309439. https://doi.

org/10.1371/journal.pone.0309439

Editor: Nejat Mahdieh, Shaheed Rajaei Hospital:

Rajaie Cardiovascular Medical and Research

Center, ISLAMIC REPUBLIC OF IRAN

Received: April 24, 2024

Accepted: August 12, 2024

Published: October 22, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0309439

Copyright: © 2024 Teryutin et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

https://orcid.org/0000-0002-6984-7934
https://doi.org/10.1371/journal.pone.0309439
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309439&domain=pdf&date_stamp=2024-10-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309439&domain=pdf&date_stamp=2024-10-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309439&domain=pdf&date_stamp=2024-10-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309439&domain=pdf&date_stamp=2024-10-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309439&domain=pdf&date_stamp=2024-10-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309439&domain=pdf&date_stamp=2024-10-22
https://doi.org/10.1371/journal.pone.0309439
https://doi.org/10.1371/journal.pone.0309439
https://doi.org/10.1371/journal.pone.0309439
http://creativecommons.org/licenses/by/4.0/


cases of HL are extremely heterogeneous [3]. Thus, the proportion of pathogenic biallelic vari-

ants of the GJB2 gene (13q11-q12) [4] encoding the intercellular gap junction protein con-

nexin 26 (Cx26) [5, 6] leading to autosomal recessive deafness type 1A (DFNB1A, OMIM

#220290) [7] is significant, and in some populations, it is up to 50–60% [8–10]. More than 380

pathogenic variants have been found in the GJB2 gene [Hereditary HL Homepage: http://

hereditaryhearingloss.org/, accessed 20.12.2023].

In the past, researchers generally believed that the pathological mechanisms underlying

DFNB1A were caused by biallelic pathogenic variants in the GJB2 gene, which damage the

homomeric (consisting of Cx26) or heteromeric (consisting of different connexin proteins)

gap junction channels [11]. This was thought to lead to a K+ circulation defect and abnormal

ATP-Ca2+ signals in the cochlea [6]. It has been hypothesized that gap junctions in the cochlea,

especially those involving Cx26, provide an intercellular passage by which K+ is transported to

maintain high levels of the endocochlear potential, which is essential for sensory hair cell exci-

tation [6]. However, subsequent studies have shown that K+ circulation is rarely associated

with the pathological process of DFNB1A [12–16]. Researchers now believe that pathogenic

Cx26 variants cause changes in Ca2+ signaling and ATP release, as well as columnar cell cyto-

skeletal developmental disorders, all of which contribute to the occurrence of HL [12–17].

However, the exact pathological mechanism of DFNB1A remains unknown [17].

Moreover, a large systematic analysis of 270 unrelated patients with biallelic GJB2 patho-

genic variants (30 Belgian, 131 Italian, 42 Spanish, and 74 American patients) [18] and a multi-

center study of 1,531 patients with biallelic GJB2 pathogenic variants (90% of participants were

of Caucasian origin) [19] as well as a meta-analysis of more than 200 original articles [8] on

the genotype–phenotype features of hearing function in patients with DFNB1A showed

extremely variable hearing phenotypes that ranged from mild to profound HL [8, 18, 19].

However, it has been found that HL is significantly more severe in patients with biallelic trun-

cating variants (T/T—leading to premature stop codons and disruption of splice sites) than in

compared to patients with nontruncating biallelic variants (NT/NT—leading to amino acid

substitutions) [19]. Currently, among the truncating variants, the most thoroughly studied are

single nucleotide deletions, c.35delG p.(Gly12ValfsX2) and c.235delC p.(Leu79Cysfs*3) [8,

18–46]. The genotype–phenotype features of homozygous patients are well described for non-

truncating hypomorphic c.101T>C p.(Met34Thr) and c.109G>A p.(Val37Ile) missense vari-

ants with low penetrance and weak pathogenic potential [25, 36, 40, 45, 47–60]. However, the

genotype–phenotypic features of some truncating variants of this gene affecting splicing sites

are less studied. According to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/?term=gjb2%

5Bgene%5D&redir=gene, accessed on 20.12.2023), only two (pathogenic or likely pathogenic)

splicing site variants are known in the GJB2 gene (donor splice site—c.-23+1G>A [61, 62] and

acceptor splice site variant c.-22-2A>C) [63]. Studies of the genotype–phenotype correlations

of different molecular effects of GJB2 variants are important for understanding the clinical fea-

tures of different allelic forms of DFNB1A and may help to reveal the pathological process of

this disease, which is crucial for developing targeted treatments.

An extremely high prevalence of the c.-23+1G>A variant, due to a founder effect, was iden-

tified among the Turkic-speaking Yakut population living in the Sakha Republic, which is

located in the Siberian part of Russia [64, 65]. The prevalence of DFNB1A caused by the c.-23

+1G>A variant of the GJB2 gene was 16.2 per 100,000 people in this region of Russia, while

carrier frequency varied from 3% to 11% among different indigenous populations of Eastern

Siberia [64]. In a recent study on spectrum and frequency of pathogenic variants of the

DFNB1 locus in a large Russian cohort of patients with nonsyndromic sensorineural HL

(2,569 unrelated individuals), 39 pathogenic and likely pathogenic variants of the GJB2 gene

were identified [66]. Among them, the c.-23+1G>A splice site variant was third most frequent
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across Russia (4.4%) [66]. Despite relatively high prevalence of this variant in Russia, there

are still no detailed studies on the genotype-phenotype characteristics of individuals with

the c.-23+1G>A variant of the GJB2 gene. Currently, only one retrospective report of the

audiological characteristics of 40 patients with the c.[-23+1G>A];[-23+1G>A] genotype is

known [64].

In this study, we present a detailed audiological analysis of a large cohort of 134 DFNB1A

patients with the homozygous donor splice site variant c.-23+1G>A in the GJB2 gene and 34

patients with other biallelic GJB2 genotypes (n = 168 patients with DFNB1A).

Materials and methods

Study sample

The sample of HL individuals consisted of patients from the Republican Hospital #1 of the

National Medical Centre (Yakutsk, Russian Federation), students at the Republican special res-

idential schools for deaf and hard-of-hearing children (Yakutsk, Russian Federation) and

members of the Yakutsk Department of the All-Russian Society of the Deaf (Yakutsk, Russia),

as previously described [65, 67]. In total, complete sequencing of the noncoding and coding

regions of the GJB2 gene was performed for 514 patients with different degrees of HL. A total

of 168 DFNB1A patients with biallelic GJB2 variants and no objective otological problems

were included in this study. The study sample was represented by the following GJB2 geno-

types: c.[-23+1G>A];[-23+1G>A] (n = 134), c.[35delG];[35delG] (n = 11), c.[109G>A];

[109G>A] (n = 2), c.[-23+1G>A];[109G>A] (n = 2), c.[-23+1G>A];[35delG] (n = 14), c.

[35delG];[313_326del14] (n = 1), c.[-23+1G>A];[167delT] (n = 1), c.[-23+1G>A];

[313_326del14] (n = 1), c.[-23+1G>A];[333_334delAA] (n = 1), and the c.[35delG];[del

(GJB6-D13S1830)] (n = 1). The largest group of patients in our cohort had the c.[-23+1G>A];

[-23+1G>A] genotype (134 patients), so it was used as a reference (Ref). For audiological anal-

ysis, we used the number of ears (168 patients, 336 ears).

Hearing status

All patients underwent medical examinations, including a collection of complaints and a med-

ical history. Hearing status was confirmed by an audiological study, including tuning fork tests

(tuning fork C128 Hz, KaWe, Asperg, Germany), impedance audiometry and threshold tone

audiometry (tympanometer and audiometer AA222, Interacoustics, Middelfart, Denmark)

using air conduction at frequencies of 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0 kHz and by bone conduc-

tion at frequencies of 0.25, 0.5, 1.0, and 4.0 kHz with steps of 5.0 dB. For detailed audiological

analysis, we used the clinically important speech frequency range in pure tone averages

(PTA0.5,1.0,2.0,4.0 kHz). Five children, due to their young age, were tested by the ASSR test

(Audera, Grason-Stadler, Eden Prairie, MN, USA). Audiograms that had breaks were normal-

ized by introducing the maximum readings (120.0 dB) at frequencies where the patient did not

respond. The type of HL was sensorineural with an increase in bone and air conduction

thresholds on audiograms, mixed with an increase in bone and air conduction thresholds with

an interval exceeding a total of 20.0 dB in PTA0.5,1.0,2.0,4.0 kHz. HL was considered asymmetric

when the interaural difference in hearing thresholds at PTA0.5,1.0,2.0,4.0 kHz was greater than

15.0 dB. The degree of HL was assessed by the average hearing threshold in PTA0.5,1.0,2.0,4.0 kHz

according to the classification by Clark, J. G. (1981) [68]: normal–from 10 to 15 dB, slight–

from 16 to 25 dB, mild–from 26 to 40 dB (I degree), moderate–from 41 to 55 dB (II degree),

moderately severe–from 56 to 70 dB (III degree), severe–from 71 to 90 dB (IV degree), and

profound > 90 dB (deafness).
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Detection of GJB2 genotypes

DNA was extracted from blood leukocytes via the phenol–chloroform method. Amplification

of the coding (exon 2), noncoding (exon 1) and flanking intronic regions of the GJB2 gene was

performed by PCR on a T100 thermocycler (Bio-Rad, Hercules, NY, USA) using the following

primers: 50-CCGGGAAGCTCTGAGGAC-30 and 50-GCAACCGCTCTGGGTCTC-30 for amplifica-

tion of exon 1 [69]; and 50-TCGGCCCCAGTGGTACAG-30 and 50-CTGGGCAATGCGTTA
AACTGG-30 for amplification of exon 2 [7, 70, 71]. The PCR products were subjected to Sanger

sequencing using the same primers on an ABI PRISM 3130XL (Applied Biosystems, Waltham,

MA, USA) at the Genomics Core Facility of Institute of Chemical Biology and Fundamental

Medicine, Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia). DNA

sequence variations were identified by comparison with the GJB2 gene reference sequences

chr13 (GRCh38.p13), NC_000013.11, NG_008358.1, NM_004004.6 and NP_003995.2 (NCBI,

Gene ID: 2706).

The large DFNB1 deletions were screened using oligonucleotide primers for the detection

of a breakpoint junction fragment specific for 309 kb-del(GJB6-D13S1830)—GJB6 F50-

TTTAGGGCATGATTGGGGTGATTT-30 and R50-CACCATGCGTAGCCTTAACCATTT-30 [72];

and for 232 kb-del(GJB6-D13S1854) F50-TCATAGTGAAGAACTCGATGCTGTTT-30 and R50-

CAGCGGCTACCCTAGTTGTGGTT-30 [72]; with an internal control fragment (GJB6, exon 1)

F5’-CGTCTTTGGGGGTGTTGCTT-3’ and R5’-CATGAAGAGGGCGTACAAGTTAGAA-3’ (GJB6,

exon 1). Screening of the 101 kb—del(GJB2-d13S175) region was performed using oligonucle-

otide primers for the detection of the breakpoint junction fragment F50-GCTCTGCCCAGAT
GAAGATCTC-30 and R50-CCTTCCAGGAGAGTTCACAACTC-30 with the internal control frag-

ment F50-GTGATTCCTGTGTTGTGTGCATTC-30 and R50-CCTCATCCCTCTCATGCTGTC-30

(GJB2, exon 2) [66].

Statistical analysis

Statistical analysis of the clinical and audiological data in patients with the c.[-23+1G>A];[-23

+1G>A] genotype was performed using the Sampling program, kindly provided by M.

Macaulay and adapted by M. Metspalu. Differences of the credible interval at the 95% signifi-

cance level were considered statistically significant. Comparison of hearing thresholds in

PTA0.5,1.0,2.0,4.0 kHz of the reference group c.[-23+1G>A];[-23+1G>A] with other GJB2 geno-

types was performed with a Mann–Whitney U test using by software STATISTICA version 8.0

(StatSoft Inc, USA). Differences were considered statistically significant at p<0.05. Correlation

analysis of hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz with age in patients with c.[-23+1G>A];

[-23+1G>A] genotype was performed with a r-linear regression analysis using by STATIS-

TICA version 8.0 (StatSoft Inc, USA). Differences were considered statistically significant at

p<0.05. Statistical analysis of the hearing thresholds between male and female patients with c.

[-23+1G>A];[-23+1G>A] genotype was performed with a Student’s t-test using by software

STATISTICA version 8.0 (StatSoft Inc, USA). Differences were considered statistically signifi-

cant at p<0.05.

Ethical approval

Written informed consent was obtained from all patients participating in the study. The study

was conducted according to the guidelines of the Declaration of Helsinki and approved by the

local Biomedical Ethics Committee at the Yakut Scientific Center of Complex Medical Prob-

lems, Yakutsk, Russia (Yakutsk, protocol No. 16 of 16 April 2009).
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Results

Audioprofiles of the ten GJB2 genotypes at six measured frequencies

We analyzed the audioprofiles at six measured frequencies among 168 patients with 10 different

biallelic variants of the GJB2 gene. The “flat” audioprofiles were detected in patients with geno-

types c.[-23+1G>A];[-23+1G>A] (the slope in PTA0.5,1.0,2.0,4.0 kHz was only 5.0 dB) and c.[-23

+1G>A];[109G>A] (the slope in PTA0.5,1.0,2.0,4.0 kHz was only 10.0 dB) (Fig 1). The “sloping”

audioprofile was found in patients with genotypes c.[-23+1G>A];[35delG], c.[-23+1G>A];

[313_326del14], c.[109G>A];[109G>A], c.[35delG];[35delG], c.[35delG];[del(GJB6-

D13S1830)], and c.[35delG];[313_326del14] (the slope in PTA0.5,1.0,2.0,4.0 kHz varied from 12.5

to 20.0 dB) (Fig 1). A “downsloping” audioprofile was found among patients with the c.[-23

+1G>A];[167delT] and c.[-23+1G>A];[333_334delAA] genotypes (the slope in PTA0.5,1.0,2.0,4.0

kHz varied from 30.0 to 42.5 dB) (Fig 1).

PTA0.5,1.0,2.0,4.0 kHz hearing thresholds in patients with ten different GJB2
genotypes

To compare the hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz of the 10 different GJB2 genotypes,

we used the values of hearing thresholds in individuals with the c.[-23+1G>A];[-23+1G>A]

genotype (n = 268 ears) as a reference (Ref). In patients with the c.[35delG];[35delG] genotype,

the hearing thresholds at PTA0.5,1.0,2.0,4.0 kHz were significantly higher than in the reference

group (p = 0.005) (Fig 2). In contrast, in patients with the c.[109G>A];[109G>A] (p = 0.041)

and c.[-23+1G>A];[109G>A] (p = 0.000) genotypes, the hearing thresholds at PTA0.5,1.0,2.0,4.0

kHz were significantly lower than in the reference group. In patients with the following geno-

types: c.[-23+1G>A];[35delG], c.[35delG];[313_326del14], c.[-23+1G>A];[167delT], .[-23

+1G>A];[313_326del14], .[-23+1G>A];[333_334delAA], and c.[35delG];[del(GJB6-

D13S1830)], the hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz did not significantly differ from

those in the reference group (Fig 2).

Since DFNB1A in patients is caused by different GJB2 variants, their hearing thresholds dif-

fered among the audioprofiles (“flat”, “sloping”, and “downsloping”) (Fig 1), and there was

variable preservation of the hearing thresholds in the PTA0.5,1.0,2.0,4.0 kHz (Fig 2). To avoid sta-

tistical distortions, we aligned our cohort of patients with one biallelic truncating c.[-23

+1G>A];[-23+1G>A] genotype (T/T). We excluded individuals with different biallelic trun-

cating and nontruncating (T/T, T/NT and NT/NT) GJB2 genotypes (n = 34) from further anal-

ysis, and detailed audiological analysis was performed only in this most representative cohort

of patients with the c.[-23+1G>A];[-23+1G>A] genotype (n = 134 individuals). The audiolog-

ical data of patients with other biallelic GJB2 genotypes are presented in the S1 Fig.

Clinical and audiological analysis in patients with the c.[-23+1G>A];[-23

+1G>A] genotype

Among the c.-23+1G>A homozygous patients, 52.9% had a family history of HL, 38.8% had

no family history, and the remaining 8.2% had an unknown family history (Fig 3A). HL was

detected within 12 months after birth in 57.5% of patients, before 3 years in 5.2%, after 4 years

in 7.5%, and in 29.8%, the debut of HL was unknown (Fig 3B). The degree of HL in patients

with the c.[-23+1G>A];[-23+1G>A] genotype was mild (2.2%), moderate (10.4%), moder-

ately severe (22.3%), severe (21.6%), and profound (43.2%) (Fig 3C). The sensorineural type of

HL was found in 97.8% of patients, and a mixed type of HL was detected in 2.2% of patients

(Fig 3D). In 82.8% of the patients, the HL was symmetrical, and in 17.2% of the patients, it was

asymmetric (the interaural difference in hearing thresholds exceeded 15.0 dB) (Fig 3E).
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Fig 1. Audioprofiles of 10 different GJB2 genotypes at six measured frequencies.

https://doi.org/10.1371/journal.pone.0309439.g001
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A generalized audiogram of patients with the c.[-23+1G>A];[-23+1G>A] genotype

(n = 268 ears) demonstrates that the hearing thresholds are variable and have an almost uni-

form spread of HL from 15.0 dB to 120.0 dB at a low frequency of 0.25 kHz (median of 75.0

dB) and from 45.0 dB to 120.0 dB at a high frequency of 8.0 kHz (median of 120.0 dB). Thus,

the median decreased but full levelling off at hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz (the

slope of the median in PTA0.5,1.0,2.0,4.0 kHz was 10.0 dB; the median in the PTA0.5,1.0,2.0,4.0 kHz

was 88.1 dB with an average hearing threshold of 86.73 dB±21.98 dB) (Fig 4A). The frequency

in the group with the c.[-23+1G>A];[-23+1G>A] genotype (n = 268 ears) demonstrated a ten-

dency toward the preservation of low frequencies and greater damage to high frequencies (Fig

4B). It should be noted that at a frequency of 8.0 kHz, sound perception was preserved in half

of the studied patients (49.6%) (Fig 4B); therefore, half of the patients in the studied cohort

had uniform damage to the cochlea.

Correlation analysis of hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz with age in

patients with c.[-23+1G>A];[-23+1G>A] genotype

Correlation analysis of PTA0.5,1.0,2.0,4.0 kHz hearing thresholds with age (from 0 to 30 years) was

carried out for 99 individuals with the c.[-23+1G>A];[-23+1G>A] genotype (Fig 5). The

results of this analysis revealed a linear regression of hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz

with age, and hearing acuity decreased with older age (r = 0.144, p = 0.041) (Fig 5A). This sam-

ple was also stratified by sex. After stratification by sex, the regression of hearing thresholds

was not statistically confirmed, but the general trend of increasing hearing thresholds

remained (Fig 5B).

Fig 2. Comparison of hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz of the reference group c.[-23+1G>A];[-23+1G>A] with other GJB2 genotypes. Note: the

GJB2 genotypes with statistically significant differences (p<0.05) are highlighted by bold font.

https://doi.org/10.1371/journal.pone.0309439.g002
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Hearing thresholds between male and female patients with c.[-23+1G>A];

[-23+1G>A] genotype

We compared hearing thresholds between females (mean age 23.97±15.21 years) and males

(mean age 19.72±12.55 years) with the c.[-23+1G>A];[-23+1G>A] genotype. For this com-

parison, we used the hearing thresholds of both ears. A comparison of the degree of HL in this

Fig 3. Clinical and audiological analysis in patients with the c.[-23+1G>A];[-23+1G>A] genotype. Note: A–family history; B–debut of HL; C–degree of

HL; D–type of HL; E–symmetry of HL.

https://doi.org/10.1371/journal.pone.0309439.g003
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sample showed that hearing acuity was better in females than in males. A moderate degree of

HL predominated in the female group (48.8% females versus 24.1% in males, p<0.05), while

profound deafness predominated among males (51.7% males versus 17.1% females, p<0.01).

The median values of hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz were 82.34 dB for females and

90.62 dB for males (p = 0.001) (Fig 6). In our study, a comparison of the hearing thresholds of

males and females at each of the measured frequencies showed that “low” frequencies (0.25

kHz), “speech” frequencies (0.5, 1.0, 2.0, 4.0 kHz) and “high” frequencies (8.0 kHz) are per-

ceived better by females with the c.[-23+1G>A];[-23+1G>A] genotype than males with the

same genotype.

Discussion

Onset of the disease

Although HL in DFNB1A patients is mostly prelingual, it should not be assumed that the

onset is congenital in all patients. This issue is of concern for newborn audiological hearing

screening programs because infants who pass the test at birth could develop severe HL within

next few months [81]. In our study, among individuals with the c.[-23+1G>A];[-23+1G>A]

Fig 4. The audioprofile of the patients with the c.[-23+1G>A];[-23+1G>A] genotype (n = 268 ears). Note: A—PTA0.5,1.0,2.0,4.0 kHz is highlighted in red, and

the black line is the median hearing threshold. B—Audioprofile characteristics at each measured frequency.

https://doi.org/10.1371/journal.pone.0309439.g004
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genotype, analysis of the age of onset of the disease indicates that in 12.7% (17 out of 134) of

patients, HL was diagnosed only after the first year of life (Fig 3B). This finding can be

explained by the absence of newborn hearing screening in Russia at the time of birth for the

Fig 5. Regression of hearing thresholds in the PTA0.5,1.0,2.0,4.0 kHz with age in individuals with the genotype c.[-23+1G>A];[-23+1G>A]. Note: A–before

stratification by sex, n = 198 ears; B–after stratification by sex, ♀ –female individuals, n = 82 ears; ♂ –male individuals, n = 116 ears.

https://doi.org/10.1371/journal.pone.0309439.g005

Fig 6. Hearing thresholds between male and female patients with c.[-23+1G>A];[-23+1G>A] genotype (n = 268 ears).

https://doi.org/10.1371/journal.pone.0309439.g006
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majority of examined patients with this allelic variant of DFNB1A (between 1988 and 1998).

In addition, we believe that in some cases, a lack of awareness of possible involvement of

hereditary factors in deafness among parents [73] could be the reason for the late seeking of

medical assistance, since only half of the patients (52.9%) with the c.[-23+1G>A];[-23+1G>A]

genotype had a positive family history of HL (Fig 3A). On the other hand, DFNB1A caused by

the c.[-23+1G>A] variant of the GJB2 gene in some cases is not exclusively congenital. The

data on DFNB1A patients who passed the newborn hearing screening while being homozy-

gous for other pathogenic GJB2 genotypes [74, 75] suggests the possibility of later onset of HL

in some patients with the c.[-23+1G>A];[-23+1G>A] genotype who also may initially success-

fully passed the audiological exam.

Type of HL

Interestingly, the sensorineural type of HL was found in 97.8% of patients who were homozy-

gous for the c.-23+1G>A variant, and the remaining 2.2% had a mixed type of HL (Fig 3D).

At the same time, patients with mixed HL had no identifiable otological problems and had

normal tympanometry indicators. Based on the clinical features of conductive HL and consid-

ering that mixed-type HL was not identified in other GJB2 genotypes [8, 18, 19], we are

inclined to attribute this fact to the patients’ mistakes in registering a sound stimulus or vibra-

tion of a bone telephone during the audiometry sessions.

Symmetry of HL

In 82.8% of patients with the c.[-23+1G>A];[-23+1G>A] genotype we detected bilateral sym-

metrical HL, and in 17.2%, the HL was bilateral asymmetrical (interaural difference in hearing

thresholds exceeded 15.0 dB) (Fig 3E). Our findings are consistent with findings reported in a

meta-analysis of HL asymmetry in DFNB1A patients with different GJB2 genotypes, in which

the average asymmetry was 14.2% (total range: 0–55.6%) [8]. However, the authors did not

explain the causes of this asymmetry since several observed studies did not meet the meta-

analysis criteria [8]. Our opinion is that sound perception function is most likely initially sym-

metrical in all individuals with GJB2-related HL. However, we are inclined to believe that the

detected asymmetry may be associated with the traumatic effect of excessive amplification by

poorly fitted hearing aids, especially if the settings were established in early childhood.

Audioprofile

One of the most informative audiological characteristics is the audiogram. In most genotype–

phenotype studies of DFNB1A, audiograms of patients with different GJB2 genotypes have

variable audiological profiles and are generally divided into three groups: “downsloping”,

“sloping” and “flat” audioprofiles [8, 18–60]. Previously, “flat” and “sloping” audioprofiles

were identified in three British siblings with the c.[-23+1G>A];[-23+1G>A] genotype [76]

and among our first reports on 40 patients with this genotype in Eastern Siberia [64]. In the

present study, a large cohort of patients with the c.[-23+1G>A];[-23+1G>A] genotype, we

confirmed the presence of a very “flat” audioprofile (Fig 4). On average, the slope in

PTA0.5,1.0,2.0,4.0 kHz was only 5.0 dB (Fig 1). However, in individuals with the c.[35delG];

[35delG] genotype, the slope in the PTA0.5,1.0,2.0,4.0 kHz was 20 dB (Fig 1). A very “flat” audio-

profile in patients with a homozygous c.-23+1G>A splice site variant demonstrated balanced

hearing preservation at almost all of the measured frequencies and indicated evenly dispersed

damage to the cochlear cells.
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Hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz

The median hearing threshold in PTA0.5,1.0,2.0,4.0 kHz in patients with the c.[-23+1G>A];[-23

+1G>A] genotype was 86.73 dB±21.98 dB (severe HL) (Fig 2). This finding indicates that this

splice site variant has a “medium” pathological effect on auditory function. In contrast, the

c.35delG variant has more pronounced pathological effect since the median hearing threshold

in individuals with the c.[35delG];[35delG] genotype in PTA0.5,1.0,2.0,4.0 kHz was 103.73 dB

±21.98 dB (profound HL). The c.109G>A p.(Val37Ile) missense variant demonstrated less

pronounced pathological effect on auditory function. The median hearing threshold of indi-

viduals with the c.[109G>A];[109G>A] genotype in PTA0.5,1.0,2.0,4.0 kHz was 59.73 dB±21.98

dB (moderate HL). Our results are generally consistent with previous studies, where com-

pound heterozygotes for the splice site variant with nontruncating variants had less severe HL:

c.[-23+1G>A];[269T>C] (moderate HL), c.[-23+1G>A];[551G>C] (moderate HL), c.[-23

+1G>A];[-254C>T(;)516G>C] (moderate HL), compared to the GJB2 genotypes where splice

site variants in a compound-heterozygous state with truncating variants had a more severe

degree of HL: c.[-23+1G>A];[35delG] (profound HL), c.[-23+1G>A];[327_328delGGinsA]

(profound HL) [18, 19, 77]. In a multicenter study, the authors [19] noted differences between

functional studies [78, 79] and clinical data for the studied splice site variant [19]. Although

some authors have suggested that the c.-23+1G>A mutation is associated with mild-to-mod-

erate HL, functional studies in patients with the c.[-23+1G>A];[35delG] genotype did not

confirm this assumption because the Cx26 sequence was not detected in the mRNA [78, 79].

Indeed, the pathological effect of splice site variants theoretically must be severe. However, the

c.-23+1G>A variant had a “medium” pathological effect on hearing function in our large

cohort of patients. In general, this finding reflects our incomplete understanding of the molec-

ular basis for gap junction function in the inner ear and the pathological mechanism of

DFNB1A [17]. In the absence of a complete full understanding of the mechanism of DFNB1A,

we can only speculate that the very “flat” audioprofile and “medium” pathological effect of this

splice site variant on hearing may be due to the presence of normal Cx26 molecules in cochlea

(Fig 4). This finding can most likely be explained by the existence of an alternative splicing site

in the noncoding region of the GJB2 gene, allowing the preservation of a certain amount of

normal Cx26, even with a disrupted canonical splice site. Currently, only one study on the

effect of the c.-23+1G>A variant is known [79]. In that study, RNA was isolated from a lym-

phoblastoid cell line of one patient with the c.[-23+1G>A];[35delG] genotype [79]. The

sequence of this patient yielded only from the c.35delG allele, indicating that the c.-23+1G>A

allele was not transcribed or was extremely unstable [79]. To determine the effect of the c.-23

+1G>A variant at the RNA level and to test the hypothesis of the existence of alternative splic-

ing sites in the noncoding region of the GJB2 gene, further extensive studies are needed.

Progression of HL

We observed a positive correlation of hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz and agein indi-

viduals with the c.[-23+1G>A];[-23+1G>A] genotype (Fig 5). However, HL progression with

age may also be due to variable exogenous (noise, ototoxic drugs, trauma, and harmful habits)

and endogenous factors (age-related hearing loss and modifier genes) [80, 81]. Currently,

many studies have confirmed the progression of HL in patients with various biallelic patho-

genic GJB2 variants [28, 30, 31, 46, 52, 55, 82, 83]. A meta-analysis of 28 studies reporting HL

progression data in 1,140 patients revealed that the average progression rate of DFNB1A was

18.7% (range: 0–56.0%) [8]. In a recent study from Shanghai, the incidence of moderate to

severe HL among 159 homozygous individuals with the nontruncating “mild” c.109G>A p.

(Val37Ile) variant (0.528%, 159/30,122) increased by 9.5%, 23.0%, 59.4% and 80.0% in the age
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groups of 7 to 15 years, 20 to 40 years, 40 to 60 years and 60 to 85 years, respectively [56]. Hear-

ing deteriorated by an average of 0.40 dB per year, male individuals were more susceptible,

and the deterioration occurred mainly at higher frequencies (4–8 kHz) [56]. The progression

HL in individuals with c.109G>A p.(Val37Ile) is also supported by the fact that 43.91% (18/

41) of newborns with this GJB2 genotype successfully underwent hearing screening, which was

based on otoacoustic emissions [56]. The results of the correlation analysis obtained in this

study indicate that there may be a slow progression of hearing impairment with age in patients

with c.-23+1G>A. Overall, we believe that the progression of HL with age may be typical for

various pathogenic allelic forms of DFNB1A. However, for patients with severe or profound

HL, it is difficult to identify this clinical feature since clinical audiometers are limited by 120

dB, but in patients with mild to moderate HL, it is technically possible.

Sex differences of HL

In present study, we found sex differences in hearing thresholds for the c.[-23+1G>A];[-23

+1G>A] genotype (Fig 6). Previously, there were no reports on sex differences in hearing

thresholds in patients with DFNB1A [8, 18–60]. Hearing acuity was reduced in males com-

pared to females at all separately measured frequencies and in the speech frequency range

(PTA0.5,1.0,2.0,4.0 kHz). It is obvious that in patients with the c.[-23+1G>A];[-23+1G>A] geno-

type, male sex is a risk factor for worsening HL. In our opinion, sex differences in hearing in

individuals with the same GJB2 genotype are mostly associated with cognitive function but not

with the degree of cochlear damage in different sexes. It is currently known that the cognitive

functions related to verbal, memory and spatial tasks exhibit sex differences [84–88], which are

correlated with differences in the volume and proportion of gray matter in the cortex the brain

[89, 90]. Analysis of the sex differences in brain gray and white matter in healthy young adults

using volumetric segmentation of dual-echo (proton density and T2-weighted) magnetic reso-

nance images confirmed that females temporal lobes in the brain, where the sound signal ana-

lyzer is located, at 0.45 mm are thicker [91]. Sex differences in the volume and percentage and

asymmetry of the principal cranial tissue may contribute to differences in cognitive function-

ing related to sound processing in the brain in patients with DFNB1A.

Limitations of the study

This genotype-phenotype study of the hearing function in patients with biallelic GJB2 patho-

genic variants have a some limitations related with the focusing on the homozygous patients

with rare in the world splice site variant c.-23+1G>A, which have a specific audiological fea-

tures. However, a some common genotype-phenotype findings, such as symmetry, progres-

sion and gender differences of the HL may be a typycal for patients with some other GJB2
variants with mild or moderate pathological effect on hearing function. We hope that this

study about hearing function in patients with c.-23+1G>A splice site variant in the GJB2 gene

will be a challenge for other researchers for clearly analyzed these audiological findings in the

future studies.

Conclusions

1. The preservation of hearing thresholds in the speech frequency range (PTA0.5,1.0,2.0,4.0 kHz)

in patients with the biallelic truncating c.[-23+1G>A];[-23+1G>A] (T/T) genotype is signifi-

cantly better than in patients with a “severe” truncating c.[35delG];[35delG] (T/T) genotype (p
= 0.005) and significantly worse than in patients with the nontruncating “mild” c.[109G>A];

[109G>A] (NT/NT) genotype (p = 0.041), which indicates that this splice site variant has a

“medium” pathological effect on hearing function.
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2. A detailed clinical and audiological analysis showed that in patients with the c.[-23+-

1G>A];[-23+1G>A] genotype, HL is characterized as congenital or early onset (57.5% onset

before 12 months), sensorineural (97.8%), bilateral, symmetrical (82.8%), variable in degree of

HL (from mild to profound, median hearing threshold in PTA0.5,1.0,2.0,4.0 kHz is 86.73±21.98

dB), with an extremely “flat” audioprofile, and with a tendency toward slow progression with

age (positive correlation of hearing thresholds with age, r = 0.144, p = 0.041).

3. In females, the preservation of hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz was significantly

better (82.34 dB) than that in males (90.62 dB) (p = 0.001). Thus, we can conclude that in

DFNB1A patients with a homozygous c.-23+1G>A splice site variant, male sex is a factor asso-

ciated with deteriorating auditory function; in contrary female sex is a protective factor.
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and V37I mutations in GJB2 associated hearing impairment: evidence for pathogenicity and reduced

PLOS ONE Hearing function in patients with DFNB1A caused by the GJB2-variant c.-23+1G>A

PLOS ONE | https://doi.org/10.1371/journal.pone.0309439 October 22, 2024 15 / 19

https://doi.org/10.1007/BF00186783
http://www.ncbi.nlm.nih.gov/pubmed/7726389
https://doi.org/10.1038/387080a0
https://doi.org/10.1038/387080a0
https://doi.org/10.1002/lary.24332
https://doi.org/10.1002/lary.24332
http://www.ncbi.nlm.nih.gov/pubmed/23900770
https://doi.org/10.3390/life10110258
http://www.ncbi.nlm.nih.gov/pubmed/33126609
https://doi.org/10.1007/s00439-021-02425-6
http://www.ncbi.nlm.nih.gov/pubmed/35044523
https://doi.org/10.1038/nature07869
https://doi.org/10.1038/nature07869
http://www.ncbi.nlm.nih.gov/pubmed/19340074
https://doi.org/10.1038/ncb1205
https://doi.org/10.1038/ncb1205
http://www.ncbi.nlm.nih.gov/pubmed/15592461
https://doi.org/10.1016/j.ceca.2006.05.005
https://doi.org/10.1016/j.ceca.2006.05.005
http://www.ncbi.nlm.nih.gov/pubmed/16828497
https://doi.org/10.1073/pnas.0501859102
http://www.ncbi.nlm.nih.gov/pubmed/16217030
https://doi.org/10.1073/pnas.0506481102
https://doi.org/10.1073/pnas.0506481102
http://www.ncbi.nlm.nih.gov/pubmed/16344488
https://doi.org/10.1016/j.neuroscience.2008.08.027
http://www.ncbi.nlm.nih.gov/pubmed/18793701
https://doi.org/10.3389/fncel.2023.1208406
https://doi.org/10.3389/fncel.2023.1208406
http://www.ncbi.nlm.nih.gov/pubmed/37333892
https://doi.org/10.1136/jmg.2003.013896
https://doi.org/10.1136/jmg.2003.013896
https://doi.org/10.1086/497996
https://doi.org/10.1086/497996
http://www.ncbi.nlm.nih.gov/pubmed/16380907
http://www.ncbi.nlm.nih.gov/pubmed/10544226
https://doi.org/10.1002/humu.20084
https://doi.org/10.1002/humu.20084
http://www.ncbi.nlm.nih.gov/pubmed/15365987
https://doi.org/10.1001/archotol.131.6.481
http://www.ncbi.nlm.nih.gov/pubmed/15967879
https://doi.org/10.1371/journal.pone.0059624
https://doi.org/10.1371/journal.pone.0059624
http://www.ncbi.nlm.nih.gov/pubmed/23555729
https://doi.org/10.1371/journal.pone.0309439


penetrance. Am J Med Genet A. 2007; 143A: 2534–43. https://doi.org/10.1002/ajmg.a.31982 PMID:

17935238

26. Lee KH, Larson DA, Shott G, Rasmussen B, Cohen AP, Benton C, et al. Audiologic and temporal bone

imaging findings in patients with sensorineural HL and GJB2 mutations. Laryngoscope. 2009; 119:

554–8. https://doi.org/10.1002/lary.20162 PMID: 19235794

27. Primignani P, Trotta L, Castorina P, Lalatta F, Sironi F, Radaelli C, et al. Analysis of the GJB2 and GJB6

genes in Italian patients with nonsyndromic hearing loss: frequencies, novel mutations, genotypes, and

degree of hearing loss. Genet Test Mol Biomarkers. 2009; 13: 209–17. https://doi.org/10.1089/gtmb.

2008.0086 PMID: 19371219

28. Chan DK, Schrijver I, Chang KW. Connexin-26-associated deafness: phenotypic variability and pro-

gression of hearing loss. Genet Med. 2010; 12: 174–81. https://doi.org/10.1097/GIM.

0b013e3181d0d42b PMID: 20154630

29. Bartsch O, Vatter A, Zechner U, Kohlschmidt N, Wetzig C, Baumgart A. et al. GJB2 mutations and

genotype-phenotype correlation in 335 patients from germany with nonsyndromic sensorineural hearing

loss: evidence for additional recessive mutations not detected by current methods. Audiol Neurootol.

2010; 15: 375–82. https://doi.org/10.1159/000297216 PMID: 20234132

30. Kenna MA, Feldman HA, Neault MW, Frangulov A, Wu BL, Fligor B, et al. Audiologic phenotype and

progression in GJB2 (Connexin 26) hearing loss. Arch Otolaryngol Head Neck Surg. 2010; 136: 81–7.

https://doi.org/10.1001/archoto.2009.202 PMID: 20083784

31. Tsukada K, Nishio S, Usami S. Deafness Gene Study Consortium. A large cohort study of GJB2 muta-

tions in Japanese hearing loss patients. Clin Genet. 2010; 78: 464–70. https://doi.org/10.1111/j.1399-

0004.2010.01407.x PMID: 20497192

32. Ma Y, Yang T, Li Y, Tao Z, Huang Z, Li X, et al. Genotype-phenotype correlation of two prevalent GJB2

mutations in Chinese newborn infants ascertained from the Universal Newborn Hearing Screening Pro-

gram. Am J Med Genet A. 2010; 152A: 2912–5. https://doi.org/10.1002/ajmg.a.33698 PMID:

20954238

33. Zhao FF, Ji YB, Wang DY, Lan L, Han MK, Li Q, et al. Phenotype-genotype correlation in 295 Chinese

deaf subjects with biallelic causative mutations in the GJB2 gene. Genet Test Mol Biomarkers. 2011;

15: 619–25. https://doi.org/10.1089/gtmb.2010.0192 PMID: 21488715

34. Martines F, Salvago P, Bartolotta C, Cocuzza S, Fabiano C, Ferrara S, et al. A genotype-phenotype cor-

relation in Sicilian patients with GJB2 biallelic mutations. Eur Arch Otorhinolaryngol. 2015; 272: 1857–

65. https://doi.org/10.1007/s00405-014-2970-1 PMID: 24627074

35. Tsukada K, Fukuoka H, Usami S. Vestibular functions of hereditary hearing loss patients with GJB2

mutations. Audiol Neurootol. 2015; 20: 147–52. https://doi.org/10.1159/000368292 PMID: 25824904

36. Zheng J, Ying Z, Cai Z, Sun D, He Z, Gao Y, et al. GJB2 Mutation Spectrum and Genotype-Phenotype

Correlation in 1067 Han Chinese Subjects with Non-Syndromic HL. Plos One. 2015; 10: e0128691.

https://doi.org/10.1371/journal.pone.0128691 PMID: 26043044

37. Huang S, Huang B, Wang G, Yuan Y, Dai P. The Relationship between the p.V37I Mutation in GJB2

and Hearing Phenotypes in Chinese Individuals. PLoS One. 2015; 10: e0129662. https://doi.org/10.

1371/journal.pone.0129662 PMID: 26061099
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