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Nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor
responsible for cytoprotection, plays a crucial role in regulating the expression
of numerous antioxidant genes, thereby reducing reactive oxygen species (ROS)
levels and safeguarding cells against oxidative stress. Extensive research has
demonstrated the involvement of Nrf2 in various diseases, prompting the
exploration of Nrf2 activation as a potential therapeutic approach for a variety
of diseases. Consequently, there has been a surge of interest in investigating the
Nrf2 signaling pathway and developing compounds that canmodulate its activity.
Isoliquiritigenin (ISL) (PubChem CID:638278) exhibits a diverse range of
pharmacological activities, including antioxidant, anticancer, and anti-tumor
properties. Notably, its robust antioxidant activity has garnered significant
attention. Furthermore, ISL has been found to possess therapeutic effects on
various diseases, such as diabetes, cardiovascular diseases, kidney diseases, and
cancer, through the activation of the Nrf2 pathway. This review aims to evaluate
the potential of ISL in modulating the Nrf2 signaling pathway and summarize the
role of ISL in diverse diseases prevention and treatment through modulating the
Nrf2 signaling pathway.
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1 Introduction

In recent decades, numerous studies established that oxidative stress contributes to a
variety of human diseases, including cardiovascular disease, cancer, neurological disorder,
and diabetes (Valko et al., 2007). Oxidative stress denotes the disruption in the equilibrium
between oxygen free radicals and antioxidants (Bhimaraj and Tang, 2012). As part of
normal physiological processes, ROS (such as superoxide radical, hydroxyl radicals, and
hydrogen peroxide) are consistently produced within cells and are counteracted by the
antioxidant defense system, thereby preserving a state of dynamic equilibrium and
preventing harm to the body. Oxidative stress is caused by the overproduction of ROS,
which can trigger the apoptosis of cells by damaging DNA, proteins, and lipids (Valko et al.,
2007). Consequently, mitigating oxidative stress has the potential to be an effective
therapeutic approach for a range of diseases.

The Nrf2 signaling pathway serves as the primary cellular antioxidative system in
response to oxidative stress. As a transcription factor, Nrf2 regulates the expression of genes
involved in antioxidant defense, thereby reducing ROS levels and safeguarding cells against
oxidative damage. Due to its potent antioxidant effects, it has been reported that the
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Nrf2 signaling has been implicated in the pathogenesis of various
diseases including cardiovascular diseases, brain diseases, kidney
diseases, cancer et al. (Menegon et al., 2016; Tian et al., 2021; Liu Y.
et al., 2022; He et al., 2024; Tang et al., 2024). Specifically, in the
context of cardiovascular diseases, activation of Nrf2 has been
demonstrated to confer protection against conditions such as
myocardial ischemia-reperfusion injury and atherosclerosis (Tian
et al., 2021; He et al., 2024). The study has shown that activation of
Nrf2 can decrease infarct size and enhance cardiac function in
myocardial ischemia-reperfusion injury, underscoring its
therapeutic promise in cardiovascular pathologies (Tian et al.,
2021). Similarly, in brain diseases such as Alzheimer’s and
Parkinson’s, Nrf2 activation has been associated with
neuroprotection (George et al., 2022). The activation of
Nrf2 reduces the generation of ROS and improves mitochondrial
function, thereby protecting neuronal cells from oxidative stress-
induced damage (Brandes et al., 2021). In cancer, the role of Nrf2 is
intricate and contingent upon the specific circumstances. While
Nrf2 activation can protect normal cells from oxidative damage and
reduce cancer risk, its persistent activation in cancer cells can confer
resistance to chemotherapy and facilitate the proliferation of tumors.
Therefore, the dual roles of Nrf2 inhibition should be taken into
consideration in cancer therapy (Cleasby et al., 2014; Torrente et al.,
2017; Pouremamali et al., 2022). Nrf2 also plays a crucial role in
kidney diseases, where it helps to regulate genes that maintain
homeostasis in the kidneys and mitigate oxidative stress and
inflammation (Shelton et al., 2015; Liu Y. et al., 2022). Nrf2 has
been shown to improve tubular injury and ameliorate kidney
dysfunction, making it a promising target for kidney diseases
management (Liu Y. et al., 2022). In summary, the
Nrf2 signaling pathway is a master regulator of cellular-defense
oxidative stress, with significant implications for a wide range of
diseases. Moreover, there is presently a significant level of interest in
the utilization of small molecular compounds to selectively target the
Nrf2 signaling pathway as a means of treating a wide range of
diseases (Zhu et al., 2020). Consequently, the quest for efficacious
Nrf2 activators represents a promising novel therapeutic approach
for the management of these ailments.

ISL, a chalcone-structured flavonoid derived from Glycyrrhiza
uralensis (licorice) species (Li et al., 2010), has been found to possess
therapeutic properties in various diseases including diabetes,
cardiovascular diseases, kidney diseases, and cancer through the
activation of the Nrf2 pathway (Xiong D. et al., 2018; Gu et al.,
2020; Yao et al., 2022). ISL has been reported to exert an endogenous
protective effect by facilitating Nrf2 nuclear translocation and
modulating the expression of antioxidative enzymes such as
nicotinamide adenine dinucleotide phosphate quinone
oxidoreductase-1(NQO1), heme oxygenase-1 (HO-1), superoxide
dismutase (SOD) et al. Consequently, the exploration of effective
Nrf2 activatorsmay present a novel potential therapeutic approach for
the treatment of these diseases. Furthermore, ISL has been widely
recognized as a safe phytochemical without any significant toxic,
genotoxic, teratogenic properties in treating diseases (Zhao et al.,
2019). Numerous studies have demonstrated the diverse
pharmacological activities of ISL, including its antioxidant,
anticancer, and anti-tumor properties (Iwata et al., 1999; Kwon
et al., 2007; Aponte et al., 2008; Feldman et al., 2011; Chen Y. P.
et al., 2013; Gaur et al., 2014; Zhao et al., 2019). These findings

collectively suggest that ISL plays a pivotal role in the prevention and
treatment of human diseases (Figure 1). In this context, we specifically
explore the therapeutic potential of ISL in targeting the Nrf2 pathway
and evaluate its underlying mechanisms, thereby providing valuable
insights for future research endeavors in this field.

2 Structure and metabolism of ISL

ISL (C15H12O4; MW: 256.26 Da) is a prominent member of the
natural flavonoid compound group, primarily derived from the licorice
root and various other plant species includingCicer arietinum L (Zhao
et al., 2008), Radix Hedysari (Zhao et al., 2008), and Crinum
bulbispermum (Ramadan et al., 2000). ISL (2′4′4-
trihydroxychalcone) is classified within the chalcone family of
flavonoids and finds application in the food additives and
cosmetics industries (Cao et al., 2004; Wang Z. F. et al., 2020). The
chemical structure of ISL is depicted in Figure 2. It exhibits limited
solubility in water and manifests as a yellow crystalline solid (Wang Z.
F. et al., 2020; Zhao et al., 2021). The research has determined that the
bioavailability of ISL in rats following oral administration ranged from
22.70% to 33.62%, indicating a low level of oral bioavailability. ISL is
absorbed in the intestine and is biotransformed through both phases
II, in the liver after absorption (Guo et al., 2008). Numerous studies
have demonstrated that ISL exhibits favorable uptake and elimination
capabilities when administered through various routes, including
intraperitoneal, intravenous, and oral inoculations (Han et al.,
2011; Qiao et al., 2014). Moreover, it has been observed that orally
ingested ISL is rapidly absorbed from the gastrointestinal tract. The
presence of ISL in plasma can be detected within a 5-min timeframe,
with its concentration peaking at 30 min. Following intraperitoneal
injection of ISL, the liver exhibited the highest distribution of ISL,
followed by the kidney, spleen, blood, lung, brain, and heart. The
concentration of ISL in the blood reached its maximum level after
60 min (Han et al., 2011). Intravenous injection resulted in a rapid
decrease in ISL concentration in plasma. The distribution half-life of
ISL was found to be 0.3 h, while the elimination half-life for ISL doses
of 10, 20, and 50 mg/kg were determined to be 4.9, 4.6, and 4.8 h,
respectively (Qiao et al., 2014). Additionally, it was observed that
intravenous administration of ISL resulted in its predominant
distribution within highly vascularized tissues such as the heart,
lungs, kidney, and liver. These findings suggest that the
distribution pattern of ISL is influenced by the blood flow and
perfusion of the respective organs (Qiao et al., 2014).
Consequently, these results provide further substantiation for the
potential therapeutic efficacy of ISL in treating disorders related to
the cardiac, respiratory, and urinary systems. Furthermore, the
significant accumulation of ISL in the kidney implies that it may
serve as the primary organ for excretion of the compound. Despite its
low expression in the brain due to high polarity (Li et al., 2008; Hua
et al., 2010), it is intriguing to note that ISL can traverse the blood-
brain barriers and exhibit neuroprotective effects in male MCAO-
induced focal cerebral ischemic injury (Li et al., 2015). This could be
relevant for the blood-brain barrier disruption after stroke (Wang
et al., 2011). Presently, several approaches, including self-
nanoemulsifying drug delivery systems (SNEDDS) and
nanoparticles, are being explored to address the challenge of
limited oral absorption and bioavailability associated with ISL.
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3 Nrf2 structure and activation

Nrf2, a crucial transcription factor involved in cellular defense
mechanisms against oxidative stress, plays a significant role in
maintaining equilibrium between free radicals and the body’s
antioxidant system (O’Mealey et al., 2017). It is increasingly
recognized as a pivotal regulator in various diseases, such as
neurological diseases, cardiovascular diseases, lung diseases, and
kidney disorders, among others (Chen et al., 2003; Pietsch et al.,
2003; Chen et al., 2006; Rushworth et al., 2008; Kanninen et al.,
2009). The NFE2L2 gene encodes Nrf2, a transcription factor
belonging to the cap ’n’ collar subfamily of basic-region leucine
zipper (bZIPs) (Chowdhry et al., 2013). Nrf2 has a molecular weight
of about 100 kDa. The protein Nrf2 is composed of seven distinct
domains (Neh1-Neh7), each serving a specific function in regulating
gene stability and transcriptional activity (Goodfellow et al., 2020;
Madden and Itzhaki, 2020; Shaw and Chattopadhyay, 2020)
(Figure 3). Nrf2 contains three of these regions at its C-terminus:
Neh1, Neh3, and Neh6. Neh1 contains a bZIP domain, which
primarily interacts with small Maf proteins for dimerization
(Madden and Itzhaki, 2020; Zhou et al., 2020). This interaction
allows Nrf2 to recognize and bind to the antioxidant response
element (ARE), thereby facilitating the transcription of relevant
genes. Neh3, on the other hand, acts as the transactivation domain of

Nrf2 and interacts with the transcriptional co-activator
chromodomain helicase DNA binding protein 6, thereby
facilitating the transcription of genes dependent on ARE and
exhibiting antioxidant activity (Bellezza et al., 2018; Ooi et al.,
2018). Besides, the Neh6 domain, which negatively regulates
Nrf2 stability, is a serine-rich domain comprising two motifs
(DSGIS and DSAPGS) that bind to β-transducin repeat-
containing protein (β-TrCP) (Panieri et al., 2020). The
Neh6 domain plays a role in the degradation of
Nrf2 independent of Keap1. Glycogen synthase kinase-3β (GSK-
3β) phosphorylates specific serine amino acid residues (Ser344 and
Ser347) within the Neh6 domain, thereby facilitating the
ubiquitination and subsequent proteasomal degradation of the
Nrf2 protein (Zhang et al., 2020). Conversely, GSK-3β activity is
suppressed when it is phosphorylated on Ser21/9 residue, which
results in activating Nrf2 and promotes the transcription of its
downstream antioxidant and increase the antioxidant capacity
(Hayes et al., 2015). The Neh4 and Neh5 domains, situated in
the N-terminal halves, are responsible for the transcriptional
regulation of downstream target genes. Upon translocation of
Nrf2 to the nucleus, only the Neh4 and Neh5 domains interact
with cAMP response element-binding protein (CREB) to activate
transcription of the target genes (Bellezza et al., 2018). Furthermore,
scholars have also discovered that the Neh4/Neh5 domains engage

FIGURE 1
The protective effects of ISL in different diseases mediated by Nrf2 signaling pathway.
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in interactions with the E3 ubiquitin ligase, hydroxy methylglutaryl
coenzyme A reductase degradation 1, thereby facilitating the
ubiquitylation and subsequent degradation of Nrf2(Wu et al.,
2014). The Neh2 domain, which serves as a negative regulatory

region and the primary binding site for Keap1, primarily comprises
DLG and ETGE motifs (Chowdhry et al., 2013). Elucidating the
underlying mechanisms, it has been found that the homodimer
double glycine repeat domain (DGR) of Keap1 binds to the DLG and

FIGURE 2
The structure and sources of ISL.

FIGURE 3
Schematic structures of Nrf2 and Keap1 protein. The protein Nrf2 is composed of seven distinct domains (Neh1-Neh7), each serving a specific
function in regulating gene stability and transcriptional activity. The Keap1 protein consists of five distinct domains: NTR, IVR, BTB, DGR and CTR.
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ETGEmotifs of Nrf2, leading to the ubiquitination of lysine residues
in Nrf2. Consequently, this process results in the inactivation and
degradation of Nrf2(Zenkov et al., 2017; Bellezza et al., 2018; Tonelli
et al., 2018). Additionally, the investigation revealed that the
Neh7 domain engages in an interaction with retinoic X receptor
α, resulting in the repression of Nrf2 activity and the transcription
of its target genes (Wang et al., 2013). Generally, the activity of
Nrf2 is governed by the regulated maintenance of Nrf2 protein
levels, which is achieved through both Keap1-dependent and Keap1-
independent mechanisms. The subsequent sections provide a

comprehensive overview of these two prominent regulatory
mechanisms.

3.1 Keap1-dependent regulation

It is widely recognized that the regulation of Nrf2 involves both
the Keap1-dependent and Keap1-independent pathways. The
Keap1-dependent mechanism serves as the primary pathway for
regulating Nrf2. In normal cells, Keap1 acts as a principal negative

FIGURE 4
Molecular mechanisms of Keap1-dependent and Keap1-independent modulation of Nrf2. The regulation of Nrf2 involves both the Keap1-
dependent and Keap1-independent pathways. Under normal physiological conditions, dimers of Keap1 exist in the cytoplasm and are substrate adapters
protein for Cul3 E3 ubiquitin ligases. Nrf2 is ubiquitinated by E3 ubiquitin ligase, and degraded by the 26S proteasome. During oxidative stress, ROS can
modify the reactive cysteine residues within Keap1, such as Cys151 in the BTB domain and Cys273, Cys288 in the IVR domain. This interaction disrupt
the Keap1-Cul3-Rbx1 ubiquitin ligase complex and Nrf2 interaction, leading to the dissociation of Nrf2 from Keap1. When Nrf2 dissociates from Keap1, it
translocates into the nucleus where it forms heterodimers with Maf proteins within the Neh1 domain. In promoter regions, Nrf2 forms a complex with the
ARE, thereby enhancing the antioxidant capacity by facilitating transcription of downstream antioxidant genes. Nrf2 can also be activated via the
autophagy-lysosome pathway. The protein p62 serves as a selective autophagy receptor, facilitating the targeting of ubiquitinated substrates to
autophagosomes for degradation. This interaction facilitates the integration of Keap1 into the autophagosome for degradation through the autophagy
pathway, resulting in the separation of Nrf2 and Keap1 and thereby promoting the expression of antioxidant enzyme genes. miRNA plays a key role in the
regulation of Nrf2 and contributes to its antioxidant capacity.
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regulator of Nrf2 by ubiquitinating and degrading it. This negative
regulation effectively controls Nrf2 activity and tightly regulates its
concentration (Baird and Yamamoto, 2020; Kopacz et al., 2020). The
relative molecular weight of Keap1 is 69KD (Canning et al., 2013).
The Keap1 protein consists of five distinct domains: the N-terminal
domain (NTR), the intervening region (IVR), the Broad complex,
Tramtrack and Bric-à-Brac domain (BTB), the DGR, and the
C-terminal region (CTR). Among these domains, the DGR
domain, also referred to as the Kelch domain, plays a crucial role
in the binding of Keap1 to the Neh2 domain of Nrf2(Ooi et al., 2018;
Zhou et al., 2020) (Figure 3). Under normal physiological
conditions, dimers of Keap1 exist in the cytoplasm and are
substrate adapters protein for cullin3 (Cul3) E3 ubiquitin ligases
(Suzuki et al., 2019). The additional study has also revealed that the
presence of seven lysine residues positioned between the DLG and
ETGE motifs in the Neh2 domain renders them susceptible to poly-
ubiquitination, thereby facilitating the degradation of Nrf2 by the
26S proteasome system (Shibata et al., 2008; Harder et al., 2015;
Mohan and Gupta, 2018) (Figure 4). Furthermore, the IVR domain
in Keap1, particularly Cys273 and Cys288, assumes a crucial role in
maintaining the stability of the Nrf2-Keap1 complex and ensuring
Nrf2 homeostasis. Consequently, in the absence of external stressors,
Nrf2 undergoes continuous synthesis and degradation, resulting in
minimal net accumulation (Wakabayashi et al., 2004). Notably,
Nrf2 exhibits a remarkably short half-life of approximately
10–30 min (Nguyen et al., 2003; Stewart et al., 2003). In contrast,
the Cul3-Keap1-E3 ligase’s capacity to ubiquitinate Nrf2 is hindered
during periods of stress, causing Nrf2 to relocate to the nucleus and
manifest its antioxidative properties. During oxidative stress, it is
important to mention that ROS or electrophiles have the ability to
cause changes in the structure of the Keap1 domain. Specifically,
ROS can modify the reactive cysteine residues within Keap1, such as
Cys151 in the BTB domain and Cys273, Cys288 in the IVR domain
(Tebay et al., 2015) (Figure 4). This interaction has the potential to
disrupt the Keap1/Cul3/RING-box protein 1 (Rbx1) ubiquitin ligase
complex and Nrf2 interaction, leading to the dissociation of
Nrf2 from Keap1 and subsequent suppression of ubiquitin-
dependent degradation of Nrf2. When Nrf2 dissociates from
Keap1, it translocates into the nucleus where it forms
heterodimers with Maf proteins within the Neh1 domain and
binds to the coactivator CREB protein, thereby enabling Nrf2 to
possess DNA binding capability. In promoter regions, Nrf2 forms a
complex with the ARE, thereby enhancing the antioxidant capacity
by facilitating transcription of downstream antioxidant genes.
Notable examples of these antioxidant genes encompass NQO1,
glutathione S-transferase (GST), HO-1, and glutamate-cysteine
ligase modifier subunit (GCLM) (Itoh et al., 1997; Buendia et al.,
2016; Tonelli et al., 2018) (Figure 4).

3.2 Keap1-independent regulation

In addition to the Keap1-dependent Nrf2 regulation pathway,
Nrf2 activity is subject to stringent regulation through various
mechanisms (Kaspar et al., 2009; Ichimura et al., 2013; Huang
et al., 2014; Lin, 2019). Recent research has demonstrated that
Nrf2 can also be activated via the autophagy-lysosome pathway,
which is a highly regulated process responsible for the removal of

damaged proteins and organelles (Ichimura et al., 2013; Zhang L.
et al., 2016). The protein sequestosome 1 (SQSTM1/p62) serves as a
selective autophagy receptor, facilitating the targeting of
ubiquitinated substrates to autophagosomes for degradation. As
an adaptor protein, p62 plays a critical role in connecting
autophagy with the Keap1-Nrf2 signaling pathway (Mizushima
and Hara, 2006). This interaction facilitates the integration of
Keap1 into the autophagosome for degradation through the
autophagy pathway, resulting in the separation of Nrf2 and
Keap1. This facilitates the movement of Nrf2 into the nucleus,
thereby promoting the expression of antioxidant enzyme genes
(Kageyama et al., 2018). Additionally, p62 is identified as one of
the genes regulated by transcription. Nrf2 can activate and induce
the production of p62, subsequently reactivating Nrf2, thus
establishing a positive feedback loop (Santarino et al.,
2017) (Figure 4).

The amino acid sequence of Nrf2 also provides multiple
phosphorylation sites for protein kinases, such as serine,
threonine, and tyrosine residues, which play a role in
Nrf2 regulation. It has been shown that these modifications to
Nrf2 may lead to its degradation, nuclear translocation, and
nuclear export (Huang et al., 2002; Cullinan and Diehl, 2004;
Keum et al., 2006; Pi et al., 2007). The phosphorylation of
Neh2 by protein kinase C (PKC) results in the release of
Nrf2 from Keap1 and subsequent enhancement of transcriptional
activity of Nrf2. Further supporting the notion that PKC directly
phosphorylates Ser40 within Neh2 domain is this finding (Huang
et al., 2002). Additionally, it has been reported that GSK-3β
phosphorylates the Nrf2 Neh6 domain (DSGIS domain) through
β-TrCP, thereby inhibiting Nrf2 activity and exerting a negative
regulatory effect (Hayes et al., 2015). The specific mechanism has
been reported that β-TrCP has the ability to recognize the
phosphorylated DSGIS motif in the Neh6 domain, leading to the
formation of the SKP1-CUL1-F-box protein (SCF)β-TrCP
E3 ubiquitin ligase complex. Ultimately, this complex is involved
in Nrf2 ubiquitination and degradation (Latres et al., 1999; Zheng
et al., 2002; Hayes et al., 2015). Additionally, it has been reported
that casein kinase two is capable of phosphorylating the Neh4 and
Neh5 domains of Nrf2(Pi et al., 2007; Apopa et al., 2008). On the
other hand, protein kinase RNA-like endoplasmic reticulum kinase
(PERK) directly phosphorylates Nrf2, enhancing Nrf2-Keap1
dissociation and Nrf2 antioxidant pathways (Cullinan et al.,
2003). Furthermore, PERK also facilitates the upregulation of the
bZIP transcription factor activating transcription factor 4, which
interacts with Nrf2 and triggers the activation of Nrf2 targeted genes
(He et al., 2001; Ma et al., 2018). The mitogen-activated protein
kinase (MAPK) pathway, known for its involvement in kinase
signaling cascades, has been demonstrated that it regulates
Nrf2 activity. However, the relationship between MAPK and
Nrf2 appears contradictory. For instance, there is evidence that
p38 MAPK can both positively and negatively modulate the
antioxidant activity of Nrf2(Alam et al., 2000; Yu et al., 2000;
Keum et al., 2006; Kocanova et al., 2007; Tsai et al., 2011). On
the other hand, extracellular signal-regulated kinase (ERK) and
c-Jun N-terminal kinase (JNK) are more likely to positively
regulate Nrf2 activity, as depicted in Figure 4(Keum et al., 2003;
Nguyen et al., 2003; Xu et al., 2006; Varì et al., 2011; Choi et al., 2016;
Feng et al., 2018).
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Moreover, numerous studies have shed light on the correlation
between Nrf2 and microRNA (miRNA) (Stachurska et al., 2013;
Alural et al., 2015; Yang et al., 2021). miRNA, a crucial type of non-
coding single-stranded RNA responsible for gene expression
regulation, plays a role in the regulation of Nrf2, with
approximately 85 miRNAs potentially involved (Bartel, 2004;
Papp et al., 2012). Experimental evidence has previously
confirmed that miR-1225-5p directly interacts with Keap1,
leading to increased Nrf2 levels and subsequent translocation of
Nrf2 into the nucleus, resulting in upregulated HO-1 levels (Yang
et al., 2021). Additionally, there are reported indications that miR-
132 and miR-34a may modulate Nrf2 mRNA expression based on
miRNA expression profiles (Stachurska et al., 2013; Alural et al.,
2015). The role of miR-141-3p in enhancing the stability of Nrf2 by
targeting Keap1 has been demonstrated (van Jaarsveld et al., 2013;
Shi et al., 2015; Xu et al., 2021). Overall, Nrf2 is regulated by miRNA
as depicted in Figure 4.

4 The role of ISL in targeting different
diseases via Nrf2 pathway

4.1 Brain diseases

ISL is recognized as an effective antioxidant and
cerebroprotective through the Nrf2/ARE signaling pathway
(Foresti et al., 2013; Zeng et al., 2017; Zhu et al., 2019b). The
investigation has revealed that ISL effectively mitigated early
brain injury induced by subarachnoid hemorrhage, as evidenced
by its ability to inhibit neuronal apoptosis, oxidative stress, and brain
edema. Moreover, the administration of ISL augmented the
expression of Nrf2, while the inhibition of Nrf2 activity
counteracted the antioxidant and neuroprotective effects of ISL
(Liu J. Q. et al., 2022). Another study has demonstrated that ISL
significantly ameliorated neurological deficits in patients diagnosed
with Parkinson’s disease (PD). The underlying mechanism may be
attributed to the attenuation of neuro-inflammation through the
Nrf2/ARE pathway. The researchers observed that the
administration of ISL at a dosage of 20 mg/kg effectively reduced
the rotational behavior in PD mice, enhanced the expression of
tyrosine hydroxylase, and decreased the expression of α-synuclein.
Additionally, ISL not only decreased the expression of ionized
calcium bindingadaptor molecule-1 (Iba-1), interleukin-1β (IL-
1β), and tumor necrosis factor-α (TNF-α), but also upregulated
the expression of Nrf2 and NQO1 (Huang et al., 2022). In the
lipopolysaccharide (LPS)-induced cognitive impairment rat model,
ISL also prevented neuronal damage and cognitive impairment by
maintaining antioxidant ability and suppressing
neuroinflammation. The protective effects of ISL have been
shown to be exerted through inhibiting GSK-3β activity through
increasing the expression levels of phosphorylated (p)-GSK-3β,
thereby disinhibiting Nrf2 and upregulating the gene expression
of Nrf2-controlled anti-oxidant genes. Besides, ISL also reduced pro-
inflammatory cytokine production (Zhu et al., 2019a). The
antioxidant mechanism of ISL is associated with reducing
vascular permeability, enhancing neurological functions, and
mitigating neuronal apoptosis in order to alleviate traumatic
brain injury (TBI). This is achieved through the promotion of

nuclear translocation of Nrf2 and the activation of the Nrf2-
regulated ARE (Zhang et al., 2018a) (Figure 5). Supplementary
Table 1 provides an overview of the Nrf2-related therapeutic
effects of ISL in brain injury.

4.2 Liver diseases

The prevalence of liver disease has increased significantly in
recent years (Zhang et al., 2015). One significant factor contributing
to acute liver dysfunction is drug-induced liver toxicity (Rabinowich
and Shibolet, 2015). Doxorubicin, a widely utilized cancer
chemotherapeutic agent, is commonly employed in the treatment
of various tumor types, such as breast cancer, lymphomas, and
leukemia, among others (Renu et al., 2019). However, the
administration of doxorubicin is associated with adverse effects
including cardiotoxicity, hepatotoxicity, and nephrotoxicity
(Pugazhendhi et al., 2018). Given that the liver serves as a crucial
metabolic organ in the human body, it has been observed that during
doxorubicin therapy, the liver is exposed to high concentrations of
the drug and experiences the most pronounced impact (Carvalho
et al., 2009). Research has demonstrated that doxorubicin-induced
hepatotoxicity is a complex process involving multiple molecules,
primarily driven by oxidative stress, inflammation, and apoptosis
(Prasanna et al., 2020). There is substantial evidence that
doxorubicin inhibits the expression of Nrf2 and reduces the
expression of antioxidant enzyme-related genes, thereby
intensifying the oxidative stress damage caused by doxorubicin in
the liver. As evidenced by the downregulation of serum
aminotransferase levels following ISL administration, ISL may
mitigate doxorubicin-induced hepatotoxicity. This protective
effect is achieved through the induction of Nrf2-mediated
antioxidant signaling and the inhibition of nuclear factor kappa-
B (NF-κB) activity (Al-Qahtani et al., 2022). Furthermore, it has
been observed that emodin, the primary constituent of Cassia
obtusifolia, Aloe vera, and Polygonum multiflorum, can
potentially induce hepatotoxicity, especially when administered in
high doses and over an extended period of time (Wang et al., 2009;
Panigrahi et al., 2015; Dong et al., 2016). It has been demonstrated
that emodin exerts its hepatotoxic effects by generating ROS and
activating mitochondria-dependent pathways (Dong et al., 2018).
Additionally, another study has revealed that the combination of ISL
and emodin exhibits a significant hepatoprotective effect by
enhancing cellular activity, reducing the production of ROS, and
augmenting antioxidant capacity. Additionally, ISL has been found
to promote the separation of Keap1 from Nrf2, resulting in the
translocation of Nrf2 into the nucleus and subsequent induction of
phase-II detoxifying enzyme expression (Ni et al., 2022).
Furthermore, ISL has demonstrated significant mitigation of
triptolide-induced acute hepatotoxicity by reducing hepatic
oxidative stress and the accumulation of both endogenous bile
acids and exogenous triptolide and its metabolites (Hou et al.,
2018). It has been shown that ISL exerts its protective effects by
enhancing Nrf2 expression, its downstream NQO1 expression, and
hepatic influx and efflux transporters expression (Hou et al., 2018).
As previously mentioned, ISL has demonstrated its potential as a
hepatoprotectant and as a means tomitigate the detrimental impacts
of other substances on liver function. Additionally, according to
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studies, ISL protects against acute liver failure caused by LPS/
D-galactosamine (LPS/D-GalN), with the extent of this
protection being dependent on the dosage administered. This
protective mechanism is believed to be mediated through the
peroxisome proliferator-activated receptor-gamma coactivator
(PGC-1α)/Nrf2 pathway (Wang et al., 2021) (Figure 5). The
therapeutic effects of ISL in liver diseases, specifically those
related to Nrf2, are summarized in Supplementary Table 1.

4.3 Pancreatic and intestinal diseases

Severe acute pancreatitis (SAP) is a highly prevalent and fatal
digestive disorder characterized by an abnormal inflammatory
process affecting the pancreas (Lankisch et al., 2015; Lu et al.,
2016). The occurrence of severe intestinal dysfunction is closely
linked to acute pancreatitis (Karakayali, 2014). It has been suggested
that mitigating SAP complications, including intestinal dysfunction,
through appropriate interventions can be beneficial (Xiong Y. et al.,
2018). Consequently, ameliorating bowel dysfunction may

contribute to the improvement of SAP-related injuries. A prior
investigation has demonstrated that the restoration of the impaired
intestinal barrier is facilitated by the Nrf2/ARE signaling pathway
(Hu et al., 2018). In a recent study conducted by Zhang et al., it was
discovered that mice lacking Nrf2 exhibited heightened vulnerability
to injury in the context of SAP. This finding elucidates the crucial
reparative function of Nrf2 in maintaining the intestinal barrier
intact. Furthermore, the researchers also validated the significant
ameliorative effects of ISL on both pancreatic and intestinal damage,
as well as its ability to restore intestinal function. These effects were
mediated through the Nrf2/NF-κB pathway, which was found to
mitigate oxidative stress and inflammation in the animal model of
SAP (Zhang et al., 2018b). Furthermore, an additional study has
demonstrated that ISL displays substantial antioxidant activity and
mitigates pancreatic histopathological damage in a dose-dependent
manner by diminishing the levels of serum amylase and lipase.
Additionally, ISL has the ability to enhance the Nrf2/HO-1 signal
pathway’s protein expression. There is evidence that the ML385
(Nrf2 inhibitor) and the zinc protoporphyrin (HO-1 inhibitor)
significantly counteract the protective effects of ISL. Collectively,

FIGURE 5
Probable mechanism of action of ISL on the Nrf2 pathway. ISL alleviated oxidative stress, cell apoptosis and inflammation via activating the AMPK/
Nrf2 antioxidant signal pathway and inhibiting the NLRP3 inflammasome activation and NF-κB pathway. The inhibitory effect of ISL on
NLRP3 inflammasome and NF-κB pathway may be through both Nrf2 and non-Nrf2-independent signaling events. ISL also phosphorylates MAPKs and
upregulates the Keap1, which induces the separation of Nrf2 from Keap1, activation of Nrf2 signaling, and enhancement of detoxification phase II
enzymes activity. ISL activates SIRT1 to promote the Nrf2 antioxidant signaling pathway. Moreover, ISL also increase its antioxidant ability and decrease in
inflammatory, cell apoptosis through activating the PGC-1α/Nrf2 pathway. Besides, ISL also can inhibit GSK-3β activity by phosphorylation to enhance the
Nrf2 related antioxidant gene expression and inhibit the NF-κB induced inflammatory gene. (↑) represent positive effect while (⊥) represent negative effect
on the pathway.
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the aforementioned data provide novel evidence that implicates ISL
as a protective agent in the experimental model of SAP induced by
L-arginine, primarily through its ability to alleviate oxidative stress
(Liu et al., 2018). Furthermore, ISL has demonstrated efficacy in
preventing inflammatory bowel disease, with its protective effects
potentially mediated by activating Nrf2 and its downstream targets
(Chi et al., 2017). Consequently, these findings substantiate the
potential of ISL as a viable therapeutic option for the clinical
management of SAP (Figure 5). Supplementary Table 1 presents
a comprehensive overview of the therapeutic effects of ISL on Nrf2-
related pathways in both pancreatic and intestinal disorders.

4.4 Cardiovascular diseases and
hematologic disorder

Globally, cardiovascular disease remains the leading cause of
morbidity and mortality (Sidney et al., 2016). Oxidative stress
represents a significant mechanism implicated in the occurrence
of acute myocardial infarction (AMI). In a study utilizing an animal
model of AMI, specifically the ligation of the left anterior descending
coronary artery, researchers observed that ISL exhibited a
remarkable ability to reduce myocardial infarct size and enhance
the recovery of cardiac function. The mechanism involved the Nrf2/
HO-1 pathway activation, which resulted in the mitigation of
myocardial inflammation and oxidative stress in mice with
AMI(Yao et al., 2022). Additionally, there is a strong association
between diabetes and cardiovascular diseases (Radovits et al., 2009).
Pathological changes, including the presence of atheroma plaque,
were observed in the aorta of the diabetic group. However,

administration of ISL (20 mg/kg) for 8 weeks significantly
suppressed endothelin-1 expression in the aortic endothelium of
rats with streptozotocin-induced diabetes and preserved the
structural integrity of the aorta. It is noteworthy to mention that
ISL has the potential to enhance redox homeostasis in the aorta and
prevent the apoptosis of endothelial cells through the Nrf2/cysteinyl
aspartate specific proteinase-3 (Caspase-3) pathway (Alzahrani
et al., 2021). Additionally, another study demonstrated that ISL
can inhibit hypertrophy, fibrosis, and apoptosis in H9c2 cells
induced by high glucose, both in vitro and in vivo, by
suppressing inflammation and oxidative stress. Furthermore, the
significant protective effect of ISL was attributed to the inhibition of
MAPKs and the induction of the Nrf2 signaling pathway. These
aforementioned studies collectively indicate that ISL holds promise
for the development of therapeutic interventions against diabetic
cardiomyopathy (Gu et al., 2020) (Figure 5). Supplementary Table 1
shows Nrf2-related therapeutic effects of ISL in cardiovascular
disease and hematologic disorder.

4.5 Lung diseases

Acute lung injury (ALI)/acute respiratory distress syndrome is a
significant clinical syndrome associated with diffuse inflammation
and respiratory failure, resulting in high mortality rates and limited
therapeutic interventions (Ware and Matthay, 2000; Baetz et al.,
2005; Sarma and Ward, 2011). Previous research has demonstrated
that ISL exhibits potent antioxidant properties and has the potential
to mitigate lung injury (Liu et al., 2017). To investigate this further,
the researchers conducted in vitro studies using a tert-Butyl

TABLE 1 Summary of the most relevant preclinical studies evaluating the ISL nanoformulations.

Nano-formulation Particle
size (nm)

Disease Effects References

ISL self-microemulsifying drug delivery
system (SMEDDS)

44.78 ± 0.35 Hyperuricemia ISL-SMEDDS can improve the solubility and oral
bioavailability of ISL, and exert the anti-hyperuricemic
activity.

Zhang et al.
(2019a)

ISL-loaded F127/P123 polymeric micelles
(ISL-FPM)

20.12 ± 0.72 — ISL-FPM enhanced solubility, bioavailability and antioxidant
activity of ISL.

Xie et al. (2019)

ISL loaded zein/caseinate nanocomplexes
(ISL-NPs)

137.32 ± 2.54 Ulcerative colitis ISL-NPs can have stronger drug-loading capacity, increase
the retention of ISL in colonic inflammation sites and
effectively alleviate ulcerative colitis symptoms.

Xiao et al. (2022)

ISL self-nano-emulsifying drug delivery
system (ISL-SNEDDS)

33.4 ± 2.46 Eosinophilic
esophagitis

ISL-SNEDDS can improve the bioavailability of ISL and show
excellent anti-eosinophilic esophagitis activity.

Cao et al. (2022)

Hybrid membrane-camouflaged ISL
nanoparticles (ISL-HM-NPs)

264.59 ± 44.08 Glioma ISL-HM-NPs increased the solubility of ISL and also
enhanced its targeting and antitumor activity.

Shi et al. (2022)

ISL pH-sensitive micelles (ISL-M) 151.15 ± 1.04 Ulcerative colitis ISL-M increased bioavailability and better prevented colitis by
reducing inflammatory.

Shi et al. (2024)

ISL-encapsulated mesoporous silica
nanoparticles (MSNs-ISL)

~200 Lytic bone diseases MSNs-ISL had anti-osteoclastic effects and prevented bone
destruction.

Sun et al. (2019)

iRGD-modified lipid–polymer hybrid
nanoparticles loaded with ISL (ISL-iRGD NPs)

138.97 ± 2.44 Breast cancer ISL-iRGD-NPs can improve anti-breast cancer efficacy and
tumor-targeting ability of ISL.

Gao et al. (2017)

ISL-loaded nanostructured lipid carrier
(ISL-NLC)

160.73 ± 6.08 Cancer ISL-NLC had stronger antitumor effect and biodistribution in
vivo compared to the ISL.

Zhang et al.
(2013)

ISL loaded nanoliposomes (ISL-NLs) 48.9 ± 36.2 Colorectal cancer ISL-NLs regulated AMPK/mTOR mediated glycolysis in
colorectal cancer.

Wang et al.
(2020a)
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hydroperoxide (t-BHP)-induced RAW.264.7 injury model, which
mimics lung injury. The findings revealed that treatment with ISL
effectively reduced the ROS production and attenuated cellular
toxicity in RAW.264.7 cells. In vivo experiments have
demonstrated the protective effect of ISL in reducing LPS-
induced lung injury in mice with ALI. The role of ISL is
primarily emphasized through its impact on lung histopathology,
reduction of lung edema, and prevention of protein leakage.
Additionally, ISL has been found to inhibit the production of
ROS, myeloperoxidase (MPO), and malondialdehyde (MDA).
Furthermore, ISL significantly improves the LPS-induced
decrease in glutathione (GSH) and SOD levels in vivo. According
to the study, activation of the adenosine 5′-monophosphate (AMP)-
activated protein kinase (AMPK)/Nrf2/ARE signaling pathway is
crucial to effectively protecting against lung injury (Liu et al., 2017).
Additionally, a separate study has demonstrated the notable
protective effects of ISL against chronic obstructive pulmonary
disease (COPD) induced by cigarette smoke (CS) (Yu et al.,
2018). COPD is a highly prevalent disease, with CS being widely
recognized as its primary risk factor (Du et al., 2017; Vogelmeier
et al., 2017). Prolonged exposure to CS leads to chronic
inflammation and oxidative stress, resulting in significant
impairment of lung function (Chen et al., 2010; Du et al., 2017).
In the aforementioned study, it was observed that ISL effectively
mitigated lung pathological injuries induced by CS, as evidenced by
the reversal of wet/dry ratio and MPO activity. This notable effect
can be attributed to a significant reduction in inflammatory cell
infiltration, improvement in the redox state, and modulation of the

Nrf2 signal pathway (Yu et al., 2018) (Figure 5). In Supplementary
Table 1, we provide an overview of the therapeutic effects of ISL on
Nrf2-related mechanisms in lung diseases.

4.6 Kidney diseases

Hypertensive renal injury is a prominent risk factor for renal
injury, playing a significant role in developing of end-stage
nephropathy and the requirement for dialysis (Dugbartey, 2017).
A study conducted on hypertensive renal injury has initially
demonstrated that ISL can mitigate the inflammatory cytokine’s
production, apoptosis induced by oxidative stress, and excessive
deposition of extracellular matrix. Additionally, it has been
demonstrated that ISL can effectively safeguard against renal
injury by activating the Nrf2 and NF-κB pathways. These
findings indicate the potential preventive and therapeutic benefits
of ISL in the context of hypertensive renal injury (Xiong D. et al.,
2018) (Figure 5). The therapeutic effects of ISL on kidney diseases,
particularly those related to Nrf2, are summarized in
Supplementary Table 1.

5 ISL nanoformulations and ISL
metabolites

ISL exhibits high solubility in organic solvents but low solubility
in water (Xie et al., 2019). ISL has the low bioavailability in vivo due

TABLE 2 Summary of the various pharmacological effects of ISL metabolites.

Compound Structural formula Pharmacological effects References

Liquiitigenin Neuroprotective activities
Anti-nociception activities
Anti-bacterial activities
Anti-asthmatic effects
Anti-diabetic activities

Hepatoprotective activities
Anti-cancer activities

Chokchaisiri et al. (2009), Jayaprakasam et al. (2009), Kim
et al. (2009), Straub et al. (2013), Yang et al. (2013), Paterni
et al. (2015), Bae et al. (2018)

Naringenin chalcone Anti-allergic skin disorders
Anti-allergic asthma

Yamamoto et al. (2004), Iwamura et al. (2010),
Escribano-Ferrer et al. (2019)

Sulfuretin Enhancement of bone growth
Anti-depressive effects

Hepatoprotective activities
Alleviation of atopic dermatitis

Prevention of obesity

Jiang and Sun (2018), Kim et al. (2019), Lu et al. (2019), Sun
et al. (2022), Chang et al. (2023)

Butein Anti-cancer activities
Treatment of bone cancer pain
Alleviation of atherosclerosis
Treatment of cardiac diseases

Tungalag et al. (2022), Liu et al. (2023), Rehman et al. (2023),
Lu et al. (2024)

Davidigenin Anti-cancer activities Liu et al. (2002), Keranmu et al. (2022)
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to factors such as its poor solubility, high first-pass metabolism and
rapid excretion (Zhang et al., 2013; Qiao et al., 2014). Notably, the
term inadequate bioavailability suggests that the desired effects
under treatment of ISL are difficult to achieve, thereby hinders
its clinical application. To increase the dissolution and improve the
oral bioavailability of ISL, encapsulated ISL nanoparticles or nano-
ISL have been developed. Next, We have summarized various ISL
nanocarriers in preclinical studies and their potential applications
in Table 1.

Furthermore, the metabolites of ISL have demonstrated
potential pharmacological effects and therapeutic benefits for the
treatment of a variety of diseases. These metabolites, including
liquiritigenin, naringenin chalcone, sulfuretin, butein, and
davidigenin (Yang et al., 2016), have been the subject of
numerous studies evaluating their individual pharmacological
effects, such as neuroprotection, hepatocyte protection, and anti-
cancer properties (Kim et al., 2009; Yang et al., 2013; Lu et al., 2024).
A detailed summary of the specific pharmacological effects of each
metabolite can be found in Table 2.

6 Limitations and future prospects

All of the above published results suggest that ISL confer
protective effects on various disease via Nrf2 signaling pathways.
However, due to its low bioavailability and poor delivery
characteristics, the big gap between basic research and clinical
application still exists. In order to enable ISL available for better
therapeutic effects, more trials with ISL either alone or in combination
with existing therapies are also needed to fully appreciate its potential.
Based on this, the development of ISL formulations may represent a
promising avenue for future research. Currently, drug delivery
systems such as nanoparticles, liposomes, and micelles has been
reported to be applied to enhance drug’s solubility, absorbance,
and stability (Zhang et al., 2013; Zhang X. et al., 2016; Xie et al.,
2019). Theranostic nanoparticles consisting of ISL and a near-infrared
photosensitizer provide a promising delivery platform. It can enhance
treatment outcomes, and reduce drug dosage and side effects (Sun
et al., 2023). In addition, Studies on the side effects and safety
evaluations of this plant are very limited although ISL is widely
used in Chinese traditional medicine. In the future, long-term
toxicity studies and clinical trials of ISL are still needed.

7 Conclusion

Multiple research studies have shown the considerable role of
oxidative stress in the development of various illnesses.
Consequently, directing therapeutic interventions towards
mitigating oxidative stress may offer a pragmatic approach for
treating various ailments. Cells possess multiple antioxidant
systems that serve to counteract intracellular ROS. Among these
systems, the Nrf2/HO-1 signaling pathway represents a prominent
endogenous antioxidant mechanism. Nrf2, as the principal regulator
of anti-oxidative stress responses, primarily exerts its influence by
stimulating the activation of downstream antioxidant and cellular
protective genes. As a result, Nrf2 signal pathway activation may
inhibit oxidative stress. In this particular context, ISL exhibits both

antioxidant characteristics and minimal toxicity as a natural
compound. There are numerous studies suggesting that ISL could
be used as a novel therapeutic agent for a variety of diseases by
modulating the Nrf2 signal pathway in diverse animal and cellular
models. In summary, our review provides new insights for ISL as
Nrf2 signaling pathway modulator for treating various diseases.
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Glossary
ACSL4 Acyl-CoA synthetase long-chain family member 4

ALF acute liver failure

ALI acute lung injury

AMI acute myocardial infarction

AMPK adenosine 5‘-monophosphate (AMP)-activated protein kinase

ARE antioxidant response element

Bax Bcl-2-associated X

Bcl-2 B-cell lymphoma-2

BTB Broad complex, Tramtrack and Bric-à-Brac domain

bZIP basic-region leucine zipper

Caspase-3 cysteinyl aspartate specific proteinase-3

CAT catalase

COPD chronic obstructive pulmonary disease

COX-2 cyclooxygenase-2

CREB cAMP response element-binding protein

CS cigarette smoke

CTR C-terminal region

Cul3 cullin3

DGR double glycine repeat domain

ERK extracellular signal-regulated kinase

FPM F127/P123 polymeric micelles

GBC Gallbladder cancer

GCLC glutamate-cysteine ligase catalytic subunit

GCLM glutamate-cysteine ligase modifier subunit

GPX4 gluta thione peroxidase 4

GSH glutathione

GSH-PX glutathione peroxidase

GSK-3β glycogen synthase kinase-3β

GST glutathione S-transferase

HDAC histone deacetylase

HMGB1 high mobility group box 1 protein

HMOX1 haem oxygenase-1

HO-1 heme oxygenase-1

Iba-1 ionized calcium bindingadaptor molecule-1

IL-1β interleukin-1β

iNOS inducible nitric oxidesynthzase

ISL Isoliquiritigenin

ISL-HM-NPs Hybrid membrane-camouflaged Isoliquiritigenin nanoparticles

ISL-M Isoliquiritigenin pH-sensitive micelles

MSNs-ISL Isoliquiritigenin-encapsulated mesoporous silica nanoparticles

ISL-
iRGD-NPs

iRGD-modified lipid–polymer hybrid nanoparticles loaded with
Isoliquiritigenin

ISL-NLC Isoliquiritigenin-loaded nanostructured lipid carrier

ISL-NLs Isoliquiritigenin loaded nanoliposomes

IVR intervening region

IκBα I-kappa-B-alpha

JNK c-Jun N-terminal kinase

Keap1 Kelch-like epichlorohydrin associated protein 1

LPS lipopolysaccharide

LPS/D-GalN LPS/D-galactosamine

MAPK mitogen-activated protein kinase

MDA malondialdehyde

miRNA microRNA

MPO myeloperoxidase

MRP4 multidrug resistance protein 4

NF-κB nuclear factor kappa-B

NLRP3 NOD-like receptor thermal protein domain associated protein 3

NPs nanocomplexes

NQO1 nicotinamide adenine dinucleotide phosphate(NADPH) quinone
oxidoreductase-1

NOX2 NADPH oxidase 2

Nrf2 nuclear factor erythroid-2-related factor 2

NTR N-terminal domain

PD Parkinson’s disease

PERK protein kinase RNA–like endoplasmic reticulum kinase

PGC-1α peroxisome proliferator-activated receptor-gamma coactivator

PKC protein kinase C

RA rheumatoid arthritis

Rbx1 RING box protein 1

ROS reactive oxygen species

SAP severe acute pancreatitis

SCF SKP1-CUL1-F-box protein

SLC7A11 solute carrier family 7 member 11

SIRT1 silent information regulator 1

SMEDDS self-microemulsifying drug delivery system

SNEDDS self-nanoemulsifying drug delivery systems

SOD superoxide dismutase

SQSTM1 sequestosome 1

t-BHP tert-Butyl hydroperoxide

TBI traumatic brain injury

TNF-α tumor necrosis factor-α

TGF-β transforming growth factor-β

VCAM-1 vascular cell adhesion molecule-1

β-TrCP β-transducin repeat-containing protein

4-HNE 4-hydroxynonenal
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