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Madagascar is one of the world’s foremost biodiversity
hotspots with more than 90% of its species endemic to
the island. Malagasy carnivorans are one of only four
extant terrestrial mammalian clades endemic to Madagascar.
Although there are only eight extant species, these
carnivorans exhibit remarkable phenotypic and ecological
diversity that is often hypothesized to have diversified
through an adaptive radiation. Here, we investigated the
evolution of skull diversity in Malagasy carnivorans and
tested if they exhibited characteristics of convergence and an
adaptive radiation. We found that their skull disparity exceeds
that of any other feliform family, as their skulls vary widely
and strikingly capture a large amount of the morphological
variation found across all feliforms. We also found evidence
of shared adaptive zones in cranial shape between euplerid
subclades and felids, herpestids and viverrids. Lastly, contrary
to predictions of adaptive radiation, we found that Malagasy
carnivorans do not exhibit rapid lineage diversification and
only marginally faster rates of mandibular shape evolution
and to a lesser extent cranial shape evolution, compared
to other feliforms. These results reveal that exceptional
diversification rates are not necessary to generate the striking
phenotypic diversity that evolved in carnivorans after their
dispersal to and isolation on Madagascar.

1. Introduction
Many islands are considered as biodiversity hotspots [1] and
contain species that are not found anywhere else in the
world [2–4]. High rates of endemism could be spurred by
adaptive radiations [5]. Islands in particular, which are often
geographically isolated, provide novel ecological opportunities
for founding species to rapidly diversify to a variety of species
and phenotypes to fill previously unoccupied ecological niches
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[6–8]. Unsurprisingly, the best-studied adaptive radiations are found among insular island groups
such as Galápagos finches, Hawaiian honeycreepers and Caribbean anoles [9–11]. One of the world’s
foremost biodiversity hotspots is Madagascar, with more than 90% of its species endemic to the
island [12]. As Madagascar has been geographically isolated for over 88 million years, most endemic
Malagasy vertebrates are a result of several independent successful dispersal events from Africa or
Asia [13]. Upon arrival on Madagascar, adaptive radiations are hypothesized to have facilitated the
diversification of many Malagasy clades, such as beetles [14,15], frogs [16,17], vangas [18] and lemurs
[19–21]. In this study, we investigate the diversity of Malagasy euplerid carnivorans, one of four extant
terrestrial mammalian clades (i.e. Lemuroidea, Eupleridae, Tenrecidae and Nesomyinae) endemic to
Madagascar and hypothesized to have diversified through an adaptive radiation [22].

Although there are only eight extant species, Malagasy carnivorans exhibit remarkable phenotypic
and ecological diversity [22–25], so much so that no anatomical character can be used to define them.
As a result, Malagasy carnivorans have traditionally been thought to belong to or originate from
multiple feliform families (i.e. Herpestidae, Viverridae and Felidae) and thus presumably dispersed
to Madagascar through multiple independent dispersal events [26–29]. Molecular data have since
revealed that all Malagasy carnivorans originated from a single ancestor, thus forming a monophyletic
clade and most likely exhibited a single dispersal event to Madagascar [30–32]. Yoder et al. [30]
assessed the four potential models that could explain the appearance(s) of the euplerid ancestor on
Madagascar: Gondwanan vicariance; landbridge connections and ‘sweepstakes’ over-water dispersal in
a single event (i.e. ‘rafting’) or in multiple steps via island hopping. They concluded that available data
are most consistent with the common ancestor of a monophyletic Eupleridae arriving in Madagascar
~24–18 million years ago via a single over-water dispersal from African ancestry. Eupleridae consists
of three major clades: Galidiinae, Euplerinae and the fossa (Cryptoprocta ferox) (figure 1). Galidiines are
comprised of five species of vontsira. Their superficial resemblance to mongooses (Herpestidae) has
led to their ‘Malagasy mongoose’ alias and even to their classification as herpestids [26,27]. Galidiines
exhibit diverse ecologies such as in diets that range from insectivory, similarly found in herpestids, to
more carnivorous diets in Galidictis species [22]. Euplerines superficially resemble civets (Viverridae),
leading to them having been described as ‘Malagasy civets’ and classified as viverrids [28]. Similar to
viverrids, euplerines exhibit diverse ecologies ranging from the omnivorous fanaloka (Fossa fossana)
that feeds on a variety of invertebrate and vertebrate prey to the eastern falanouc (Eupleres goudotii) that
specialize on soft-bodied invertebrates such as worms and slugs [22]. The last euplerid clade consists of
the fossa, the largest and most carnivorous of the extant euplerids [34]. Its large-bodied civet-like and
cat-like resemblances have historically led its placement within either Viverridae or Felidae [28,29].

Here, we investigated the morphological disparity among Malagasy euplerids and in comparison
to taxa in other feliform carnivoran groups with which they have been historically classified. We used
skull shape in our examination of phenotypic evolution because of its strong associations with dietary
ecology across carnivorans [35–38]. Because of their superficial resemblances, we also investigated
convergence among euplerid and feliform clades with which they have been classified historically.
We predict that euplerids will exhibit greater disparity compared to other feliform clades and that
the three euplerid clades—galidiines, euplerines and the fossa—will converge towards herpestid-,
viverrid- and felid-like morphotypes in skull morphology, respectively. The observed phenotypic and
ecological diversities found in euplerids suggest that they exhibited an adaptive radiation. Therefore,
we also test if rates of their lineage diversification and phenotypic evolution are significantly acceler-
ated relative to other clades as predicted under adaptive radiation. We predict that euplerids will
exhibit shifts towards faster rates of lineage diversification and phenotypic evolution compared to
other feliform clades.

2. Methods
2.1. Morphological data
We quantified the shapes of 110 crania across 57 feliforms (~50% of species diversity) and the shapes of
315 mandibles across 90 feliforms (~79% of species diversity) using three-dimensional (3D) geometric
morphometrics [39,40]. Our dataset encompasses all eight euplerid species (number of specimens per
species ranged from 1 to 5). Whether Eupleres major and Salanoia durrelli are true species remains
debated [41,42]. Shape data were collected from 3D scans of feliform skulls obtained from surface
scanning with an EinScan Pro HD scanner at various museums, an Artec Spider structured light 3D
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scanner at the American Museum of Natural History, or from previously published work [36] (see
electronic supplementary material, table S1, for list of specimens and museums). All specimens were
fully mature, determined by the closure of exoccipital–basioccipital and basisphenoid–basioccipital
sutures on the cranium and full tooth eruption. Although carnivorans exhibit sexual dimorphism
[43,44], a combination of females, males and sex unknown individuals was used because just one
sex cannot be used without compromising the inclusion of as many euplerid species as possible. We
used 35 landmarks and seven curves with 134 semi-landmarks for the cranium and 21 landmarks and
four curves with 24 semi-landmarks for the mandible (electronic supplementary material, figure S1).
Landmarks were digitized using Slicer, and curves were digitized by oversampling semi-landmarks
in Slicer. Landmarks were superimposed by generalized Procrustes analysis, and semi-landmarks on
the curves were allowed to slide along their tangent vectors until their positions minimized bending
energy [40,45]. As part of the superimposition procedure, bilaterally homologous landmarks and
semi-landmarks were reflected across the median plane and averaged using the geomorphic function
bilat.symmetry. All Procrustes superimpositions were performed in the R package geomorph v. 4.0.6
[46]. We used centroid size as our metric of cranial and mandibular size.

2.2. Craniomandibular shape analyses
We performed all analyses under a phylogenetic framework using a phylogeny of mammals generated
by Upham et al. [33] and pruned to include only feliform carnivorans. All analyses were performed in
R v. 4.1.1 [47]. Because allometry has been shown to facilitate or constrain skull shape evolution [48],
we first tested for evolutionary allometry on cranial and mandibular shape by performing a phyloge-
netic Procrustes regression [49] with a random residual permutation procedure (1000 iterations) using
the geomorph function procD.pgls. Both cranial shape (sum of squares (SS) = 0.022, mean squares (MS)
= 0.022, R2 = 0.20, F = 14.127, Z = 3.45, p < 0.001) and mandibular shape (SS = 0.044, MS = 0.044, R2 =
0.25, F = 29.360, Z = 5.07, p = 0.001) exhibited significant evolutionary allometry. We, therefore, extracted
allometry-free shape as the shape residuals from the phylogenetic Procrustes regressions and used
them in all subsequent analyses.

2.2.1. Craniomandibular shape disparity

We visualized the phylomorphospace of cranial and mandibular shape by performing principal
component analyses (PCAs) using the geomorph function gm.prcomp. We then examined if cranial
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and mandibular disparity (i.e. Procrustes variance) differed among the feliform clades using the
geomorph functions procD.plgs and morphol.disparity.

2.2.2. Testing for convergence towards different feliform morphotypes

Euplerids are often cited to superficially resemble and were historically classified together with other
feliforms, specifically galidiines with mongooses (Herpestidae), euplerines with civets (Viverridae)
and the fossa with cats (Felidae) or with civets. Therefore, we tested whether there was statistical
evidence for convergence in these various euplerid–feliform comparisons. Here, we define conver-
gence as lineages evolving to be more similar to one another than were their ancestors [50–52]. We
assessed convergence using the Ct measure in the R package convevol [51,52], which tests whether the
geometric distance between focal lineages in phylomorphospace is shorter than the distances between
ancestral nodes at a specific time point. We then used a frequency-based measure of convergence (C5),
which determines whether the number of lineages that crosses into a particular region of morphospace
is greater than expected. We conducted 100 simulations under Brownian motion to assess statistical
significance of Ct and C5 measures. Together, these measures provide a more complete test of our
definition of convergence. We also applied the θreal measurement in the search.conv in the R pack-
age RRphylo [53]. θreal is the angle between the phenotypic vectors of focal lineages where smaller
angles indicate greater phenotypic similarity, which in turn may reflect convergence of taxa towards a
common morphology [53]. A caveat of this approach is that it does not distinguish convergence from
conservatism.

Lastly, we tested whether each of the three groups exhibited shared adaptive zones in skull shapes
by fitting five multivariate evolutionary models [54,55] on the first three principal components (PCs)
of the cranial shape dataset (accounting for 74.44% of total cranial shape variation) and mandibular
shape dataset (87.4% of total mandibular shape variation) using the R package mvMORPH v. 1.1.7 [56]
to incorporate covariances between axes. These models included single-rate Brownian motion model
(mvBM1), single-peak Ornstein–Uhlenbeck model (mvOU1) and three two-peak Ornstein–Uhlenbeck
models (mvOUM). Each of these mvOUM models designated two optima, one optimum for the focal
comparison and a second optimum for the remaining feliforms. All models were fitted across 250
mapped trees to account for uncertainty in phylogenetic topology and stochastic character maps of
group designations. Models were assessed with small sample corrected Akaike weights (AICcW), and
all models with a ∆AICc < 2 were considered equally best-fitting models. Support for a mvOUM model
as a best-fitting model would suggest a shared adaptive zone between the focal clades of interest.
These results, however, also would provide more nuanced interpretations of the convergent evolution
because they are unable to distinguish between potential convergence or conservatism [51,52].

2.2.3. Craniomandibular shape evolutionary rates

We investigated rates of cranial shape and mandibular shape evolution using two approaches. First, we
tested if evolutionary rates in cranial shape and mandibular shape differed among the feliform clades
using the geomorph function compare.evol.rates. Second, we examined branch-specific evolutionary
rates and rate shifts of cranial shape and mandibular shape using a variable rates model under a
reversible-jump Markov chain Monte Carlo (rjMCMC) framework in BayesTraits v4.1.1 (www.evolu-
tion.reading.ac.uk). To reduce the dimensions of the shape data for BayesTraits analysis, we used
only the phylogenetic principal component scores (pPCs) that represent >95% of the shape variation
in the cranium (first 18 pPCs) and mandible (first 11 pPCs). We ran two independent chains, each
with 200 000 000 iterations sampled every 20 000 iterations. After the first 25 000 000 iterations were
discarded as burn-in, we assessed convergence of the two chains by checking the trace plots and then
the effective sample size with Gelman and Rubin’s diagnostics in the R package coda v. 0.19-4. We
plotted rate shifts and branch-specific rates across the feliform phylogeny and constructed density
plots to compare evolutionary rates among feliform families using custom functions from [57]. A
caveat to these analyses is that, outside of Eupleridae, we have more limited representation of ~50%
and ~79% of species diversity of the remaining feliform clades in our cranial and mandibular shape
datasets, respectively. Nevertheless, although identification of significant rate shifts potentially could
be influenced by sampling in those other feliform clades, they are not the focus of this study.
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2.3. Rates of lineage diversification
We estimated speciation and extinction rates through time and across the feliform phylogeny using
two methods, Bayesian analysis of macroevolutionary mixtures (BAMM) [58] and the lineage-specific
birth–death–shift (LSBDS) model [59]. BAMM applies a rjMCMC to explore candidate models of
lineage diversification as well as quantify heterogeneity in evolutionary rates. We performed two
independent BAMM runs of 5 million generations on feliform phylogeny, sampling every 1000
generations and with priors chosen using the R package BAMMtools v2.0 [60]. We assessed the
convergence of each BAMM run using the R package BAMMtools v. 2.1.11 [60]. The LSBDS model
samples rate regimes from a prior distribution, discretized into a fixed number of rate categories.
We implemented the LSBDS model using seven categories (one for each of the seven extant feliform
families) for speciation and extinction and ran two MCMC chains for 5000 generations in RevBayes
[61]. We merged the posteriors, retaining the last 4000 generations from the MCMC in the R package
RevGadgets [62]. Convergence for both methods was assessed by checking that the ESS values for all
model parameters in the log files were greater than 200, using the R package coda [63].

3. Results
3.1. Craniomandibular shape morphospace and disparity
PCs 1−3 explain 74.44% of the cranial shape variation across feliforms (figure 2). PC1 distinguishes
hypercarnivorous felids and hyaenids (negative PC1) from the remaining, less carnivorous feliforms
including euplerids (positive PC1). Positive PC1 is characterized by lateral narrowing of the cranium at
the zygomatic arches, expansion of the braincase through widening of the nuchal crests and reduction
of the sagittal crest resulting in dorsoventral flattening. The diversity of euplerid cranial shapes is best
captured by PC2, as euplerid species occupy the full range of PC2. Positive PC2 describes shortening
of the rostrum and broadening of the cranium at the zygomatic arches and nuchal crests. Galidiines
are associated with positive PC2 and are encompassed within the range of variation of herpestids
(and felids), whereas euplerines are associated with negative PC2 with F. fossana falling within the
range of viverrids (and hyaenids) but E. goudotii distinct from all other feliforms. In PC 2, Cryptoprocta
is intermediate between galidiines and euplerines (closer to the former) and falls within the broad
range of values of felids. In the total PC1/2 cranial morphospace, galidiines cluster with herpestids,
euplerines are closest to and overlap with viverrids and Cryptoprocta is distinct from other feliforms.
Euplerids show little variation along cranial PC3, falling entirely within the range of felids and
overlapping with the lower range of viverrids and upper range of herpestids. All other non-monotypic
feliform families show a greater range of variance than and/or do not overlap with euplerids in PC3.
Positive PC3 describes slight elongation and ventrodorsal flexion of the rostrum and slight broadening
of the zygomatic arches. Ancestral node reconstruction suggests that euplerids exhibit a cranial shape
between viverrids and herpestids (figure 3). Overall, euplerids exhibit significantly greater cranial
shape disparity (Procrustes variance = 0.0078) compared to felids (0.0047, p = 0.026) and viverrids
(0.0033, p = 0.004), but not hyaenids (0.0066, p = 0.595) or herpestids (0.0061, p = 0.299).

Euplerids occupy greater regions of mandibular morphospace when compared to cranial morpho-
space. PCs 1−3 explain 87.4% of the mandibular shape variation across feliforms (figure 2). Like in the
crania, PC1 of mandibular shape largely distinguishes hypercarnivorous felids and to a lesser extent
hyaenids (both with negative PC1 values), from the remaining, less carnivorous feliforms (positive
PC1), except for overlap with hyaenids of two species of Galidictis (galidiine euplerids) and one
herpestid. In mandibular PC 1, euplerines fall within the range of viverrids and a few herpestids
at the extreme positive end of their range; galidiines have a wide range of mandibular PC1 values,
overlapping with herpestids at the most negative end of their range of variation, hyaenids, and one
species each of felid and viverrid; Cryptoprocta is very close to hyaenids in PC1 value. Positive PC1
describes dorsoventral mandibular flexure and elongation, decrease in coronoid height and lateral
compression of the mandibular body. However, unlike in the crania, euplerids exhibit greater variation
along PC1 than in any other feliform family (although viverrids are similar in range of variation, due to
one extreme outlier, the binturong (A. binturong)) and span negative and positive PC1.

Euplerids also approach both the negative and positive ends of variation in both PCs 2 and 3,
with E. goudotii again having the most extreme negative value for PC 2 of any feliform (as for the
cranial PCA). Positive PC2 describes anteroposterior shortening of the mandibular body, increases in
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coronoid height and lateral broadening of the mandibular body; positive PC3 describes anteroposterior
elongation of the mandibular body, dorsoventral compression of the mandibular body and reduction in
coronoid height. Ancestral node reconstruction suggests that euplerids exhibit a cranial shape between
viverrids and herpestids, with closer resemblance to the latter (figure 3). Euplerids exhibit significantly
greater mandibular shape disparity (Procrustes variance = 0.0100) compared to felids (0.0035, p = 0.001),
viverrids (0.0054, p = 0.020) and herpestids (0.0040, p = 0.003) but not hyaenids (0.0050, p = 0.692).

3.2. Convergence towards different feliform morphotypes
We did not find statistical support for the distance-based measure of convergence between galidiines
and herpestids (cranial Ct1 = −0.19, p = 0.96; mandibular Ct1 = −0.03, p = 0.39), between euplerines and
viverrids (cranial Ct1 = −0.24, p = 0.84; mandibular Ct1 = −0.25, p = 0.84), between the fossa (C. ferox)
and felids (cranial Ct1 = 0.05, p = 0.08; mandibular Ct1 = −0.05, p = 0.48) or between the fossa and
viverrids (cranial Ct1 = −0.31, p = 0.98; mandibular Ct1 = −0.17, p = 0.46). The frequency-based measure
of convergence indicated that the number of transitions into regions of phylomorphospace occupied
by herpestids, viverrids, and felids was not significantly greater than expected under Brownian motion
(all p > 0.380). Similarly, we did not find statistical support for smaller θreal angles between galidiines
and herpestids (cranial θreal = 7.42, p = 0.051; mandibular θreal = 8.52, p = 0.401), between euplerines
and viverrids (cranial θreal = 8.71, p = 0.645; mandibular θreal = 8.90, p = 0.747), between the fossa (C.
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ferox) and felids (cranial θreal = 8.28, p = 0.688; mandibular θreal = 8.64, p = 0.499) or between the fossa
and viverrids (cranial θreal = 7.68, p = 0.199; mandibular θreal = 8.91, p = 0.738).

Using evolutionary modelling, we found evidence of shared adaptive zones in cranial shape
between galidiines and herpestids (best model = mvOUM, AICcW = 0.98) and some evidence of shared
adaptive zones in cranial shape between euplerines and viverrids (best models = mvOUM (AICcW
= 0.52) and mvBM (AICcW = 0.47; ∆AICc = 0.20)) and between the fossa and felids (best models =
mvBM (AICcW = 0.66) and mvOUM (AICcW = 0.32; ∆AICc = 1.47)) (electronic supplementary material,
table S2). In contrast, we found no evidence of shared adaptive zones in mandibular shape in all three
comparisons (best model for all = mvOU1 (AICcW > 081); electronic supplementary material, table S2).

3.3. Rates of craniomandibular shape evolution
Rates of cranial shape evolution in euplerids (ln σ2

multi = −12.86) do not significantly differ from
most feliform clades (felid ln σ2

multi = −12.94, p = 0.592; hyaenid ln σ2
multi = −12.47, p = 0.100;

herpestid ln σ2
multi = −13.14, p = 0.105), except for viverrids (ln σ2

multi = −13.72, p = 0.001), in
which euplerids exhibited significantly faster rates of cranial shape evolution. Although we found
six significant rate shifts (posterior probability (pp) > 0.70) across feliforms, none of these occurred
within euplerids (figure 3). Instead, rate shifts occurred towards or within the branches of the other
major feliform clades including Hyaenidae, Felidae (pantherines and the Puma lineage), Viverridae
(crownward Genetta species), Herpestidae (subclade of herpestines) and the overall feliform clade
excluding Nandiniidae (figure 3).

Euplerids exhibited greater rate heterogeneity in evolution of mandibular shape compared to
cranial shape. Euplerids exhibited significantly faster rates of mandibular shape evolution (ln σ2

multi
= −12.29) compared to viverrids (ln σ2

multi = −13.08, p = 0.001) and herpestids (ln σ2
multi = −12.79, p =

0.001) but significantly slower rates compared to felids (ln σ2
multi = −11.80, p = 0.023). There was no

difference in mandibular shape evolutionary rates between euplerids and hyaenids (ln σ2
multi = −12.23,

p = 0.889). Furthermore, we found that two of the five significant rate shifts in mandibular shape (pp
> 0.70) occurred within euplerid clades: Galidictis species and euplerines (figure 3). The remaining rate
shifts occurred within the same subclade of herpestines that exhibited a rate shift in cranial shape
evolution, within Leopardus cats, and for the overall feliform clade excluding Nandiniidae (figure 3).
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Figure 3. Phylorate plots of cranial and mandibular shape evolutionary rates across feliform Carnivora. Warmer colours indicate faster
rates and cooler colours indicate slower rates. Significant shifts in evolutionary rate are shown as grey circles with sizes proportional to
the posterior probability. All rates were log-transformed.
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3.4. Diversification rate analyses
Euplerids do not exhibit distinct rates of diversification, as both BAMM and the LSBDS models are
united in revealing that there are no increased species diversification rates on the branches leading
towards Eupleridae compared to the remaining feliforms (figure 4; electronic supplementary material,
figure S2). Furthermore, we found no significant shifts in diversification rate within feliforms, albeit
there are slightly elevated rates on the branches leading towards to the viverrid subfamily Genettinae
and felids (figure 4; electronic supplementary material, figure S2).

4. Discussion
4.1. Skull diversity in Malagasy carnivorans
Euplerids exhibit greater disparity in their skulls compared to most feliform families, for both cranial
and mandibular shapes, and particularly so in their mandibles. Euplerids overlap with all extant
feliform families in mandibular shape morphospace, whereas they only overlap with non-hyercar-
nivorous families (i.e. Herpestidae, Nandiniidae, Prionodontidae and Viverridae) in cranial shape
morphospace (figure 2). The only euplerid to approach hypercarnivorous feliforms (Felidae, Hyaeni-
dae) in both cranial and mandibular morphospace is the fossa (C. ferox), the most carnivorous of
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Nandiniidae
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Figure 4. Phylorate plot of lineage diversification rates across feliform Carnivora using BAMM. Colours at each point in time along
the branches of the phylorate plot denote instantaneous rate of diversification. Warmer colours indicate faster rates and cooler colours
indicate slower rates. There are no significant shifts in diversification rates across the phylogeny. Analyses of lineage diversification
rates using LSBDS resulted in similar patterns (electronic supplementary material, figure S2).
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the euplerids [22]. The fossa exhibits cranial and mandibular morphologies that appear intermediate
between the average euplerid and average felid (figures 5a and 6a). Compared to all other euplerids,
the fossa exhibits relatively broader zygomatic arches and more pronounced sagittal and nuchal crests
in the cranium (figure 5a) and relatively broader coronoid processes in the mandible (figure 6a). These
adaptations suggest that the fossa exhibit larger temporalis and masseter jaw muscles for increased
biting ability [64–67] and are thus better adapted for their hypercarnivorous diets [22]. There is some
evidence that the fossa and felids share a similar adaptive zone in cranial shape (∆AIC = 1.47; electronic
supplementary material, table S2), but there is no statistical support for convergence in skull shape
between the fossa and felids. These results suggest that cranial adaptations towards hypercarnivory in
the fossa do not quite reach the felid morphotype (figures 5a and 6a) because the fossa and felids share
an adaptive zone characterized by broad adaptive slopes rather than distinct adaptive peaks with steep
slopes [24,52,68,69].

Euplerines occupy overlapping regions of cranial and mandibular morphospace with viverrids,
the family to which they have been compared or classified with historically (figure 2). The fanaloka
(F. fossana) exhibits only slight differences in skull shape (i.e. narrower and more elongate crania
and mandibles) compared to the average viverrid, which is consistent with their similar diets of
invertebrate and vertebrate prey, whereas the falanouc (E. goudotii) exhibits a more specialized skull
that includes relatively elongate rostrum and mandible and less pronounced zygomatic arches,
nuchal crest, sagittal crests, coronoid processes compared to the average viverrid (figure 5b) and all
other feliforms. These adaptations in the skull, along with reduced dentition, enable the falanouc to
specialize in feeding on soft-bodied invertebrates such as worms and slugs [22]. We found evidence
that euplerines and viverrids share an adaptive zone in cranial shape but not mandibular shape
(electronic supplementary material, table S2), but neither skull component provided statistical support
for convergence between the two groups. Therefore, like for the fossa and felids, our results suggest
that euplerines and viverrids may share an adaptive zone with broad adaptive slopes instead of
exhibiting convergence characterized by distinct similar adaptive peaks with steep slopes.

Galidiines exhibit distinct patterns of cranial and mandibular shape distribution in morphospace.
Galidiines occupy overlapping regions of cranial morphospace with herpestids (figure 2), and there
appear to be few cranial shape differences between the galidiine species closest to the average cranial
shape of all galidiines and the herpestid species closest to the average cranial shape of all herpestids
(figure 5c). Evolutionary modelling also strongly supports a shared adaptive zone in cranial shape
between galidiines and herpestids (electronic supplementary material, table S2) but no statistical
support for convergence. However, galidiines approach regions of mandibular morphospace occupied
by hypercarnivorous feliforms (figure 2) and exhibit mandibular morphologies that appear intermedi-
ate between herpestids and felids (figure 6c,d): galidiine mandibles tend to be relatively broader
and more robust compared to the herpestid species closest to the average mandibular shape of all
herpestids but are not as broad or robust as the felid species closest to the average mandibular
shape of all felids (figure 6c,d). Of the galidiines, Galidictis species appear most similar to felids in
mandibular shape, providing morphological evidence that carnivory likely is an important component
of their diet. Previous work surmised that, in addition to insects, Galidictis feed on rodents, reptiles,
amphibians and even small lemurs; however, their dietary ecologies remain poorly known, as they
are some of the rarest carnivorans in the world [22]. That Galidictis exhibits a rate shift towards
faster mandibular evolution (figure 3) leads us to postulate that shifts towards more carnivorous
diets may be due to more relatively recent (<5 million years ago) selection. The distinct patterns
between the cranium and mandible in galidiines follow an overall trend of decoupled modes of
evolution between the cranium and mandible across carnivorans, where cranial evolution tends to
follow clade-based shifts, whereas mandibular evolution is linked instead to broad dietary regimes
[36,70]. Our results suggest that galidiines may have retained cranial morphology from euplerid–
herpestid ancestors through conservatism rather than convergence, whereas the more evolutionary
labile mandible adapted towards a more carnivorous diet than the typical insectivorous diets found
in herpestids, most euplerids, and most likely their most recent common ancestors (of the euplerid +
herpestid clade).

4.2. Are Malagasy carnivorans an adaptive radiation?
Like many endemic Malagasy clades, euplerids are often considered to represent an adaptive radiation
after dispersal to a long-isolated island. We found that euplerids show extreme ranges of skull shape
variation and many distinct cranial and mandibular shapes in phylomorphospace and geometric
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morphometric analyses. Contrary to predictions of adaptive radiation, we found that euplerids do
not exhibit exceptional lineage diversification and have only marginally faster rates of mandibular
shape evolution and, to a lesser extent, cranial shape evolution compared to other feliform families
(figures 3 and 4). Thus, it is tempting to postulate that euplerids may have evolved via an ‘adaptive
non-radiation’ [8], where ecomorphological divergence within a clade fails to produce rapid species
diversification. Rapid phenotypic evolution without rapid taxonomic diversification rates has been
found in a variety of vertebrate clades [71–73] including other carnivorans such as mustelids [74] as
well as other endemic Malagasy vertebrates such as mantellid frogs [8]. Those studies cited possible
factors that may mask a signal of rapid diversification [8,71–74] including the absence of fossil data
in diversification analyses, which may have erased signatures of early rapid diversification [75–77];
continental radiations, in which many clades are simply unable to rapidly radiate spatially across
entire continents as soon as they arise [72,74,78–80]; and clade age, where younger clades diversify
faster than older clades [81]. These factors also may influence our analyses of euplerid diversification.
First, euplerids are not an exceptionally young clade, having diverged from herpestids ~24−18 million
years ago [30] with a clade age for extant species of ~15−14 million years old [33]. Despite their long
evolutionary history, euplerids are extremely poorly represented in the fossil record, known only
from Holocene subfossil remains of the extinct giant fossa (C. spelea) [82]. Therefore, unaccounted
cladogenesis of extinct euplerids may lead to underestimation of taxonomic diversification rates and
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to the average
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Figure 5. Thin-plate spline deformation grids depicting cranial shape differences between euplerid clades and other feliform families.
(a) Cranial shape of the fossa (C. ferox) appears intermediate between felids and other euplerids. (b) Cranial shape of euplerines:
the fanaloka (F. fossana) resembles viverrids, whereas the eastern falanouc (E. goudotii) exhibits a more specialized morphology. (c)
Cranial shapes of most galidiines resemble herpestids.
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Figure 6. Thin-plate spline deformation grids depicting mandibular shape differences euplerid clades and other feliform families.
(a) Mandibular shape of the fossa (C. ferox) appears intermediate between felids and euplerids. (b) Mandibular shape of euplerines:
the fanaloka (F. fossana) resemble viverrids, whereas the eastern falanouc (E. goudotii) exhibits a more specialized morphology. (c)
Mandibular shapes of most galidiines resemble herpestids, although the mandibular shape (d) of Grandidier’s vontsira (G. grandidieri)
appears intermediate between felids and other galidiines.
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ecological diversity in euplerids. Second, unaccounted speciation of modern euplerids also may lead to
underestimation of diversification rates. At least two euplerids—E. goudotii and S. concolor—are
thought, though with uncertainty, to each consist of two species (i.e. E. goudotii and E. major and S.
concolor and S. durrelli) [41,42,83]; if valid, this would lead to increased diversification rates, albeit at
more crownward tips of the tree. Lastly, euplerid diversification is perhaps better characterized as a
continental radiation rather than as an insular radiation. Researchers often suggest that Madagascar, as
the fourth largest island globally, resembles a continent more than an island, with a geological record
that spans more than three billion years and several vicariance and dispersal events over the past ~88–
90 million years, after its final separation from other major Gondwanan landmasses [84–86]. Therefore,
the diversification of Malagasy clades with long residence times in Madagascar may be better charac-
terized as multiple bursts of speciation events throughout their evolutionary history [19,87] rather than
as a single early burst of rapid diversification that has been found in some other insular clades [9–11].
That diversification rates do not differ statistically between euplerids and continental feliforms support
the hypothesis that the diversification dynamics of other endemic Malagasy clades follow a pattern
more similar to diversification on a continent than on an island [8]. Therefore, while found only on
Madagascar, there is no indication that insular processes spurred a rapid burst of taxonomic diversifi-
cation of euplerids, as often has been hypothesized.

5. Conclusion
Euplerids exhibit great disparity in cranial and mandibular morphology that corresponds to their wide
dietary diversity ranging from worm-eating falanoucs to lemur-eating fossas. We document for the
first time that their skull morphologies, particularly their mandibles, show significantly greater shape
disparity compared to other feliform clades, and this single small clade of Malagasy endemic carnivor-
ans captures a large amount of the morphological variation that is found across the entire clade of
feliforms. We also found evidence that the three euplerid clades—galidiines, euplerines, and the fossa
—exhibited shared adaptive zones in cranial shape morphology with herpestids, viverrids and felids,
respectively. We did not find statistical evidence, however, that these three euplerid clades—galidiines,
euplerines and the fossa—converged towards herpestid-, viverrid- and felid-morphotypes in skull
morphology, respectively, as had been implicit in classifications or directly hypothesized historically.
Despite demonstrating great skull disparity, we found that euplerids do not clearly exhibit an adaptive
radiation, as we found no evidence of rapid lineage diversification rates and only marginally faster
rates of mandibular shape evolution compared to other feliform families. This work supports an
increasing number of studies demonstrating that adaptive radiations in endemic Malagasy clades
may not as common as previously thought [8,19] and diversification dynamics on Madagascar may
resemble those found on continents rather than on islands.
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