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Drug-related errors are a leading cause of preventable patient harm in the clinical setting. We present
the first wearable camera system to automatically detect potential errors, prior to medication delivery.
We demonstrate that using deep learning algorithms, our system can detect and classify drug labels
on syringes and vials in drug preparation events recorded in real-world operating rooms.We created a
first-of-its-kind large-scale video dataset from head-mounted cameras comprising 4K footage across
13 anesthesiology providers, 2 hospitals and 17 operating rooms over 55 days. The system was
evaluated on 418 drug draw events in routine patient care and a controlled environment and achieved
99.6% sensitivity and 98.8% specificity at detecting vial swap errors. These results suggest that our
wearable camera system has the potential to provide a secondary check when a medication is
selected for a patient, and a chance to intervene before a potential medical error.

At least 1 in 20 patients are affected by preventable patient harm in a
clinical setting based on a meta-analysis of studies involving patients of
all ages from a range of specialities including surgery, intensive care,
emergency department, obstetrics, and primary care1. Drug-related
errors are a leading cause of these incidents, with up to 12% of these
errors resulting in serious harm or death1. Studies estimate that between
140,000 to 440,000 deaths annually in the United States can be attrib-
uted to medical errors2–4 with 80% of adverse events occurring in the
hospital, and 41% occurring in the operating room5. Error rates for drug
delivery events in hospitals are estimated at about 5–10% of all drugs
given6–8. Drug administration errors are the most frequently reported
critical incidents in anesthesia9 and the most common cause of serious
medical errors in the intensive care unit10. Adverse events associated
with injectable medications are estimated to impact 1.2 million hospi-
talizations annually with 5.1 billion dollars in associated costs11.

Syringe and vial swaps are drug errors that can result in patient
harm12–19. For intravenous medication injections, clinicians often must
remove the medication from a vial and transfer it to a syringe19. Vial swap
errors occur at this stepwhen the syringe is labeled incorrectly, or thewrong
vial is selected for use19. These errors are also referred to as substitution
errors, account for 20% of drug errors and lead to the wrong drug being
given to a patient19. Another 20% of drug errors are due to syringe swaps,
where the drug is labeled correctly but given in error19,20. A recent, highly
publicized criminal trial of a nurse’s vial swap error that resulted in a

patient’s death has highlighted this threat to patient safety21,22.While syringe
and vial swaps in particular have been documented most prominently in
anesthesiology12,19,20, medication administration errors have also been
shown to occur across various medical settings including pediatrics23, the
emergency department16, rehabilitation unit24, radiology22, medical and
surgicalwards25, and the prehospital setting18. In the intensive care unit, 44%
of medication errors occurred during drug administration15. In the regular
hospital ward, medication administration errors accounted for 34% of
preventable events, with only 2% of drug administration errors detected
before they occurred13. Medication administration errors occur across the
spectrum of clinical care settings and can cause patient harm or death22.

Prior efforts tominimizemedication errors have involved color coding
medications26, using tall man style lettering on labels27, standardized safety
protocols28,29, additional observers30, prefilled syringes31 and barcode
scanning32,33.While some of thesemitigation strategies are passive,methods
like barcode scanning require active participation by clinical providers prior
to medication administration, and compliance with these safety mechan-
isms can be problematic34–36. Busy clinicians often develop ‘workaround’
techniques to decrease their workload up to 62% of the time during medi-
cation administration tasks, often administering a drug first before entering
the drug name manually into the clinical record37. Such workarounds can
lead to a threefold increased chance of a medication error38. Thus, there
exists a need for automating medication checks in real-time prior to
administration that fits into the current clinical environment.

1Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA. 2School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA. 3Department of Computer Science, Makerere University, Kampala, Uganda. 4Toyota Research Institute, Los Altos, CA, USA.
5Department of Anesthesiology &PainMedicine, University ofWashington, Seattle,WA,USA. 6These authors contributed equally: Justin Chan, SolomonNsumba.

e-mail: gshyam@cs.washington.edu; kellyem@uw.edu

npj Digital Medicine |           (2024) 7:287 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01295-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01295-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01295-2&domain=pdf
http://orcid.org/0000-0002-1471-6187
http://orcid.org/0000-0002-1471-6187
http://orcid.org/0000-0002-1471-6187
http://orcid.org/0000-0002-1471-6187
http://orcid.org/0000-0002-1471-6187
http://orcid.org/0000-0002-1264-5565
http://orcid.org/0000-0002-1264-5565
http://orcid.org/0000-0002-1264-5565
http://orcid.org/0000-0002-1264-5565
http://orcid.org/0000-0002-1264-5565
http://orcid.org/0000-0002-9863-3054
http://orcid.org/0000-0002-9863-3054
http://orcid.org/0000-0002-9863-3054
http://orcid.org/0000-0002-9863-3054
http://orcid.org/0000-0002-9863-3054
mailto:gshyam@cs.washington.edu
mailto:kellyem@uw.edu
www.nature.com/npjdigitalmed


Automated medication checks could serve as second set of ‘eyes’ ver-
ifying the work of an anesthesia provider to ensure that medication errors
have not occurred, or if they had, provide a warning before the unintended
medication reaches the patient. As anesthesia providers are already required
to wear protective eyewear while working in the OR as a barrier against
fluids, smart eyewear with built-in cameras39–42 present themselves as a
potential platform tovisually detectmedication errors in theoperating room
before they occur.

Here, we introduce a wearable camera system to automatically
detect vial swap errors that occur when a provider incorrectly fills a
syringe from amismatched drug vial (Fig. 1). We demonstrate the use of

deep learning to detect syringes and vials in a provider’s hand, classify
the drug type on the label, and automatically check if theymatch in order
to detect vial swap errors. Our system is trained on a large-scale drug
event dataset captured from head-mounted cameras worn by anesthe-
siologists or certified registered nurse anesthetists performing their usual
clinical workflows to prepare medications for surgery in an operating
room environment. Our algorithms can detect vial swaps in real-time
from videos wirelessly streamed to a local edge server with a GPU, which
could enable real-time auditory or visual feedback by alerting providers
to medication errors prior to drug administration, providing an
opportunity to intervene.
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Fig. 1 | Overview of wearable camera system for detecting medication errors.
aHead-mounted camera (GoProHero8) attached to a head strap and powered by an
external battery pack. b Recording drug preparation events using wearable camera
system. c Vial swap error from midazolam vial into syringe with ondansetron label.
d Real-world operating room use showing that syringe and vial labels are not visible
in every frame and can be obscured by the provider’s hand or tilted away.

e Real-world environments containing other syringes and vials in the background
unrelated to the drug drawup event. f Workflow demonstrating how drug drawup
events captured through our system are detected and classified. Medication errors
can be communicated to the provider through real-time auditory or visual feedback
and automatically recorded.
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Results
Acceptability of wearable cameras by anesthesia providers
To motivate the need for a wearable system that can automate medication
checks and minimize errors, we conducted a survey across 109 anesthe-
siology providers spanning a range of sub-specialties including intensive
care, pediatrics, pain, cardiothoracic, generalist, obstetric, and neurologic
across four hospital sites. We show in Fig. 2a that the median percentage of
time that providers scan the barcode of a drug or manually record its
contents prior to administration (a current technique tohelp prevent errors)
is only 20% (IQR: 46.25). When providers manually record medication
administration events, they believe that amean and SD of 68 ± 24% records
accurately reflect the drug name, dose, and administration time (Fig. 2b).
The survey also assessed the willingness of participants to wear a camera
system that could automate thesemedication checks.Ona scale of 1 (lowest)
to 7 (highest), participants expressed a median willingness score of 5 for a
wearable system that could automatically detectmedication errors (Fig. 2c).
Furthermore, 88% of participants indicated that they would use a light-
weight, accurate, and FDA-cleared camera system if it was shown to
decrease medication errors, made charting easier or if it was required by
their employers (Fig. 2d).

Clinical dataset
Largepublicly accessible databases such as ImageNet43 donot havepoint-of-
view operating room data of drug preparation events. While ImageNet

contains data for syringes, they are often seen in the foreground of stock
photoswith a relativelyunclutteredbackgroundordepicted in the context of
drug abuse or recreational use rather than authorized medical care. In
contrast, the visual environment of the operating room is relatively chaotic,
with many tubes and wires in the background. To address this problem, we
create a unique dataset that can provide insights into preparatory tasks
preceding the twenty-two million surgeries performed annually in the
United States alone44, and serve as a benchmark for developing deep
learning algorithms that can detect medication errors and understand the
operating room environment.

Creating such a dataset requires addressing two challenges: First, the
labels on syringes and vials are small, and can be difficult to read or classify if
not captured on a high-resolution camera (Supplementary Fig. 1). Second,
the wearable camera’s field of view should be large enough to capture the
drawup event, and directly face the drug label without any obstructions. To
address these challenges, we collected our dataset using a high-resolution
head-mounted 4K resolution camera located by the forehead that was tilted
downward to detect drawup events (Supplementary Fig. 2). Other sites for a
camera were considered such as the chest or anesthesia machine, but views
from these sites were often blocked by people, equipment or surgical drapes
and did not provide an unobstructed view of the drug delivery event.

Our dataset was collected from February 2021 to July 2023 across two
clinical sites at the University of Washington. Our dataset contains video
footage of 13 anesthesiology providers, and 17 operating locations over

Fig. 2 | Survey results across anesthesiology providers (n= 109). Cumulative
distribution function (CDF) of providers' self-assessment: a percentage of time they
scan the barcode of a drug or manually record it prior to administration and
b percentage of accurately recorded drug administration events, including drug
name, dose, and administration time. cHistogram displaying providers' willingness
(1 lowest, 7 highest) to wear a camera capable of detecting potential medication

errors, such as when a syringe label doesn’t match the drug vial during syringe
preparation or when a medication is selected to which the patient is allergic.
dHistogram displaying providers' willingness (1 lowest, 7 highest) to wear a camera
that analyzes drug delivery actions and automatically records them in the
patient’s chart.
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55 days (Table 1). It is comprised of real-world operating room videos of
anesthesiologists performing drug preparation events as recorded from
head-mounted cameras to capture their point-of-view (Fig. 1a, b). The
dataset includes a variety of different drug preparation styles, workstation
setups, lighting conditions, syringe labeling machines and operating room
environments. The video streams collected from the head-mounted cam-
eras were carefully segmented into clips containing drug draw up events.
Drug draw-ups involved a provider actively drawingmedication from a vial
into a syringe. Drug delivery events involved a provider actively injecting a
syringe containing a drug into a patient’s intravenous fluid line. This dataset
is further augmented with vial swap errors performed by a trained
researcher in a controlled environment (Fig. 1c). Videos are annotated to
indicate if a syringe and vial label can be seen (Fig. 1d), if syringes and vials
are in the background (Fig. 1e), ambient lighting condition, and provider
key. A subset of the videos are annotated at the frame-level with bounding
boxes indicating the location of the syringe, vial, and drug label held in the
provider’s hand. These videos are used to generate training and validation
data for our object detection framework. Videos with a drug label are
annotated at the video-level with the drug name, and are used to train and
evaluate our drug label classification system (Fig. 1f). All videos in the
dataset are de-identified, and all protected health information present in
videos are cropped or blurred. No audio recordings are present in the
dataset.

Drug label detection
Accurate detection of syringe and vial drug labels in the hands of a clinical
provider in a timely fashion is the first step towards recognizing potential
medication errors.Achieving this requires addressing three challenges: First,
the system should only detect syringes and vials in the provider’s hand, not
those seen in the background (Fig. 1e, Supplementary Fig. 3a). Second, the
system should recognize objects regardless of whether the provider is
wearing gloves (Supplementary Fig. 3b). Third, the system should be able to
recognize the drug label, not just the syringe or vial object, for a variety of
different drug labels and styles (Supplementary Figs. 4, 5, 6). To address
these challenges, we created an annotated dataset that marks the location of
syringes, vials, anddrug labels only in thehandsofproviders, for both gloved
and non-gloved providers. Further, to increase the accuracy of our system,

we augment the dataset using label-preserving image transformations45,46

(see Methods) and train two separate detectors one to detect syringes and
syringe labels, and one to detect vials and vial labels. Inorder for the detector
to run in realtime on a GPU, the video frames were rescaled from a reso-
lution of 2160 × 3840 to 384 × 640 to obtain the drug label bounding box
which is then upscaled back to the original video resolution.

We evaluated the performance of our detector at identifying syringes
and vials in a medical provider’s hand. We used the pretrained YOLOv5x
object detection model47, and fine-tuned it on a custom training dataset of
syringes and vials from real-world operating room medication events. Our
training, validation, and held-out test sets contain 1596, 308 and 111 images
respectively with annotations for syringes, vials, and their labels. We note
that there were no overlaps in medication events used for the training,
validation, and test sets. Figure 3 shows the precision-recall curve of the
object detection model for each of the four objects of interest with and
without image augmentation. The AP50 (average precision when the
intersection over union is set to 50) is 0.934 and 0.953 for the syringe and
syringe label respectively when image augmentation is applied (Fig. 3a), and
is 0.935 and 0.903 for the drug vial and drug vial label respectively when
image augmentation is applied (Fig. 3c). In contrast, the AP50 is lower
without theuse of image augmentations anddecreases to 0.897 and0.924 for
the syringe and syringe label respectively (Fig. 3b) and 0.906 and 0.801,
respectively for the vial and vial label (Fig. 3d).Wenote that training a single
object detector to recognize all four objects at once results in decreased
performance with amAP50 across all objects of 0.745. In contrast, with the
use of two separate object detectors, the mAP50 across all four classes is
0.931. The inference time of themodel with image augmentation is 23.9ms
on a NVIDIA A40 GPU.

Drug label classification
Onceadrug label is detected, thenext step is to classify themedicationon the
label. There are three challenges to achieving this goal: First, creating a
dataset of drug labels using real-world medication events in the operating
rooms alonewould result in an imbalanced dataset as somemedications are
handled frequently while others are rarely handled. Second, drug labels can
be obscured from the camera’s view by the provider’s fingers (Fig. 1d).
Third, spurious frames of background syringes and vials may occasionally
be mistaken as being in the provider’s hand and can cause the classifier to
produce an incorrect result. To address these challenges, we augmented the
classifier training dataset with drug events that occurred less frequently in
the operating room using additional drug events collected in the controlled
environment (Supplementary Tables 3, 4). We curated the dataset to only
contain clear and readable depictions of either a syringe label, a vial label or
both (Table 2) that were not obscured by the provider’s hand. To reduce the
likelihood of classifying background objects incorrectly produced by the
object detection model as a drug label, we created a class consisting of
background object frames. To do this, we pass videos of medication events
through our object detection model and use frames with a detection
probability less than0.2. Finally, to improve systemaccuracyweapply image
transformation augmentations to our training dataset (see Methods).

We first evaluate the performance of our classifier on the set of med-
ication events collected in a controlled setting.Here, the events consisted of a
trained researcher recording correct drug drawups, where the label on the
syringe and vial matched, and incorrect drug drawups, where the two labels
differed. Events were recorded across different operating rooms with and
without gloves on.We note that our classifiers were trained withmore drug
classes than what appeared in the test sets, as such the confusion matrices
onlydisplay the subset of drugs thatwere in the evaluationdata andanydrug
classes that were a misprediction by the classifier. Supplementary Fig. 7a, b
shows that our syringe drug label classifier correctly classified syringe labels
for 319 of 323 (98.8%) events with image augmentation and a background
image class and in 316 of 323 (97.8%) events without these additions. We
observe that the syringe labels for vecuronium was misclassified as the
rocuronium drug in several events. This is likely because the background
color of the label for both these drug types are identical, and furthermore

Table 1 | Dataset statistics

Statistic n

Days recorded in operating room 55

Number of operating rooms 17

Number of providers 13

Number of clinical sites 2

Drug drawup events 621

Syringe-in-hand videos 1587

Vial-in-hand videos 819

Training data # frames

Syringe detector 1596

Vial detector 262

Syringe classifier 9332

Vial classifier 62821

Evaluation data # frames

Syringes in operating room 609816

Vials in operating room 254117

Syringes in controlled environment 424835

Vials in controlled environment 304326

Number of different events and videos in the dataset, and number of frames used to train and
evaluate the syringe and vial detector and classifier.
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both drugs have similar spellings, sharing a common suffix. We note that
drugs that have the same background color share similar medication
effects48,49, and these misclassifications are less likely to cause injury com-
pared to misclassifications to a different color. In Supplementary Fig. 7c, d,
we show that our vial drug label classifier correctly classifiedvial labels in 294
of 298 (98.7%) events with image augmentation and a background image
class and in 309 of 328 (94.2%) events without these additions.

Next, we evaluated the performance of our systemat classifying syringe
drug labels and vial drug labels in real-world operating room medication
events captured at the University ofWashingtonMedical Center (UWMC)
Montlake. Figure 4a, b shows the confusion matrix of our syringe classifier
onmedication events with a syringe label captured in the operating room at
ourmain clinical site. The syringe classifier correctly classified syringe labels
in 227 of 230 (98.7%) events with image augmentation and a background
image class and in 228 of 231 (98.7%) events without these additions.
Figure 4c, d shows the performance of the vial classifier on medication
events containing vial labels in the operating room. The vial classifier cor-
rectly classified vial labels in 122 of 123 (99.2%) events with image aug-
mentation and a background image class and in 122 of 143 (85.3%) events
without these additions.

Predicting vial swap errors
Weevaluate the feasibility of our system todetect vial swap errors. Todo this
we pool together the classification results for all medication events collected
from the real-world operating rooms and the controlled setting, and the
classifier produced a drug classification for both labels in the video. When
image augmentation and a background image classwere applied, therewere
253 valid drug drawup events where the syringe and vial label matched, and
165 events containing vial swap errors, and the systemachieved a sensitivity
and specificity of 99.6% (95%CI 98.8 to 100.0%) and 98.8% (95%CI 97.1 to

100.0%) respectively at detecting vial swap errors (Supplementary Fig. 8a).
Without image augmentation or a background image class, there were 277
valid drug drawup events, and 193 vial swap errors, and the sensitivity and
specificity of the systemwas 99.3% (95%CI 98.3 to 100.0%) and 85.0% (95%
CI 79.9 to 90.0%) respectively (Supplementary Fig. 8b).

Evaluating generalization
We also evaluated how performance generalizes across different environ-
mental conditions: First, we measured performance on a dataset of medi-
cation events collected from a held-out clinical site. Second, we performed a
subgroup analysis for 13 different providers, 5 of which were not used to
train the system. Finally, we performed benchmark testing in different
lighting conditions and distances.

Generalization to held-out clinical site. We evaluated generalization to
a held-out dataset of real-world operating room medication events col-
lected from a different hospital that is affiliated with our institution,
Harborview Medical Center. This dataset is comprised of 72 and 32
events containing syringe and vial drug labels respectively. Our system
correctly classifies syringe drug labels in 71 of 72 (98.6%) events with
image augmentation and a background image class and 70 of 72 (97.2%)
events without these additions (Supplementary Fig. 9a, b). Our vial label
classifier correctly classifies vial labels in 23 of 24 (95.8%) events with
image augmentation and a background image class and in 25 of 32
(78.1%) events without these additions (Supplementary Fig. 9c, d).

Subgroup analysis. We perform a subgroup analysis of medication
event classification performance for drug labels after image augmenta-
tion and a background image class on the dataset of real-world events
collected in the operating room setting at UWMC Montlake. Figure 5a

Fig. 3 | Drug label detection performance in real-
world operating room environment. Precision-
recall curves for a, b syringe and syringe label
detector with and without image augmentation and
c, d vial and vial label detector with and without
image augmentation.
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shows the classification accuracy of both classifiers for 13 anesthesiology
providers. Drug events captured by providers with ID 3 to 10were used to
train the drug label detector and classifier. The mean and standard
deviation accuracy of the syringe and vial label classifier was 96.0 ± 7.6%
and 99.5 ± 1.7% respectively across all 13 providers. Figure 5b shows the
classification accuracy for events with a clear background, and events
with syringes and vials in the background. When the background was
clear of objects, the syringe and vial classifier correctly classified all drug
labels within these events. When syringes are present in the background,
the accuracy of the syringe and vial classifier is 98.2 and 99.2%, respec-
tively. When vials are in the background the syringe and vial classifier
obtain accuracies of 98.6 and 99.1% respectively. Figure 5c shows the
performance of the classifiers for providers with and without gloves. The
syringe classifier obtained accuracies of 98.4 and 98.2% with and without
gloves respectively, while the vial classifier had accuracies of 97.3 and
100.0% with and without gloves respectively.

Benchmark testing. We perform benchmark testing across different
environmental conditions on a held-out dataset of medication events
collected by a researcher in a controlled environment. We evaluate the
performance of the syringe classifier on a set of simulated drug drawup
and delivery events collected in different ambient lighting conditions in
the operating room. Specifically, we recorded events with five different
syringe drug labels in bright, dim and dark lighting conditions
respectively (Fig. 6a). These events were recorded using the head-
mounted camera’s default and low-light camera settings. Figure 6b
shows the confusion matrix when the default camera settings were used
showing a correct classification of 10 of 10 events, 9 of 9 events and 2 of

10 events for the bright, dim, and dark ambient lighting conditions
respectively.When the low-light camera settings is used, Fig. 6c shows a
correct classification as 10 of 10 events, 10 of 10 events and 6 of 10 events
for the bright, dim, and dark conditions respectively. These results
suggest the low-light camera settings are slightly better than the default
camera settings under dark lighting conditions. An end-to-end
implementation of the system could use a light sensor to turn on the
low-light camera mode in response to darkened ambient lighting
conditions. Further, the head-mounted camera in our study supports an
additional light attachment50 that could provide increased illumination
under dark lighting conditions.

Next, we evaluate our system’s classification performance of syringe
drug labels as a function of distance. To do this, we assessed syringe clas-
sificationwith three different drug labels at increasing distances from both a
top view as well as a side view. Figure 6d shows that when the camera is
head-mounted and recording the syringe from a top view, our system was
on average able to correctly classify 100.0 ± 0.0% of the frames across all the
videos at a close distance of 13 cm, and 91.4 ± 9.1% of the frames at the
furthest testeddistance of 56cm(about as far as ahandholding a syringe can
be from a headmounted camera). Figure 6e shows that for videos where the
side view of the syringe was presented to the camera, 99.5 ± 0.7% of frames
were correctly classified when it is at a close distance of 15 cm and
55.6 ± 41.6%at 56 cm.This shows that althoughour classifierwas trainedon
footage recorded from the top view, it is able to classify footage recorded
from a side view as well. We note that to classify a drug drawup event as
containing a particular syringe label, our algorithm only uses the most
common drug class prediction, and does not impose a threshold on the
fraction of frames containing a syringe label, as a syringe label may only be
visible for a small fraction of the event.

Discussion
This study demonstrates a wearable camera system for automatically
detecting and classifying drug labels on syringes and vials, and flagging
potential vial swap errors in the operating room. Additionally, this system
also has the potential for detecting syringe swap errors, which occurswhen a
clinician injects an unintended medication into a patient. Syringe swap
errorswere not quantified in this study as theywould require the clinician to
point out when a mistake had occurred.

In reviewing a subset of our real world medication event dataset that
was collected across a sevenmonth period totaling 212 drug delivery events,
themean time betweenwhen a syringewas selected by a provider andwhen
the drug was given was 9.9 ± 7.2 s (Supplementary Fig. 10). The system
described in this paper took less than 25 ms on an NVIDIA A40 GPU and
could be used identify syringe swaps prior to drug injection in drug delivery
events recorded in our patient dataset.

The American Society of Anesthesiologists supports the use of the
color-coding scheme for medication labels established by the American
Society for Testing and Materials, which groups drugs into nine classes
based on similar medication effects48,49. In our study, after image augmen-
tation and a background image class, 6 of 7 syringe label misclassifications
that occurred during drug drawup events in the real-world OR and con-
trolled environment datasets were misclassified to drug labels of the same
color.Wenote that ifmisclassifications of this typewere to occur at the drug
delivery stage they are likely to be less injurious compared to mis-
classifications to a different color category.

In its current iteration, our system has achieved the expected accuracy
for clinical use as determined during our provider survey. Participants were
asked about the minimum performance of the drug classifier to be con-
sidered foruse indaily practice. 56%of surveyparticipants indicated that the
performance of the drug classifier should atminimumbe 50–95% for use in
daily practice, with the remaining 44% expressing aminimumperformance
of 99%. With image augmentation and a background image class, our
syringe and vial classifier achieves a performance greater than 95% in the
real-world deployment at UWMC Montlake and in the controlled
environment.

Table 2 | Summary of evaluation dataset for drug label
classifier

Drug Operating room Controlled environment

Syringes Vials Syringes Vials
(n = 303) (n = 175) (n = 323) (n = 328)

Amiodarone 0 0 0 3

Cefazolin 4 1 0 0

Cisatracurium 0 0 1 0

Dexamethasone 31 15 28 25

Etomidate 0 0 2 12

Fentanyl 52 34 33 21

Glycopyrrolate 3 4 3 15

Hydromorphone 8 1 40 20

Ketamine 2 1 2 0

Ketorolac 0 0 22 26

Lidocaine 44 22 33 44

Magnesium sulfate 0 0 0 2

Metoprolol tartrate 0 0 0 1

Midazolam 20 13 33 24

Neostigmine 0 0 30 22

Ondansetron 34 26 29 36

Phenylephrine 11 0 0 0

Propofol 58 34 27 18

Rocuronium 26 17 23 33

Sugammadex 7 6 11 22

Vasopressin 3 1 1 4

Vecuronium 0 0 6 0

Number of drug preparation video events captured in the operating rooms at two clinical sites and a
controlled environment.
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Our design has four key limitations. First, we note that during the real-
world deployment of our system at UWMCMontlake, providers were not
given any instructions onhow to use the system as these datawere primarily
used for algorithm development. In this population, an independent
annotator marked that a drug label was visible in 231 of 265 (87.2%) events
with syringes, and in 143 of 265 (54.0%) events with vials. In comparison,
when we aimed to test the generalizability of the system at a second site,
Harborview Medical Center, clinicians were given a short 2min introduc-
tion to how the system worked was provided, including a request that the
clinician try not to cover the syringe and vial labels with their hands. Here,
the annotator noted that a drug label was visible in 72 of 72 (100.0%) events
with syringes, and in 32 of 37 (86.5%) events with vials. This demonstrates
that providing clinicians with instructions improves the visibility of drug
labels and enables the wearable camera system to more reliably detect vial
swaps. Additionally, we note that the drug drawup events analyzed begin
only when the syringe and vial are in the provider’s hand, excluding the
initial pickup and inspection period when the label would also be visible to
the camera. Including this initial period could further improve the system’s
reliability in detecting vial swaps. Furthermore, continuous learning algo-
rithms can be developed to infer and learn from the accuracy of its

predictions, without explicit user feedback. Specifically, if the wearable
system alerts the wearer of a medication error, but the wearer does not
correct it, the systemcan infer that its predictionswere incorrect anduse this
implicit feedback to improve its subsequent predictions.

Secondly, the data for this study was collected from a single hospital
systemwith a specific policy for using color-coded, Codonics drug labels for
syringes which is not universally adopted by all hospitals. While standar-
dized syringe labels exist for all drugs in our training set, this is not the case
for hospitals that donot use an automatic label generator51.Wenote that vial
label styles vary between manufacturers, and our training and evaluation
sets containmultiple vial label styles. To adapt the system to recognize a new
label style, the classifier can be finetunedwith examples of drug preparation
events containing the new style. Future designs could generate realistic
synthetic training data that would allow the system to generalize to unseen
drug label styles.

Thirdly, an end-to-end deployment of the wearable camera system
would require wirelessly streaming video data to a nearby edge server for
further processing, which could be achieved using a combined Wi-Fi and
60GHzWiGig link supportingmulti-gigabit data rates52, or over a terahertz
link53. Low-power streaming algorithms can also be designed toworkwithin

Fig. 4 | Drug label classification performance in real-world operating room environments. Confusion matrices for a, b syringe labels with and without image
augmentation and a background image class and c, d vial labels with and without image augmentation and a background image class.
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the power constraints of thewearable systemwhichhas a limited battery size
and has to be small and comfortable for long term use. To reduce energy
consumption, a heavily duty cycled high-resolution color camera that
produces key frames at infrequent intervals, and a low-resolution, grayscale
camera could streamvideodata to the edge serverwhich combines the video
streams using super-resolution and colorization algorithms54

Lastly, despite recording in 4K resolution, more vials than syringes
were not classified by our system due to videos not containing enough clear
frames for our system to produce a drug classification result. This is likely
due to the smaller text of drug labels on vials. The use of higher resolution
wearable cameras, such as those supporting a 5.3K resolution55,56may lead to
improved results.

Outside of the operating room, injectable medications are most fre-
quently administered by nurses. 44% of American nurses report giving at
least five intravenous medications during a shift57. With 5.2 million regis-
tered nurses in the United States, there are likely tens of millions of syringe
medication administrations every day58. Moreover, medication errors and
syringe safety are nurses’ top concerns according to a survey, with 97%
reporting fearing potential medication administration errors59. The work
presented here focuses on errors in the operating room due to their higher
frequency in that location, however, amuch larger proportionofmedication
administrations are performed by nurses, who could also benefit from the
development of this technology.

In summary, we present a wearable camera system to detect vial swap
errors prior to medication delivery by anesthesia providers. We show how
deep learning algorithms trained on drug preparation events captured on
head-mounted cameras can be used to detect and classify drug labels on
syringes and vials in real-world operating room settings. Our proof-of-
concept system may provide an automated means of detecting medication
errors that can fit within the clinical setting. Further efforts include building
mechanisms to provide feedback to the clinicians and creating methods for

measuring syringe volume to calculate the dose ofmedication delivered to a
patient. Finally, when integrated with an electronic medical record system,
our system opens opportunities for automatically recording drug infor-
mation and reducing the overhead of manual record-keeping.

Methods
This study was approved by the University of Washington Institutional
Review Board (STUDY00010313). Written consent was obtained for
anesthesiologyproviderswho recordedmedication eventswith thewearable
camera system. The rest of the operating room staff was informed of the
recordingsduring amorningmeeting and inposters onall the entrances and
exits. Video recordings of drug draw up events obtained prior to patients
entering the operating room was considered exempt by our IRB. Patients
provided written consent for video recording during surgery during the
surgical consenting process. Video footage when patients were present were
de-identified prior to analysis, all reasonable measures have been taken to
preserve patient anonymity and video footage will not be made available
outside study personnel. Written consent was obtained to publish any
identifiable images, details, or videos. All study personnel completed our
institution’s HIPAA and Compliance training for the handling of patient
information. All studies complied with relevant ethical regulations. Ran-
domization was not applicable and investigators were not blinded.

Dataset collection
Anesthesia providers were approached for consent before participating in
the study. Providers were fitted with a head-mounted camera (GoPro
Hero8) that was configured to record drug preparation events at 4K reso-
lution and 60 frames per second. A research assistant would swap out the
external battery pack every 2–3 h to ensure continuous recording was
possible. Medication events in the operating room were recorded by an
anesthesia provider during the preparation period between surgery cases.

Fig. 5 | Subgroup analysis of drug label classification accuracy in real-world
operating room environments.Classification performance of syringe and vial label
classifiers across a different anesthesiology providers b different objects in the

background and c whether the providers wore gloves. Numbers above each bar
indicate the number of videos that were annotated in that scenario.
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a

Fig. 6 | Benchmark testing.Classification performance of syringe drug labels under
a bright, dim, and dark ambient lighting conditions in the operating room using the
head-mounted camera’s b default camera light settings and c low-light settings.

Fraction of syringe label video frames correctly classified at different distances when
recorded from d top view and e side view.
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Data was collected across multiple providers, multiple operating rooms,
different types of syringes, and different lighting conditions in a single large
academic hospital.Medication events in the controlled clinical environment
was recorded by a researcher in an otherwise unoccupied OR.

After data collection, video footage was transferred to a HIPAA-
compliant server (OneDrive) thatwas password-protected anddeleted from
the camera’s memory card. Footage that did not involve drug preparation
was discarded. To de-identify video footage of protected health information
(PHI), all faces, ID badges, electronic medical records, and written patient
and provider information were cropped or blurred using video editing
software (Adobe Premiere Pro). The streamof video footagewas segmented
into clips capturing drug preparation events eachwith a duration of 2–120 s.
These segmented clipswere exportedusingmatched sourcevideo settings to
maintain the original quality of the footage. No audio recordings were
obtained in this study and no images of patients were included in this
dataset.

Dataset annotation
The segmented drug preparation clips were uploaded to a local Computer
Vision Annotating Toolkit (CVAT)60 server at the highest video quality
settings for object annotation. A team of twenty volunteers were trained to
annotate the location of syringes, vials, and drug labels in the dataset using
bounding boxes. They were also trained to record drug label information
including drug name, drug concentration, and drug label color. The videos
were annotated with the drug preparation event recorded as either drug
draw-up and drug delivery. We also annotated syringe-in-hand events
where the provider holding the syringe without the drawing or delivery of a
drug.Videosweremarked to indicate if either a syringe, a vial or bothobjects
were in the provider’s hand. The ambient brightness level, whether the
provider’s hands were gloved, and the presence of syringes and vials in the
backgroundwere also recorded as part of the annotationprocess.Drugs that
were not being handled by the provider (i.e., syringes on the anesthesia cart)
were not annotated. Volunteers were tasked with annotating keyframes at
every tenth or twentieth frame. Annotations of syringes and vials for in-
between frames were interpolated by CVAT.

Annotation training consisted of three major components: prepara-
tion, training, and feedback. As part of preparation, volunteers spent
approximately two hours reviewing an instructional manual and a compi-
lation of images taken from previously reviewed annotations. Volunteers
then spent approximately onehourwith a trainer to review trainingmaterial
and annotate a test clip. Lastly, volunteers were provided with written
feedback on the quality of their annotations. Volunteers spent approxi-
mately 45–60min annotating a batch of 1000 frames. Across all volunteers
300–400 hwas spent annotating clips. To ensure a high level of quality in the
annotations, all annotations were inspected and revised for accuracy by a
senior reviewer. Senior reviewer training consisted of two months of self-
training. This process took approximately 15–30min for each batch of 1000
frames. Total review time totaled roughly 100–200 h.

The test dataset of medication events from the operating room and
controlled environment used to evaluate the classifier were only annotated
at the video-level with the drug name on syringes and vials handled by the
provider. A senior reviewer inspected all clips in the test set and marked if
the drug label on the syringe or vial was oriented towards the camera and
could be read by eye.

Drug label detector training algorithm
The object detection framework for drug labels uses pretrained YOLOv5x47

weights which are finetuned on a dataset of drug drawup events. The
finetuning was performed for a maximum of 1000 epochs with early
stopping if there was no improvement in validation performance for 50
epochs. Two detectors are trained, one for the syringe and syringe label, and
one for the vial and vial label. The dataset was partitioned into training,
validation, and test sets such that frames from the same video clip never
straddled the partitioned boundaries. During model validation, it was
observed that detector performance increased with video resolution of the

model. We selected the highest video resolution possible that would still
allow inference to be performed in real-time on a NVIDIA A40 GPU. The
validation stepwas also used to observe the effect of image augmentation on
model performance prior to evaluating the model on the test set. The
Albumentations library61 was used for image augmentation. The following
augmentations were applied: a blur with a random-sized kernel with
probability 0.01, a median blur with random aperture linear size with
probability 0.01, a conversion from RGB to grayscale with probability 0.01,
and Contrast Limited Adaptive Histogram Equalization (CLAHE) with
probability 0.01. At inference time, images were scaled to ratios of 1.0, 0.83,
and 0.67. When the ratio is 0.83, horizontal flipping is performed. These
images were then passed through the model, and the inverse scaling and
flipping operation was applied to the coordinates of the predicted bounding
boxes. The bounding boxwith the highest confidence score is selected as the
model output.

Drug label classifier training algorithm
Our classifier leverages the pre-trainedCLIPViT-L/14 transformermodel62,
fine-tuned on a training dataset of drug labels. We trained a classifier for
22 syringe drug labels and another for 20 vial drug labels (Supplementary
Tables 1, 2). Some drugs come as pre-filled syringes so there is no vial
equivalent at the hospitals included in the studywhich is why the number of
syringes and vials are different. The set of drugs used to train the syringe
label classifier cover all the drugs used in the drug drawup events and in
97.7% of drug delivery events in our real-world dataset (Supplementary
Table 1), while the drugs used to train the vial label classifier cover all of the
drug drawup events in the dataset (Supplementary Table 2). To generate the
training dataset, we passed videos containing medication events through
our object detection models, manually inspected the bounding boxes of
objects which were detected with a probability threshold exceeding 0.8, and
only included clear depictions of the drug label that could be read by a
human annotator. Each video in the dataset contains a single drawup event
of a single drug, and is labeledwith the drug label of the syringe and vial. For
each video, we extract all the frames and pass them through our object
detection model and only consider frames exceeding a preset detection
probability threshold. The classifier scales all images to a resolution of
224 × 224. The inference time of our classifier is 0.37ms on a NVIDIA
A40 GPU.

We evaluate the performance of the classifier on the drug draw-up
events collected in the controlled clinical environment to determine the
image augmentations to be applied to the classifiers. The image augmen-
tations applied to the syringe classifier used theTorchVision library63: Image
length and width is randomly resized to be within the normalized bounds
[0.9, 1.0], random horizontal flip with probability 0.5 and random rotation
within range [−20, 20]∘. The image augmentations applied to the vial
classifier were the same as the syringe classifier with the addition of random
jitter of brightness, contrast, and saturation by a factor within the range
[0.5, 1.5], and image histogram equalization with probability 0.5.

Vial swap error detection algorithm
To detect if a vial swap error has occurred, the following three key steps are
performed to determine the drug label on the syringe and vial in the drug
preparation event (Supplementary Algorithm 1):

Step 1: Extract frames containing adrug label.Wefirst extract all frames
in a video and pass them through the drug label detection frameworks for
syringe labels and vial labels. The framework returns a bounding box for all
drug labels observed in the frame,andanassociateddetectionprobability for
each frame. If the highest probability exceeds detection_probability_thres-
hold it is passed to the classifier for further processing. detection_probabil-
ity_threshold is set to 0.85 for syringe labels and 0.8 for vial labels in our
implementation.

Step 2: Classify drug labels in each frame. Next, we pass the extracted
video frames into the corresponding drug classifier for syringe or vial labels.
The logits predicted by the classifier are converted into softmax prob-
abilities. The class with themaximumprobability ismarked as the predicted
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drug label for the frame. If the predicted class is not a background object
class, and the softmax probability is greater than mini-
mum_prediction_probability, it is recorded in a counter. mini-
mum_prediction_probability is set to 0.999 in our implementation.

Step 3: Compute drug label at video-level. Finally, the most frequently
occurring drug label is retrieved from the counter. If that drug occurred in at
least minimum_drug_label_frames frames, we mark that as the corre-
sponding syringe or vial drug label for the video. mini-
mum_drug_label_frames is set to 1 for syringe drug labels and6 for vial drug
labels in our implementation.

We check if the syringe and vial labels computed in the above steps
match. If theydonotmatchwemark that a vial swap error has occurred, else
we mark that the drug drawup was valid (Supplementary Algorithm 2).

The thresholds in the vial swap error detection algorithm were deter-
mined by measuring their effect on the classifier’s performance on drug
drawup events collected in the controlled environment. These thresholds
were then held constant and used to evaluate the remaining medication
events in the real-world dataset and benchmark testing.

If the thresholds of detection_probability_threshold in step 1, mini-
mum_prediction_probability in step 2 andminimum_drug_label_frames in
step 3 are removed, the performance of the syringe label classifier on the
real-world operating roomdataset decreases from227 of 230 (98.7%) events
to 221 of 231 (95.7%) events. The performance of the vial label classifier
decreases from 122 of 123 (99.2%) events to 132 of 138 (95.7%) events.

Statistical analysis
Algorithms to train, validate, and test computer vision algorithms were
performed using PyTorch.AP50, sensitivity, specificity, and 95% confidence
interval analysis was performed using numpy. Figures were created using
matplotlib and seaborn.

Data availability
All data necessary for interpreting the manuscript have been included. The
datasets used in the current study are not publicly available but may be
available from the corresponding authors on reasonable request and with
permission of the University of Washington.

Code availability
Code is available at https://github.com/uw-x/mederrors.
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